/usr/share/pyshared/mvpa2/base/dataset.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Multi-purpose dataset container with support for attributes."""
__docformat__ = 'restructuredtext'
import numpy as np
import copy
from mvpa2.base import externals, cfg
from mvpa2.base.collections import SampleAttributesCollection, \
FeatureAttributesCollection, DatasetAttributesCollection
from mvpa2.base.types import is_datasetlike
from mvpa2.base.dochelpers import _str
if __debug__:
from mvpa2.base import debug
__REPR_STYLE__ = cfg.get('datasets', 'repr', 'full')
if not __REPR_STYLE__ in ('full', 'str'):
raise ValueError, "Incorrect value %r for option datasets.repr." \
" Valid are 'full' and 'str'." % __REPR_STYLE__
class AttrDataset(object):
"""Generic storage class for datasets with multiple attributes.
A dataset consists of four pieces. The core is a two-dimensional
array that has variables (so-called `features`) in its columns and
the associated observations (so-called `samples`) in the rows. In
addition a dataset may have any number of attributes for features
and samples. Unsurprisingly, these are called 'feature attributes'
and 'sample attributes'. Each attribute is a vector of any datatype
that contains a value per each item (feature or sample). Both types
of attributes are organized in their respective collections --
accessible via the `sa` (sample attribute) and `fa` (feature
attribute) attributes. Finally, a dataset itself may have any number
of additional attributes (i.e. a mapper) that are stored in their
own collection that is accessible via the `a` attribute (see
examples below).
Attributes
----------
sa : Collection
Access to all sample attributes, where each attribute is a named
vector (1d-array) of an arbitrary datatype, with as many elements
as rows in the `samples` array of the dataset.
fa : Collection
Access to all feature attributes, where each attribute is a named
vector (1d-array) of an arbitrary datatype, with as many elements
as columns in the `samples` array of the dataset.
a : Collection
Access to all dataset attributes, where each attribute is a named
element of an arbitrary datatype.
Notes
-----
Any dataset might have a mapper attached that is stored as a dataset
attribute called `mapper`.
Examples
--------
The simplest way to create a dataset is from a 2D array.
>>> import numpy as np
>>> from mvpa2.datasets import *
>>> samples = np.arange(12).reshape((4,3))
>>> ds = AttrDataset(samples)
>>> ds.nsamples
4
>>> ds.nfeatures
3
>>> ds.samples
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
The above dataset can only be used for unsupervised machine-learning
algorithms, since it doesn't have any targets associated with its
samples. However, creating a labeled dataset is equally simple.
>>> ds_labeled = dataset_wizard(samples, targets=range(4))
Both the labeled and the unlabeled dataset share the same samples
array. No copying is performed.
>>> ds.samples is ds_labeled.samples
True
If the data should not be shared the samples array has to be copied
beforehand.
The targets are available from the samples attributes collection, but
also via the convenience property `targets`.
>>> ds_labeled.sa.targets is ds_labeled.targets
True
If desired, it is possible to add an arbitrary amount of additional
attributes. Regardless if their original sequence type they will be
converted into an array.
>>> ds_labeled.sa['lovesme'] = [0,0,1,0]
>>> ds_labeled.sa.lovesme
array([0, 0, 1, 0])
An alternative method to create datasets with arbitrary attributes
is to provide the attribute collections to the constructor itself --
which would also test for an appropriate size of the given
attributes:
>>> fancyds = AttrDataset(samples, sa={'targets': range(4),
... 'lovesme': [0,0,1,0]})
>>> fancyds.sa.lovesme
array([0, 0, 1, 0])
Exactly the same logic applies to feature attributes as well.
Datasets can be sliced (selecting a subset of samples and/or
features) similar to arrays. Selection is possible using boolean
selection masks, index sequences or slicing arguments. The following
calls for samples selection all result in the same dataset:
>>> sel1 = ds[np.array([False, True, True])]
>>> sel2 = ds[[1,2]]
>>> sel3 = ds[1:3]
>>> np.all(sel1.samples == sel2.samples)
True
>>> np.all(sel2.samples == sel3.samples)
True
During selection data is only copied if necessary. If the slicing
syntax is used the resulting dataset will share the samples with the
original dataset.
