This file is indexed.

/usr/share/pyshared/mvpa2/clfs/base.py is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Base class for all XXX learners: classifiers and regressions.
"""

__docformat__ = 'restructuredtext'

import numpy as np

from mvpa2.support.copy import deepcopy

import time

from mvpa2.base.types import is_datasetlike, accepts_dataset_as_samples
from mvpa2.measures.base import Measure
from mvpa2.base.learner import Learner, FailedToPredictError
from mvpa2.datasets.base import Dataset
from mvpa2.misc.support import idhash
from mvpa2.base.state import ConditionalAttribute
from mvpa2.base.param import Parameter
from mvpa2.misc.attrmap import AttributeMap
from mvpa2.base.dochelpers import _str

from mvpa2.clfs.transerror import ConfusionMatrix, RegressionStatistics

from mvpa2.base import warning

if __debug__:
    from mvpa2.base import debug

__all__ = [ 'Classifier',
            'accepts_dataset_as_samples', 'accepts_samples_as_dataset']

def accepts_samples_as_dataset(fx):
    """Decorator to wrap samples into a Dataset.

    Little helper to allow methods to accept plain data whenever
    dataset is generally required.
    """
    def wrap_samples(obj, data, *args, **kwargs):
        if is_datasetlike(data):
            return fx(obj, data, *args, **kwargs)
        else:
            return fx(obj, Dataset(data), *args, **kwargs)
    return wrap_samples


class Classifier(Learner):
    """Abstract classifier class to be inherited by all classifiers
    """

    # Kept separate from doc to don't pollute help(clf), especially if
    # we including help for the parent class
    _DEV__doc__ = """
    Required behavior:

    For every classifier is has to be possible to be instantiated without
    having to specify the training pattern.

    Repeated calls to the train() method with different training data have to
    result in a valid classifier, trained for the particular dataset.

    It must be possible to specify all classifier parameters as keyword
    arguments to the constructor.

    Recommended behavior:

    Derived classifiers should provide access to *estimates* -- i.e. that
    information that is finally used to determine the predicted class label.

    Michael: Maybe it works well if each classifier provides a 'estimates'
             state member. This variable is a list as long as and in same order
             as Dataset.uniquetargets (training data). Each item in the list
             corresponds to the likelyhood of a sample to belong to the
             respective class. However the semantics might differ between
             classifiers, e.g. kNN would probably store distances to class-
             neighbors, where PLR would store the raw function value of the
             logistic function. So in the case of kNN low is predictive and for
             PLR high is predictive. Don't know if there is the need to unify
             that.

             As the storage and/or computation of this information might be
             demanding its collection should be switchable and off be default.

    Nomenclature
     * predictions  : result of the last call to .predict()
     * estimates : might be different from predictions if a classifier's predict()
                   makes a decision based on some internal value such as
                   probability or a distance.
    """
    # Dict that contains the parameters of a classifier.
    # This shall provide an interface to plug generic parameter optimizer
    # on all classifiers (e.g. grid- or line-search optimizer)
    # A dictionary is used because Michael thinks that access by name is nicer.
    # Additionally Michael thinks ATM that additional information might be
    # necessary in some situations (e.g. reasonably predefined parameter range,
    # minimal iteration stepsize, ...), therefore the value to each key should
    # also be a dict or we should use mvpa2.base.param.Parameter'...

    trained_targets = ConditionalAttribute(enabled=True,
        doc="Set of unique targets it has been trained on")

    trained_nsamples = ConditionalAttribute(enabled=True,
        doc="Number of samples it has been trained on")

    trained_dataset = ConditionalAttribute(enabled=False,
        doc="The dataset it has been trained on")

    training_stats = ConditionalAttribute(enabled=False,
        doc="Confusion matrix of learning performance")

    predictions = ConditionalAttribute(enabled=True,
        doc="Most recent set of predictions")

    estimates = ConditionalAttribute(enabled=True,
        doc="Internal classifier estimates the most recent " +
            "predictions are based on")

    predicting_time = ConditionalAttribute(enabled=True,
        doc="Time (in seconds) which took classifier to predict")

    __tags__ = []
    """Describes some specifics about the classifier -- is that it is
    doing regression for instance...."""

