This file is indexed.

/usr/bin/pymvpa2-atlaslabeler is in python-mvpa2 2.2.0-4ubuntu2.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
#!/usr/bin/python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Script to provide anatomical labels for the voxels, or their statistics """

import re, sys, os

import mvpa2
from mvpa2.misc.cmdline import parser, opts, opt
from mvpa2.base import verbose, warning, externals

if externals.exists('nibabel', raise_=True):
    import nibabel as nb

if __debug__:
    from mvpa2.base import debug

from mvpa2.atlases.transformation import *

from mvpa2.atlases import Atlas, ReferencesAtlas, FSLProbabilisticAtlas, \
     KNOWN_ATLASES, KNOWN_ATLAS_FAMILIES, XMLAtlasException

from optparse import OptionParser, Option

import numpy as np
#import numpy.linalg as la
# to read in transformation matrix

try:
    import psyco
    psyco.profile()
except:
    pass


def select_from_volume_iterator(volFileName, lt=None, ut=None):
    """
    Generator which returns value + coordinates with values of non-0 entries
    from the `volFileName`

    Returns
    -------
    tuple with 0th entry value, the others are voxel coordinates
    More effective than previous loopy iteration since uses numpy's where
    function, but for now is limited only to non-0 voxels selection
    """
    try:
        volFile = nb.load(volFileName)
    except:
        raise IOError("Cannot open image file %s" % volFileName)

    volData = volFile.get_data()
    voxdim = volFile.get_header().get_zooms()[:3]
    if lt is None and ut is None:
        mask = volData != 0.0
    elif lt is None and ut is not None:
        mask = volData <= ut
    elif lt is not None and ut is None:
        mask = volData >= lt
    else:
        mask = np.logical_and(volData >= lt, volData <= ut)

    matchingVoxels = np.where(mask)
    for e in zip(volData[matchingVoxels], *matchingVoxels):
        e_ = tuple(e)
        if len(e_) < 5:
            e_ = e_ + (0,) # add time=0
        yield  e_


def parsed_coordinates_iterator(
    parseString="^\s*(?P<x>\S+)[ \t,](?P<y>\S+)[ \t,](?P<z>\S+)\s*$",
    inputStream=sys.stdin,
    ctype=float,
    dtype=float):
    """Iterator to provide coordinates/values parsed from the string stream,
    most often from the stdin
    """
    parser = re.compile(parseString)
    for line in inputStream.readlines():
        line = line.strip()
        match = parser.match(line)
        if not match:
            if __debug__:
                debug('ATL', "Line '%s' did not match '%s'"
                      % (line, parseString))
        else:
            r = match.groupdict()
            if r.has_key('v'): v = dtype(r['v'])
            else:              v = 0.0
            if r.has_key('t'): t = dtype(r['t'])
            else:              t = 0.0
            yield (v, ctype(r['x']), ctype(r['y']), ctype(r['z']), t)


# XXX helper to process labels... move me
##REF: Name was automagically refactored
def present_labels(labels):
    if isinstance(labels, list):
        res = []
        for label in labels:
            # XXX warning -- some inconsistencies in atlas.py
            #     need refactoring
            s = label['label'] #.text
            if label.has_key('prob') and not options.createSummary:
                s += "(%d%%%%)" % label['prob']
            res += [s]
        if res == []:
            res = ['None']
        return '/'.join(res)
    else:
        if options.abbreviatedLabels:
            return labels['label'].abbr
        else:
            return labels['label'].text



#def processCmdLine():
parser.usage = """%(cmd)s [OPTIONS] [input_file.nii.gz]

Examples:

> %(cmd)s -s -A talairach-dist -d 10 -R Closest\ Gray -l Structure,Brodmann\ area  -cC mask.nii.gz

produces a summary per each structure and brodmann area, for each voxel
looking within 10mm radius for the closest gray matter voxel.