>>> sel1.samples.base is ds.samples
False
>>> sel2.samples.base is ds.samples
False
>>> sel3.samples.base is ds.samples
True
For feature selection the syntax is very similar they are just
represented on the second axis of the samples array. Plain feature
selection is achieved be keeping all samples and select a subset of
features (all syntax variants for samples selection are also
supported for feature selection).
>>> fsel = ds[:, 1:3]
>>> fsel.samples
array([[ 1, 2],
[ 4, 5],
[ 7, 8],
[10, 11]])
It is also possible to simultaneously selection a subset of samples
*and* features. Using the slicing syntax now copying will be
performed.
>>> fsel = ds[:3, 1:3]
>>> fsel.samples
array([[1, 2],
[4, 5],
[7, 8]])
>>> fsel.samples.base is ds.samples
True
Please note that simultaneous selection of samples and features is
*not* always congruent to array slicing.
>>> ds[[0,1,2], [1,2]].samples
array([[1, 2],
[4, 5],
[7, 8]])
Whereas the call: 'ds.samples[[0,1,2], [1,2]]' would not be
possible. In `AttrDatasets` selection of samples and features is always
applied individually and independently to each axis.
"""
def __init__(self, samples, sa=None, fa=None, a=None):
"""
A Dataset might have an arbitrary number of attributes for samples,
features, or the dataset as a whole. However, only the data samples
themselves are required.
Parameters
----------
samples : ndarray
Data samples. This has to be a two-dimensional (samples x features)
array. If the samples are not in that format, please consider one of
the `AttrDataset.from_*` classmethods.
sa : SampleAttributesCollection
Samples attributes collection.
fa : FeatureAttributesCollection
Features attributes collection.
a : DatasetAttributesCollection
Dataset attributes collection.
"""
# conversions
if isinstance(samples, list):
samples = np.array(samples)
# Check all conditions we need to have for `samples` dtypes
if not hasattr(samples, 'dtype'):
raise ValueError(
"AttrDataset only supports dtypes as samples that have a "
"`dtype` attribute that behaves similar to the one of an "
"array-like.")
if not hasattr(samples, 'shape'):
raise ValueError(
"AttrDataset only supports dtypes as samples that have a "
"`shape` attribute that behaves similar to the one of an "
"array-like.")
if not len(samples.shape):
raise ValueError("Only `samples` with at least one axis are "
"supported (got: %i)" % len(samples.shape))
# handling of 1D-samples
# i.e. 1D is treated as multiple samples with a single feature
if len(samples.shape) == 1:
samples = np.atleast_2d(samples).T
# that's all -- accepted
self.samples = samples
# Everything in a dataset (except for samples) is organized in
# collections
# Number of samples is .shape[0] for sparse matrix support
self.sa = SampleAttributesCollection(length=len(self))
if not sa is None:
self.sa.update(sa)
self.fa = FeatureAttributesCollection(length=self.nfeatures)
if not fa is None:
self.fa.update(fa)
self.a = DatasetAttributesCollection()
if not a is None:
self.a.update(a)
def init_origids(self, which, attr='origids', mode='new'):
"""Initialize the dataset's 'origids' attribute.
The purpose of origids is that they allow to track the identity of
a feature or a sample through the lifetime of a dataset (i.e. subsequent
feature selections).
Calling this method will overwrite any potentially existing IDs (of the
XXX)
Parameters
----------
which : {'features', 'samples', 'both'}
An attribute is generated for each feature, sample, or both that
represents a unique ID. This ID incorporates the dataset instance ID
and should allow merging multiple datasets without causing multiple
identical ID and the resulting dataset.
attr : str
Name of the attribute to store the generated IDs in. By convention
this should be 'origids' (the default), but might be changed for
specific purposes.
mode : {'existing', 'new', 'raise'}, optional
Action if `attr` is already present in the collection.
Default behavior is 'new' whenever new ids are generated and
replace existing values if such are present. With 'existing' it would
not alter existing content. With 'raise' it would raise
`RuntimeError`.