    # TODO: make it available only for actually retrainable classifiers
    retrainable = Parameter(False, allowedtype='bool',
        doc="""Either to enable retraining for 'retrainable' classifier.""",
        index=1002)


    def __init__(self, space=None, **kwargs):
        # by default we want classifiers to use the 'targets' sample attribute
        # for training/testing
        if space is None:
            space = 'targets'
        Learner.__init__(self, space=space, **kwargs)

        # XXX
        # the place to map literal to numerical labels (and back)
        # this needs to be in the base class, since some classifiers also
        # have this nasty 'regression' mode, and the code in this class
        # needs to deal with converting the regression output into discrete
        # labels
        # however, preferably the mapping should be kept in the respective
        # low-level implementations that need it
        self._attrmap = AttributeMap()

        self.__trainednfeatures = 0
        """Stores number of features for which classifier was trained.
        If 0 -- it wasn't trained at all"""

        self._set_retrainable(self.params.retrainable, force=True)

        # deprecate
        #self.__trainedidhash = None
        #"""Stores id of the dataset on which it was trained to signal
        #in trained() if it was trained already on the same dataset"""

    @property
    def __summary_class__(self):
        if 'regression' in self.__tags__:
            return RegressionStatistics
        else:
            return ConfusionMatrix

    @property
    def __is_regression__(self):
        return 'regression' in self.__tags__

    def __str__(self, *args, **kwargs):
        if __debug__ and 'CLF_' in debug.active:
            return "%s / %s" % (repr(self), super(Classifier, self).__str__())
        else:
            return _str(self, *args, **kwargs)


    def _pretrain(self, dataset):
        """Functionality prior to training
        """
        # So we reset all conditional attributes and may be free up some memory
        # explicitly
        params = self.params
        if not params.retrainable:
            self.untrain()
        else:
            # just reset the ca, do not untrain
            self.ca.reset()
            if not self.__changedData_isset:
                self.__reset_changed_data()
                _changedData = self._changedData
                __idhashes = self.__idhashes
                __invalidatedChangedData = self.__invalidatedChangedData

                # if we don't know what was changed we need to figure
                # them out
                if __debug__:
                    debug('CLF_', "IDHashes are %s", (__idhashes,))

                # Look at the data if any was changed
                for key, data_ in (('traindata', dataset.samples),
                                   ('targets', dataset.sa[self.get_space()].value)):
                    _changedData[key] = self.__was_data_changed(key, data_)
                    # if those idhashes were invalidated by retraining
                    # we need to adjust _changedData accordingly
                    if __invalidatedChangedData.get(key, False):
                        if __debug__ and not _changedData[key]:
                            debug('CLF_', 'Found that idhash for %s was '
                                  'invalidated by retraining', (key,))
                        _changedData[key] = True

                # Look at the parameters
                for col in self._paramscols:
                    changedParams = self._collections[col].which_set()
                    if len(changedParams):
                        _changedData[col] = changedParams

                self.__invalidatedChangedData = {} # reset it on training

                if __debug__:
                    debug('CLF_', "Obtained _changedData is %s",
                          (self._changedData,))


    def _posttrain(self, dataset):
        """Functionality post training

        For instance -- computing confusion matrix.

        Parameters
        ----------
        dataset : Dataset
          Data which was used for training
        """
        ca = self.ca
        if ca.is_enabled('trained_targets'):
            ca.trained_targets = dataset.sa[self.get_space()].unique

        ca.trained_dataset = dataset
        ca.trained_nsamples = dataset.nsamples

        # needs to be assigned first since below we use predict
        self.__trainednfeatures = dataset.nfeatures

        if __debug__ and 'CHECK_TRAINED' in debug.active:
            self.__trainedidhash = dataset.idhash

        if self.ca.is_enabled('training_stats') and \
               not self.ca.is_set('training_stats'):
            # we should not store predictions for training data,
            # it is confusing imho (yoh)
            self.ca.change_temporarily(
                disable_ca=["predictions"])
            if self.params.retrainable:
                # we would need to recheck if data is the same,
                # XXX think if there is a way to make this all
                # efficient. For now, probably, retrainable
                # classifiers have no chance but not to use
                # training_stats... sad
                self.__changedData_isset = False
            predictions = self.predict(dataset)
            self.ca.reset_changed_temporarily()
            self.ca.training_stats = self.__summary_class__(
                targets=dataset.sa[self.get_space()].value,
                predictions=predictions)