Simpler, more reliable, and faster usage is by providing a
corresponding atlas volume image registered to the volume at hands,
e.g.:

> %(cmd)s -f MNI-prob-bold.nii.gz -A MNI -s mask_vt.nii.gz
> %(cmd)s -f HarvardOxford-cort-prob-bold.nii.gz -A HarvardOxford-Cortical -s mask_vt.nii.gz

would provide summary over the MNI (or HarvardOxford-Cortical) atlas,
.nii.gz of which were previously flirted (or fnirted) into the space of
mask_vt.nii.gz and provided in '-f' argument.""" \
% {'cmd': os.path.basename(sys.argv[0])}

parser.version = "%prog " + mvpa2.__version__

# can't use due to conflict with -d (debug and distance)
#parser.option_groups = [opts.common]

parser.add_option(opt.verbose)
parser.add_option(opt.help)

parser.add_option("-a", "--atlas-file",
                  action="store", type="string", dest="atlasFile",
                  default=None,
                  help="Atlas file to use. Overrides --atlas-path and --atlas")

parser.add_option("--atlas-path",
                  action="store", type="string", dest="atlasPath",
                  default=None,
                  help=r"Path to the atlas files. '%(name)s' will be replaced"
                       " with the atlas name. See -A. Defaults depend on the"
                       " atlas family.")

parser.add_option("-A", "--atlas",
                  action="store", type="choice", dest="atlasName",
                  default="talairach", choices=KNOWN_ATLASES.keys(),
                  help="Atlas to use. Choices: %s"
                       % ', '.join(KNOWN_ATLASES.keys()))

parser.add_option("-f", "--atlas-image-file",
                  action="store", type="string", dest="atlasImageFile",
                  default=None,
                  help=r"Path to the data image for the corresponding atlas. "
                       " Can be used to override default image if it was "
                       " already resliced into a corresponding space (e.g."
                       " subject)")

parser.add_option("-i", "--input-coordinates-file",
                  action="store", type="string", dest="inputCoordFile",
                  default=None,
                  help="Fetch coordinates from ASCII file")

parser.add_option("-o", "--output-file",
                  action="store", type="string", dest="outputFile",
                  default=None,
                  help="Output file. Otherwise standard output")

parser.add_option("-d", "--max-distance",
                  action="store", type="float", dest="maxDistance",
                  default=0,
                  help="When working with reference/distance atlases, what"
                  " maximal distance to use to look for the voxel of interest")

parser.add_option("-T", "--transformation-file",
                  type="string", dest="transformationFile",
                  help="First transformation to apply to the data. Usually"+
                  " should be subject -> standard(MNI) transformation")

parser.add_option("-s", "--summary",
                  action="count", dest="createSummary", default=0,
                  help="Either to create a summary instead of dumping voxels."
                  " Use multiple -s for greater verbose summary")


parser.add_option("--ss", "--sort-summary-by",
                  type="choice", dest="sortSummaryBy", default="name",
                  choices=['name', 'count', 'a-p'],
                  help="How to sort summary entries. "
                  " a-p sorts anterior-posterior order")

parser.add_option("--dumpmap-file",
                  action="store", dest="dumpmapFile", default=None,
                  help="If original data is given as image file, dump indexes"
                  " per each treholded voxels into provided here output file")

parser.add_option("-l", "--levels",
                  type="string", dest="levels", default=None,
                  help="Indexes of levels which to print, or based on which "
                  "to create a summary (for a summary levels=4 is default). "
                  "To get listing of known for the atlas levels, use '-l list'")

parser.add_option("--mni2tal",
                  type="choice",
                  choices=["matthewbrett", "lancaster07fsl",
                           "lancaster07pooled", "meyerlindenberg98"],
                  dest="MNI2TalTransformation", default="matthewbrett",
                  help="Choose between available transformations from mni "
                  "2 talairach space")

parser.add_option("--thr", "--lthr", "--lower-threshold",
                  action="store", type="float", dest="lowerThreshold",
                  default=None,
                  help="Lower threshold for voxels to output")

parser.add_option("--uthr", "--upper-threshold",
                  action="store", type="float", dest="upperThreshold",
                  default=None,
                  help="Upper threshold for voxels to output")