Raises
------
`RuntimeError`
If `mode` == 'raise' and `attr` is already defined
"""
# now do evil to ensure unique ids across multiple datasets
# so that they could be merged together
thisid = str(id(self))
legal_modes = ('raise', 'existing', 'new')
if not mode in legal_modes:
raise ValueError, "Incorrect mode %r. Known are %s." % \
(mode, legal_modes)
if which in ('samples', 'both'):
if attr in self.sa:
if mode == 'existing':
return
elif mode == 'raise':
raise RuntimeError, \
"Attribute %r already known to %s" % (attr, self.sa)
ids = np.array(['%s-%i' % (thisid, i)
for i in xrange(self.samples.shape[0])])
if self.sa.has_key(attr):
self.sa[attr].value = ids
else:
self.sa[attr] = ids
if which in ('features', 'both'):
if attr in self.sa:
if mode == 'existing':
return
elif mode == 'raise':
raise RuntimeError, \
"Attribute %r already known to %s" % (attr, self.fa)
ids = np.array(['%s-%i' % (thisid, i)
for i in xrange(self.samples.shape[1])])
if self.fa.has_key(attr):
self.fa[attr].value = ids
else:
self.fa[attr] = ids
def __copy__(self):
return self.copy(deep=False)
def __deepcopy__(self, memo=None):
return self.copy(deep=True, memo=memo)
def __reduce__(self):
return (self.__class__,
(self.samples,
dict(self.sa),
dict(self.fa),
dict(self.a)))
def copy(self, deep=True, sa=None, fa=None, a=None, memo=None):
"""Create a copy of a dataset.
By default this is going to return a deep copy of the dataset, hence no
data would be shared between the original dataset and its copy.
Parameters
----------
deep : boolean, optional
If False, a shallow copy of the dataset is return instead. The copy
contains only views of the samples, sample attributes and feature
attributes, as well as shallow copies of all dataset
attributes.
sa : list or None
List of attributes in the sample attributes collection to include in
the copy of the dataset. If `None` all attributes are considered. If
an empty list is given, all attributes are stripped from the copy.
fa : list or None
List of attributes in the feature attributes collection to include in
the copy of the dataset. If `None` all attributes are considered If
an empty list is given, all attributes are stripped from the copy.
a : list or None
List of attributes in the dataset attributes collection to include in
the copy of the dataset. If `None` all attributes are considered If
an empty list is given, all attributes are stripped from the copy.
memo : dict
Developers only: This argument is only useful if copy() is called
inside the __deepcopy__() method and refers to the dict-argument
`memo` in the Python documentation.
"""
if __debug__:
debug('DS_', "Duplicating samples shaped %s"
% str(self.samples.shape))
if deep:
samples = copy.deepcopy(self.samples, memo)
else:
samples = self.samples.view()
if __debug__:
debug('DS_', "Create new dataset instance for copy")
# call the generic init
out = self.__class__(samples,
sa=self.sa.copy(a=sa, deep=deep, memo=memo),
fa=self.fa.copy(a=fa, deep=deep, memo=memo),
a =self.a.copy(a=a, deep=deep, memo=memo))
if __debug__:
debug('DS_', "Return dataset copy (ID: %s) of source (ID: %s)"
% (id(out), id(self)))
return out
def append(self, other):
"""Append the content of a Dataset.
Parameters
----------
other : AttrDataset
The content of this dataset will be append.
Notes
-----
No dataset attributes, or feature attributes will be merged! These
respective properties of the *other* dataset are neither checked for
compatibility nor copied over to this dataset. However, all samples
attributes will be concatenated with the existing ones.