    def summary(self):
        """Providing summary over the classifier"""

        s = "Classifier %s" % self
        ca = self.ca
        ca_enabled = ca.enabled

        if self.trained:
            s += "\n trained"
            if ca.is_set('training_time'):
                s += ' in %.3g sec' % ca.training_time
            s += ' on data with'
            if ca.is_set('trained_targets'):
                s += ' targets:%s' % list(ca.trained_targets)

            nsamples, nchunks = None, None
            if ca.is_set('trained_nsamples'):
                nsamples = ca.trained_nsamples
            if ca.is_set('trained_dataset'):
                td = ca.trained_dataset
                nsamples, nchunks = td.nsamples, len(td.sa['chunks'].unique)
            if nsamples is not None:
                s += ' #samples:%d' % nsamples
            if nchunks is not None:
                s += ' #chunks:%d' % nchunks

            s += " #features:%d" % self.__trainednfeatures
            if ca.is_set('training_stats'):
                s += ", training error:%.3g" % ca.training_stats.error
        else:
            s += "\n not yet trained"

        if len(ca_enabled):
            s += "\n enabled ca:%s" % ', '.join([str(ca[x])
                                                     for x in ca_enabled])
        return s


    def clone(self):
        """Create full copy of the classifier.

        It might require classifier to be untrained first due to
        present SWIG bindings.

        TODO: think about proper re-implementation, without enrollment of deepcopy
        """
        if __debug__:
            debug("CLF", "Cloning %s#%s", (self, id(self)))
        try:
            return deepcopy(self)
        except:
            self.untrain()
            return deepcopy(self)


    def _train(self, dataset):
        """Function to be actually overridden in derived classes
        """
        raise NotImplementedError


    def _prepredict(self, dataset):
        """Functionality prior prediction
        """
        if not ('notrain2predict' in self.__tags__):
            # check if classifier was trained if that is needed
            if not self.trained:
                raise ValueError, \
                      "Classifier %s wasn't yet trained, therefore can't " \
                      "predict" % self
            nfeatures = dataset.nfeatures #data.shape[1]
            # check if number of features is the same as in the data
            # it was trained on
            if nfeatures != self.__trainednfeatures:
                raise ValueError, \
                      "Classifier %s was trained on data with %d features, " % \
                      (self, self.__trainednfeatures) + \
                      "thus can't predict for %d features" % nfeatures


        if self.params.retrainable:
            if not self.__changedData_isset:
                self.__reset_changed_data()
                _changedData = self._changedData
                data = np.asanyarray(dataset.samples)
                _changedData['testdata'] = \
                                        self.__was_data_changed('testdata', data)
                if __debug__:
                    debug('CLF_', "prepredict: Obtained _changedData is %s",
                          (_changedData,))


    def _postpredict(self, dataset, result):
        """Functionality after prediction is computed
        """
        self.ca.predictions = result
        if self.params.retrainable:
            self.__changedData_isset = False

    def _predict(self, dataset):
        """Actual prediction
        """
        raise NotImplementedError

    @accepts_samples_as_dataset
    def predict(self, dataset):
        """Predict classifier on data

        Shouldn't be overridden in subclasses unless explicitly needed
        to do so. Also subclasses trying to call super class's predict
        should call _predict if within _predict instead of predict()
        since otherwise it would loop
        """
        ## ??? yoh: changed to asany from as without exhaustive check
        data = np.asanyarray(dataset.samples)
        if __debug__:
            # Verify that we have no NaN/Inf's which we do not "support" ATM
            if not np.all(np.isfinite(data)):
                raise ValueError(
                    "Some input data for predict is not finite (NaN or Inf)")
            debug("CLF", "Predicting classifier %s on ds %s",
                  (self, dataset))

