This file is indexed.

/usr/share/pyshared/mvpa2/clfs/enet.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Elastic-Net (ENET) regression classifier."""

__docformat__ = 'restructuredtext'

# system imports
import numpy as np

import mvpa2.base.externals as externals

# do conditional to be able to build module reference
if externals.exists('elasticnet', raise_=True):
    import rpy2.robjects
    import rpy2.robjects.numpy2ri
    if hasattr(rpy2.robjects.numpy2ri,'activate'):
        rpy2.robjects.numpy2ri.activate()
    RRuntimeError = rpy2.robjects.rinterface.RRuntimeError
    r = rpy2.robjects.r
    r.library('elasticnet')
    from mvpa2.support.rpy2_addons import Rrx2


# local imports
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples, \
        FailedToPredictError
from mvpa2.base.learner import FailedToTrainError
from mvpa2.measures.base import Sensitivity

if __debug__:
    from mvpa2.base import debug

class ENET(Classifier):
    """Elastic-Net regression (ENET) `Classifier`.

    Elastic-Net is the model selection algorithm from:

    :ref:`Zou and Hastie (2005) <ZH05>` 'Regularization and Variable
    Selection via the Elastic Net' Journal of the Royal Statistical
    Society, Series B, 67, 301-320.

    Similar to SMLR, it performs a feature selection while performing
    classification, but instead of starting with all features, it
    starts with none and adds them in, which is similar to boosting.

    Unlike LARS it has both L1 and L2 regularization (instead of just
    L1).  This means that while it tries to sparsify the features it
    also tries to keep redundant features, which may be very very good
    for fMRI classification.

    In the true nature of the PyMVPA framework, this algorithm was
    actually implemented in R by Zou and Hastie and wrapped via RPy.
    To make use of ENET, you must have R and RPy installed as well as
    both the lars and elasticnet contributed package. You can install
    the R and RPy with the following command on Debian-based machines:

    sudo aptitude install python-rpy python-rpy-doc r-base-dev

    You can then install the lars and elasticnet package by running R
    as root and calling:

    install.packages()

    """

    __tags__ = [ 'enet', 'regression', 'linear', 'has_sensitivity',
                 'does_feature_selection', 'rpy2' ]

    def __init__(self, lm=1.0, trace=False, normalize=True,
                 intercept=True, max_steps=None, **kwargs):
        """
        Initialize ENET.

        See the help in R for further details on the following parameters:

        Parameters
        ----------
        lm : float
          Penalty parameter.  0 will perform LARS with no ridge regression.
          Default is 1.0.
        trace : boolean
          Whether to print progress in R as it works.
        normalize : boolean
          Whether to normalize the L2 Norm.
        intercept : boolean
          Whether to add a non-penalized intercept to the model.
        max_steps : None or int
          If not None, specify the total number of iterations to run. Each
          iteration adds a feature, but leaving it none will add until
          convergence.
        """
        # init base class first
        Classifier.__init__(self, **kwargs)

        # set up the params
        self.__lm = lm
        self.__normalize = normalize
        self.__intercept = intercept
        self.__trace = trace
        self.__max_steps = max_steps

        # pylint friendly initializations
        self.__weights = None
        """The beta weights for each feature."""
        self.__trained_model = None
        """The model object after training that will be used for
        predictions."""

        # It does not make sense to calculate a confusion matrix for a
        # regression
        self.ca.enable('training_stats', False)

    def __repr__(self):
        """String summary of the object
        """
        return """ENET(lm=%s, normalize=%s, intercept=%s, trace=%s, max_steps=%s, enable_ca=%s)""" % \
               (self.__lm,
                self.__normalize,
                self.__intercept,
                self.__trace,
                self.__max_steps,
                str(self.ca.enabled))


    def _train(self, data):
        """Train the classifier using `data` (`Dataset`).
        """
        targets = data.sa[self.get_space()].value[:, np.newaxis]
        enet_kwargs = {}
        if self.__max_steps is not None:
            enet_kwargs['max.steps'] = self.__max_steps

        try:
            self.__trained_model = trained_model = \
                r.enet(data.samples,
                       targets,
                       self.__lm,
                       normalize=self.__normalize,
                       intercept=self.__intercept,
                       trace=self.__trace,
                       **enet_kwargs)
        except RRuntimeError, e:
            raise FailedToTrainError, \
                  "Failed to predict on %s using %s. Exceptions was: %s" \
                  % (data, self, e)

        # find the step with the lowest Cp (risk)
        # it is often the last step if you set a max_steps
        # must first convert dictionary to array
#         Cp_vals = np.asarray([trained_model['Cp'][str(x)]
#                              for x in range(len(trained_model['Cp']))])
#         self.__lowest_Cp_step = Cp_vals.argmin()

        # set the weights to the last step
        beta_pure = np.asanyarray(Rrx2(trained_model, 'beta.pure'))
        self.__beta_pure_shape = beta_pure.shape
        self.__weights = np.zeros(data.nfeatures,
                                 dtype=beta_pure.dtype)
        ind = np.asanyarray(Rrx2(trained_model, 'allset'))-1
        self.__weights[ind] = beta_pure[-1,:]
#         # set the weights to the final state
#         self.__weights = trained_model['beta'][-1,:]


    @accepts_dataset_as_samples
    def _predict(self, data):
        """Predict the output for the provided data.
        """
        # predict with the final state (i.e., the last step)
        try:
            res = r.predict(self.__trained_model,
                            data,
                            mode='step',
                            type='fit',
                            s=rpy2.robjects.IntVector(self.__beta_pure_shape))
            fit = np.asanyarray(Rrx2(res, 'fit'))[:, -1]
        except RRuntimeError, e:
            raise FailedToPredictError, \
                  "Failed to predict on %s using %s. Exceptions was: %s" \
                  % (data, self, e)

        if len(fit.shape) == 0:
            # if we just got 1 sample with a scalar
            fit = fit.reshape( (1,) )
        self.ca.estimates = fit     # charge conditional attribute
        return fit


    ##REF: Name was automagically refactored
    def _get_feature_ids(self):
        """Return ids of the used features
        """
        return np.where(np.abs(self.__weights)>0)[0]



    ##REF: Name was automagically refactored
    def get_sensitivity_analyzer(self, **kwargs):
        """Returns a sensitivity analyzer for ENET."""
        return ENETWeights(self, **kwargs)

    weights = property(lambda self: self.__weights)



class ENETWeights(Sensitivity):
    """`SensitivityAnalyzer` that reports the weights ENET trained
    on a given `Dataset`.
    """

    _LEGAL_CLFS = [ ENET ]

    def _call(self, dataset=None):
        """Extract weights from ENET classifier.

        ENET always has weights available, so nothing has to be computed here.
        """
        clf = self.clf
        weights = clf.weights

        if __debug__:
            debug('ENET',
                  "Extracting weights for ENET - "+
                  "Result: min=%f max=%f" %\
                  (np.min(weights), np.max(weights)))

        return weights