"""
if not self.nfeatures == other.nfeatures:
raise DatasetError("Cannot merge datasets, because the number of "
"features does not match.")
if not sorted(self.sa.keys()) == sorted(other.sa.keys()):
raise DatasetError("Cannot merge dataset. This datasets samples "
"attributes %s cannot be mapped into the other "
"set %s" % (self.sa.keys(), other.sa.keys()))
# concat the samples as well
self.samples = np.concatenate((self.samples, other.samples), axis=0)
# tell the collection the new desired length of all attributes
self.sa.set_length_check(len(self.samples))
# concat all samples attributes
for k, v in other.sa.iteritems():
self.sa[k].value = np.concatenate((self.sa[k].value, v.value),
axis=0)
def __getitem__(self, args):
"""
"""
# uniformize for checks below; it is not a tuple if just single slicing
# spec is passed
if not isinstance(args, tuple):
args = (args,)
if len(args) > 2:
raise ValueError("Too many arguments (%i). At most there can be "
"two arguments, one for samples selection and one "
"for features selection" % len(args))
# simplify things below and always have samples and feature slicing
if len(args) == 1:
args = [args[0], slice(None)]
else:
args = [a for a in args]
samples = None
# get the intended subset of the samples array
#
# need to deal with some special cases to ensure proper behavior
#
# ints need to become lists to prevent silent dimensionality changes
# of the arrays when slicing
for i, a in enumerate(args):
if isinstance(a, int):
args[i] = [a]
# for simultaneous slicing of numpy arrays we should
# distinguish the case when one of the args is a slice, so no
# ix_ is needed
if __debug__:
debug('DS_', "Selecting feature/samples of %s" % str(self.samples.shape))
if isinstance(self.samples, np.ndarray):
if np.any([isinstance(a, slice) for a in args]):
samples = self.samples[args[0], args[1]]
else:
# works even with bool masks (although without
# assurance/checking if mask is of actual length as
# needed, so would work with bogus shorter
# masks). TODO check in __debug__? or may be just do
# enforcing of proper dimensions and order manually?
samples = self.samples[np.ix_(*args)]
else:
# in all other cases we have to do the selection sequentially
#
# samples subset: only alter if subset is requested
samples = self.samples[args[0]]
# features subset
if not args[1] is slice(None):
samples = samples[:, args[1]]
if __debug__:
debug('DS_', "Selected feature/samples %s" % str(self.samples.shape))
# and now for the attributes -- we want to maintain the type of the
# collections
sa = self.sa.__class__(length=samples.shape[0])
fa = self.fa.__class__(length=samples.shape[1])
a = self.a.__class__()
# per-sample attributes; always needs to run even if slice(None), since
# we need fresh SamplesAttributes even if they share the data
for attr in self.sa.values():
# preserve attribute type
newattr = attr.__class__(doc=attr.__doc__)
# slice
newattr.value = attr.value[args[0]]
# assign to target collection
sa[attr.name] = newattr
# per-feature attributes; always needs to run even if slice(None),
# since we need fresh SamplesAttributes even if they share the data
for attr in self.fa.values():
# preserve attribute type
newattr = attr.__class__(doc=attr.__doc__)
# slice
newattr.value = attr.value[args[1]]
# assign to target collection
fa[attr.name] = newattr
# and finally dataset attributes: this time copying
for attr in self.a.values():
# preserve attribute type
newattr = attr.__class__(name=attr.name, doc=attr.__doc__)
# do a shallow copy here
# XXX every DatasetAttribute should have meaningful __copy__ if
# necessary -- most likely all mappers need to have one
newattr.value = copy.copy(attr.value)
# assign to target collection
a[attr.name] = newattr
# and after a long way instantiate the new dataset of the same type
return self.__class__(samples, sa=sa, fa=fa, a=a)
def __repr_full__(self):
return "%s(%s, sa=%s, fa=%s, a=%s)" \
% (self.__class__.__name__,
repr(self.samples),
repr(self.sa),
repr(self.fa),
repr(self.a))
def __str__(self):
samplesstr = 'x'.join(["%s" % x for x in self.shape])
samplesstr += '@%s' % self.samples.dtype
cols = [str(col).replace(col.__class__.__name__, label)
for col, label in [(self.sa, 'sa'),
(self.fa, 'fa'),
(self.a, 'a')] if len(col)]
# include only collections that have content
return _str(self, samplesstr, *cols)
__repr__ = {'full' : __repr_full__,
'str' : __str__}[__REPR_STYLE__]
def __array__(self, *args):
"""Provide an 'array' view or copy over dataset.samples
Parameters
----------
dtype: type, optional
If provided, passed to .samples.__array__() call
*args to mimique numpy.ndarray.__array__ behavior which relies
on the actual number of arguments
"""
# another possibility would be converting .todense() for sparse data
# but that might easily kill the machine ;-)
if not hasattr(self.samples, '__array__'):
raise RuntimeError(
"This AttrDataset instance cannot be used like a Numpy array "
"since its data-container does not provide an '__array__' "
"methods. Container type is %s." % type(self.samples))
return self.samples.__array__(*args)
def __len__(self):
return self.shape[0]
@classmethod
def from_hdf5(cls, source, name=None):
"""Load a Dataset from HDF5 file
Parameters
----------
source : string or h5py.highlevel.File
Filename or HDF5's File to load dataset from
name : string, optional
If file contains multiple entries at the 1st level, if
provided, `name` specifies the group to be loaded as the
AttrDataset.