        # remember the time when started computing predictions
        t0 = time.time()

        ca = self.ca
        # to assure that those are reset (could be set due to testing
        # post-training)
        ca.reset(['estimates', 'predictions'])

        self._prepredict(dataset)

        if self.__trainednfeatures > 0 \
               or 'notrain2predict' in self.__tags__:
            result = self._predict(dataset)
        else:
            warning("Trying to predict using classifier trained on no features")
            if __debug__:
                debug("CLF",
                      "No features were present for training, prediction is " \
                      "bogus")
            result = [None]*data.shape[0]

        ca.predicting_time = time.time() - t0

        # with labels mapping in-place, we also need to go back to the
        # literal labels
        if self._attrmap:
            try:
                result = self._attrmap.to_literal(result)
            except KeyError, e:
                raise FailedToPredictError, \
                      "Failed to convert predictions from numeric into " \
                      "literals: %s" % e

        self._postpredict(dataset, result)
        return result


    def _call(self, ds):
        # get the predictions
        # call with full dataset, since we might need it further down in
        # the stream, e.g. for caching...
        pred = self.predict(ds)
        tattr = self.get_space()
        # return the predictions and the targets in a dataset
        return Dataset(pred, sa={tattr: ds.sa[tattr]})


    # XXX deprecate ???
    ##REF: Name was automagically refactored
    def is_trained(self, dataset=None):
        """Either classifier was already trained.

        MUST BE USED WITH CARE IF EVER"""
        if dataset is None:
            # simply return if it was trained on anything
            return not self.__trainednfeatures == 0
        else:
            res = (self.__trainednfeatures == dataset.nfeatures)
            if __debug__ and 'CHECK_TRAINED' in debug.active:
                res2 = (self.__trainedidhash == dataset.idhash)
                if res2 != res:
                    raise RuntimeError, \
                          "is_trained is weak and shouldn't be relied upon. " \
                          "Got result %b although comparing of idhash says %b" \
                          % (res, res2)
            return res


    @property
    def trained(self):
        """Either classifier was already trained"""
        return self.is_trained()

    def _untrain(self):
        """Reset trained state"""
        # any previous apping is obsolete now
        self._attrmap.clear()

        self.__trainednfeatures = 0
        # probably not needed... retrainable shouldn't be fully untrained
        # or should be???
        #if self.params.retrainable:
        #    # ??? don't duplicate the code ;-)
        #    self.__idhashes = {'traindata': None, 'targets': None,
        #                       'testdata': None, 'testtraindata': None}

        # no need to do this, as the Leaner class is doing it anyway
        #super(Classifier, self).reset()


    ##REF: Name was automagically refactored
    def get_sensitivity_analyzer(self, **kwargs):
        """Factory method to return an appropriate sensitivity analyzer for
        the respective classifier."""
        raise NotImplementedError


    #
    # Methods which are needed for retrainable classifiers
    #
    ##REF: Name was automagically refactored
    def _set_retrainable(self, value, force=False):
        """Assign value of retrainable parameter

        If retrainable flag is to be changed, classifier has to be
        untrained.  Also internal attributes such as _changedData,
        __changedData_isset, and __idhashes should be initialized if
        it becomes retrainable
        """
        pretrainable = self.params['retrainable']
        if (force or value != pretrainable.value) \
               and 'retrainable' in self.__tags__:
            if __debug__:
                debug("CLF_", "Setting retrainable to %s" % value)
            if 'meta' in self.__tags__:
                warning("Retrainability is not yet crafted/tested for "
                        "meta classifiers. Unpredictable behavior might occur")
            # assure that we don't drag anything behind
            if self.trained:
                self.untrain()
            ca = self.ca
            if not value and ca.has_key('retrained'):
                ca.pop('retrained')
                ca.pop('repredicted')
            if value:
                if not 'retrainable' in self.__tags__:
                    warning("Setting of flag retrainable for %s has no effect"
                            " since classifier has no such capability. It would"
                            " just lead to resources consumption and slowdown"
                            % self)
                ca['retrained'] = ConditionalAttribute(enabled=True,
                        doc="Either retrainable classifier was retrained")
                ca['repredicted'] = ConditionalAttribute(enabled=True,
                        doc="Either retrainable classifier was repredicted")