Returns
-------
AttrDataset
Raises
------
ValueError
"""
if not externals.exists('h5py'):
raise RuntimeError(
"Missing 'h5py' package -- saving is not possible.")
import h5py
from mvpa2.base.hdf5 import hdf2obj
# look if we got an hdf file instance already
if isinstance(source, h5py.highlevel.File):
own_file = False
hdf = source
else:
own_file = True
hdf = h5py.File(source, 'r')
if not name is None:
# some HDF5 subset is requested
if not name in hdf:
raise ValueError("Cannot find '%s' group in HDF file %s. "
"File contains groups: %s"
% (name, source, hdf.keys()))
# access the group that should contain the dataset
dsgrp = hdf[name]
res = hdf2obj(dsgrp)
if not isinstance(res, AttrDataset):
# TODO: unittest before committing
raise ValueError, "%r in %s contains %s not a dataset. " \
"File contains groups: %s." \
% (name, source, type(res), hdf.keys())
else:
# just consider the whole file
res = hdf2obj(hdf)
if not isinstance(res, AttrDataset):
# TODO: unittest before committing
raise ValueError, "Failed to load a dataset from %s. " \
"Loaded %s instead." \
% (source, type(res))
if own_file:
hdf.close()
return res
# shortcut properties
nsamples = property(fget=len)
nfeatures = property(fget=lambda self:self.shape[1])
shape = property(fget=lambda self:self.samples.shape)
def datasetmethod(func):
"""Decorator to easily bind functions to an AttrDataset class
"""
if __debug__:
debug("DS_",
"Binding function %s to AttrDataset class" % func.func_name)
# Bind the function
setattr(AttrDataset, func.func_name, func)
# return the original one
return func
def vstack(datasets):
"""Stacks datasets vertically (appending samples).
Feature attribute collections are merged incrementally, attribute with
identical keys overwriting previous ones in the stacked dataset. All
datasets must have an identical set of sample attributes (matching keys,
not values), otherwise a ValueError will be raised.
No dataset attributes from any source dataset will be transferred into the
stacked dataset. If all input dataset have common dataset attributes that
are also valid for the stacked dataset, they can be moved into the output
dataset like this::
ds_merged = vstack((ds1, ds2, ds3))
ds_merged.a.update(ds1.a)
Parameters
----------
datasets : tuple
Sequence of datasets to be stacked.
Returns
-------
AttrDataset (or respective subclass)
"""
# fall back to numpy if it is not a dataset
if not is_datasetlike(datasets[0]):
return AttrDataset(np.vstack(datasets))
if __debug__:
target = sorted(datasets[0].sa.keys())
if not np.all([sorted(ds.sa.keys()) == target for ds in datasets]):
raise ValueError("Sample attributes collections of to be stacked "
"datasets have varying attributes.")
# will puke if not equal number of features
stacked_samp = np.concatenate([ds.samples for ds in datasets], axis=0)
stacked_sa = {}
for attr in datasets[0].sa:
stacked_sa[attr] = np.concatenate(
[ds.sa[attr].value for ds in datasets], axis=0)
# create the dataset
merged = datasets[0].__class__(stacked_samp, sa=stacked_sa)
for ds in datasets:
merged.fa.update(ds.fa)
return merged
def hstack(datasets):
"""Stacks datasets horizontally (appending features).
Sample attribute collections are merged incrementally, attribute with
identical keys overwriting previous ones in the stacked dataset. All
datasets must have an identical set of feature attributes (matching keys,
not values), otherwise a ValueError will be raised.
No dataset attributes from any source dataset will be transferred into the
stacked dataset.
Parameters
----------
datasets : tuple
Sequence of datasets to be stacked.
Returns
-------
AttrDataset (or respective subclass)
"""
#
# XXX Use CombinedMapper in here whenever it comes back
#
# fall back to numpy if it is not a dataset
if not is_datasetlike(datasets[0]):
# we might get a list of 1Ds that would yield wrong results when
# turned into a dict (would run along samples-axis)
return AttrDataset(np.atleast_2d(np.hstack(datasets)))
if __debug__:
target = sorted(datasets[0].fa.keys())
if not np.all([sorted(ds.fa.keys()) == target for ds in datasets]):
raise ValueError("Feature attributes collections of to be stacked "
"datasets have varying attributes.")
# will puke if not equal number of samples
stacked_samp = np.concatenate([ds.samples for ds in datasets], axis=1)
stacked_fa = {}
for attr in datasets[0].fa:
stacked_fa[attr] = np.concatenate(
[ds.fa[attr].value for ds in datasets], axis=0)
# create the dataset
merged = datasets[0].__class__(stacked_samp, fa=stacked_fa)
for ds in datasets:
merged.sa.update(ds.sa)
return merged
def _expand_attribute(attr, length, attr_name):
"""Helper function to expand attributes to a desired length.
If e.g. a sample attribute is given as a scalar expand/repeat it to a
length matching the number of samples in the dataset.
"""
try:
# if we are initializing with a single string -- we should
# treat it as a single label
if isinstance(attr, basestring):
raise TypeError
if len(attr) != length:
raise ValueError("Length of attribute '%s' [%d] has to be %d."
% (attr_name, len(attr), length))
# sequence as array
return np.asanyarray(attr)
except TypeError:
# make sequence of identical value matching the desired length
return np.repeat(attr, length)
class DatasetError(Exception):
"""Thrown if there is a problem with the internal integrity of a Dataset.
"""
# A ValueError exception is too generic to be used for any needed case,
# thus this one is created
pass
class DatasetAttributeExtractor(object):
"""Helper to extract arbitrary attributes from dataset collections.
Examples
--------
>>> ds = AttrDataset(np.arange(12).reshape((4,3)),
... sa={'targets': range(4)},
... fa={'foo': [0,0,1]})
>>> ext = DAE('sa', 'targets')
>>> ext(ds)
array([0, 1, 2, 3])
>>> ext = DAE('fa', 'foo')
>>> ext(ds)
array([0, 0, 1])
"""
def __init__(self, col, key):
"""
Parameters
----------
col : {'sa', 'fa', 'a'}
The respective collection to extract an attribute from.
key : arbitrary
The name/key of the attribute in the collection.
"""
self._col = col
self._key = key
def __call__(self, ds):
"""
Parameters
----------
ds : AttrDataset
"""
return ds.__dict__[self._col][self._key].value
def __repr__(self):
return "%s(%s, %s)" % (self.__class__.__name__,
repr(self._col), repr(self._key))
# shortcut that allows for more finger/screen-friendly specification of
# attribute extraction
DAE = DatasetAttributeExtractor
@datasetmethod
def save(dataset, destination, name=None, compression=None):
"""Save Dataset into HDF5 file
Parameters
----------
dataset : `Dataset`
destination : `h5py.highlevel.File` or str
name : str, optional
compression : None or int or {'gzip', 'szip', 'lzf'}, optional
Level of compression for gzip, or another compression strategy.
"""
if not externals.exists('h5py'):
raise RuntimeError("Missing 'h5py' package -- saving is not possible.")
import h5py
from mvpa2.base.hdf5 import obj2hdf
# look if we got an hdf file instance already
if isinstance(destination, h5py.highlevel.File):
own_file = False
hdf = destination
else:
own_file = True
hdf = h5py.File(destination, 'w')
obj2hdf(hdf, dataset, name, compression=compression)
# if we opened the file ourselves we close it now
if own_file:
hdf.close()
return
|