            pretrainable.value = value

            # if retrainable we need to keep track of things
            if value:
                self.__idhashes = {'traindata': None, 'targets': None,
                                   'testdata': None} #, 'testtraindata': None}
                if __debug__ and 'CHECK_RETRAIN' in debug.active:
                    # ??? it is not clear though if idhash is faster than
                    # simple comparison of (dataset != __traineddataset).any(),
                    # but if we like to get rid of __traineddataset then we
                    # should use idhash anyways
                    self.__trained = self.__idhashes.copy() # just same Nones
                self.__reset_changed_data()
                self.__invalidatedChangedData = {}
            elif 'retrainable' in self.__tags__:
                #self.__reset_changed_data()
                self.__changedData_isset = False
                self._changedData = None
                self.__idhashes = None
                if __debug__ and 'CHECK_RETRAIN' in debug.active:
                    self.__trained = None

    ##REF: Name was automagically refactored
    def __reset_changed_data(self):
        """For retrainable classifier we keep track of what was changed
        This function resets that dictionary
        """
        if __debug__:
            debug('CLF_',
                  'Retrainable: resetting flags on either data was changed')
        keys = self.__idhashes.keys() + self._paramscols
        # we might like to just reinit estimates to False???
        #_changedData = self._changedData
        #if isinstance(_changedData, dict):
        #    for key in _changedData.keys():
        #        _changedData[key] = False
        self._changedData = dict(zip(keys, [False]*len(keys)))
        self.__changedData_isset = False


    ##REF: Name was automagically refactored
    def __was_data_changed(self, key, entry, update=True):
        """Check if given entry was changed from what known prior.

        If so -- store only the ones needed for retrainable beastie
        """
        idhash_ = idhash(entry)
        __idhashes = self.__idhashes

        changed = __idhashes[key] != idhash_
        if __debug__ and 'CHECK_RETRAIN' in debug.active:
            __trained = self.__trained
            changed2 = entry != __trained[key]
            if isinstance(changed2, np.ndarray):
                changed2 = changed2.any()
            if changed != changed2 and not changed:
                raise RuntimeError, \
                  'idhash found to be weak for %s. Though hashid %s!=%s %s, '\
                  'estimates %s!=%s %s' % \
                  (key, idhash_, __idhashes[key], changed,
                   entry, __trained[key], changed2)
            if update:
                __trained[key] = entry

        if __debug__ and changed:
            debug('CLF_', "Changed %s from %s to %s.%s",
                  (key, __idhashes[key], idhash_,
                   ('','updated')[int(update)]))
        if update:
            __idhashes[key] = idhash_

        return changed


    # def __updateHashIds(self, key, data):
    #     """Is twofold operation: updates hashid if was said that it changed.
    #
    #     or if it wasn't said that data changed, but CHECK_RETRAIN and it found
    #     to be changed -- raise Exception
    #     """
    #
    #     check_retrain = __debug__ and 'CHECK_RETRAIN' in debug.active
    #     chd = self._changedData
    #
    #     # we need to updated idhashes
    #     if chd[key] or check_retrain:
    #         keychanged = self.__was_data_changed(key, data)
    #     if check_retrain and keychanged and not chd[key]:
    #         raise RuntimeError, \
    #               "Data %s found changed although wasn't " \
    #               "labeled as such" % key


    #
    # Additional API which is specific only for retrainable classifiers.
    # For now it would just puke if asked from not retrainable one.
    #
    # Might come useful and efficient for statistics testing, so if just
    # labels of dataset changed, then
    #  self.retrain(dataset, labels=True)
    # would cause efficient retraining (no kernels recomputed etc)
    # and subsequent self.repredict(data) should be also quite fase ;-)

    def retrain(self, dataset, **kwargs):
        """Helper to avoid check if data was changed actually changed

        Useful if just some aspects of classifier were changed since
        its previous training. For instance if dataset wasn't changed
        but only classifier parameters, then kernel matrix does not
        have to be computed.

        Words of caution: classifier must be previously trained,
        results always should first be compared to the results on not
        'retrainable' classifier (without calling retrain). Some
        additional checks are enabled if debug id 'CHECK_RETRAIN' is
        enabled, to guard against obvious mistakes.

        Parameters
        ----------
        kwargs
          that is what _changedData gets updated with. So, smth like
          `(params=['C'], targets=True)` if parameter C and targets
          got changed
        """
        # Note that it also demolishes anything for repredicting,
        # which should be ok in most of the cases
        if __debug__:
            if not self.params.retrainable:
                raise RuntimeError, \
                      "Do not use re(train,predict) on non-retrainable %s" % \
                      self

            if kwargs.has_key('params') or kwargs.has_key('kernel_params'):
                raise ValueError, \
                      "Retraining for changed params not working yet"

        self.__reset_changed_data()

        # local bindings
        chd = self._changedData
        ichd = self.__invalidatedChangedData

        chd.update(kwargs)
        # mark for future 'train()' items which are explicitely
        # mentioned as changed
        for key, value in kwargs.iteritems():
            if value:
                ichd[key] = True
        self.__changedData_isset = True

        # To check if we are not fooled
        if __debug__ and 'CHECK_RETRAIN' in debug.active:
            for key, data_ in (('traindata', dataset.samples),
                               ('targets', dataset.sa[self.get_space()].value)):
                # so it wasn't told to be invalid
                if not chd[key] and not ichd.get(key, False):
                    if self.__was_data_changed(key, data_, update=False):
                        raise RuntimeError, \
                              "Data %s found changed although wasn't " \
                              "labeled as such" % key

        # TODO: parameters of classifiers... for now there is explicit
        # 'forbidance' above

        # Below check should be superseeded by check above, thus never occur.
        # remove later on ???
        if __debug__ and 'CHECK_RETRAIN' in debug.active and self.trained \
               and not self._changedData['traindata'] \
               and self.__trained['traindata'].shape != dataset.samples.shape:
            raise ValueError, "In retrain got dataset with %s size, " \
                  "whenever previousely was trained on %s size" \
                  % (dataset.samples.shape, self.__trained['traindata'].shape)
        self.train(dataset)


    @accepts_samples_as_dataset
    def repredict(self, dataset, **kwargs):
        """Helper to avoid check if data was changed actually changed

        Useful if classifier was (re)trained but with the same data
        (so just parameters were changed), so that it could be
        repredicted easily (on the same data as before) without
        recomputing for instance train/test kernel matrix. Should be
        used with caution and always compared to the results on not
        'retrainable' classifier. Some additional checks are enabled
        if debug id 'CHECK_RETRAIN' is enabled, to guard against
        obvious mistakes.

        Parameters
        ----------
        dataset
          dataset which is conventionally given to predict
        kwargs
          that is what _changedData gets updated with. So, smth like
          `(params=['C'], targets=True)` if parameter C and targets
          got changed
        """
        if len(kwargs)>0:
            raise RuntimeError, \
                  "repredict for now should be used without params since " \
                  "it makes little sense to repredict if anything got changed"
        if __debug__ and not self.params.retrainable:
            raise RuntimeError, \
                  "Do not use retrain/repredict on non-retrainable classifiers"

        self.__reset_changed_data()
        chd = self._changedData
        chd.update(**kwargs)
        self.__changedData_isset = True


        # check if we are attempted to perform on the same data
        if __debug__ and 'CHECK_RETRAIN' in debug.active:
            for key, data_ in (('testdata', dataset.samples),):
                # so it wasn't told to be invalid
                #if not chd[key]:# and not ichd.get(key, False):
                if self.__was_data_changed(key, data_, update=False):
                    raise RuntimeError, \
                          "Data %s found changed although wasn't " \
                          "labeled as such" % key

        # Should be superseded by above
        # remove in future???
        if __debug__ and 'CHECK_RETRAIN' in debug.active \
               and not self._changedData['testdata'] \
               and self.__trained['testdata'].shape != dataset.samples.shape:
            raise ValueError, "In repredict got dataset with %s size, " \
                  "whenever previously was trained on %s size" \
                  % (dataset.samples.shape, self.__trained['testdata'].shape)

        return self.predict(dataset)


    # TODO: callback into retrainable parameter
    #retrainable = property(fget=_getRetrainable, fset=_set_retrainable,
    #                  doc="Specifies either classifier should be retrainable")