parser.add_option("--count-thr", "--cthr",
                  action="store", type=int, dest="countThreshold",
                  default=1,
                  help="Lowest number of voxels for area to be reported in summary")

parser.add_option("--count-pthr", "--pthr",
                  action="store", type=float, dest="countPercentThreshold",
                  default=0.00001,
                  help="Lowest percentage of voxels within an area to be reported in summary")

parser.add_option("--suppress-none", "--sn",
                  action="store_true", dest="suppressNone",
                  help="Suppress reporting of voxels which found no labels (reported as None)")

parser.add_option("--abbr", "--abbreviated-labels",
                  action="store_true", dest="abbreviatedLabels",
                  help="Manipulate with abbreviations for labels instead of"
                  " full names, if the atlas has such")

# Parameters to be inline with older talairachlabel

parser.add_option("-c", "--tc", "--show-target-coord",
                  action="store_true", dest="showTargetCoordinates",
                  help="Show target coordinates")


parser.add_option("--tv", "--show-target-voxel",
                  action="store_true", dest="showTargetVoxel",
                  help="Show target coordinates")

parser.add_option("--rc", "--show-referenced-coord",
                  action="store_true", dest="showReferencedCoordinates",
                  help="Show referenced coordinates/distance in case if we are"
                  " working with reference atlas")

parser.add_option("-C", "--oc", "--show-orig-coord",
                  action="store_true", dest="showOriginalCoordinates",
                  help="Show original coordinates")

parser.add_option("-V", "--show-values",
                  action="store_true", dest="showValues",
                  help="Show values")


parser.add_option("-I", "--input-space",
                  action="store", type="string", dest="inputSpace",
                  default="MNI",
                  help="Space in which input volume/coordinates provided in. For instance Talairach/MNI")

parser.add_option("-F", "--forbid-direct-mapping",
                  action="store_true", dest="forbidDirectMapping",
                  default=False,
                  help="If volume is provided it first tries to do direct "
                  "mapping voxel-2-voxel if there is no transformation file "
                  "given. This option forbids such behavior and does "
                  "coordinates mapping anyway.")

parser.add_option("-t", "--talairach",
                  action="store_true", dest="coordInTalairachSpace",
                  default=False,
                  help="Coordinates are in talairach space (1x1x1mm)," +
                  " otherwise assumes in mni space (2x2x2mm)."
                  " Shortcut for '-I Talairach'")

parser.add_option("-H", "--half-voxel-correction",
                  action="store_true", dest="halfVoxelCorrection",
                  default=False,
                  help="Adjust coord by 0.5mm after transformation to "
                  "Tal space.")

parser.add_option("-r", "--relative-to-origin",
                  action="store_true", dest="coordRelativeToOrigin",
                  help="Coords are relative to the origin standard form" +
                  " ie in spatial units (mm), otherwise the default assumes" +
                  " raw voxel dimensions")

parser.add_option("--input-line-format",
                  action="store", type="string", dest="inputLineFormat",
                  default=r"^\s*(?P<x>\S+)[ \t,]+(?P<y>\S+)[ \t,]+(?P<z>\S+)\s*$",
                  help="Format of the input lines (if ASCII input is provided)")

parser.add_option("--iv", "--input-voxels",
                  action="store_true", dest="input_voxels",
                  default=False,
                  help="Input lines carry voxel indices (int), not coordinates.")

# Specific atlas options
# TODO : group into options groups

# Reference atlas
parser.add_option("-R", "--reference",
                  action="store", type="string", dest="referenceLevel",
                  default="Closest Gray",
                  help="Which level to reference in the case of reference"
                  " atlas")

# Probabilistic atlases
parser.add_option("--prob-thr",
                  action="store", type="float", dest="probThr",
                  default=25.0,
                  help="At what probability (in %) to threshold in "
                  "probabilistic atlases (e.g. FSL)")

parser.add_option("--prob-strategy",
                  action="store", type="choice", dest="probStrategy",
                  choices=['all', 'max'], default='max',
                  help="What strategy to use for reporting. 'max' would report"
                  " single area (above threshold) with maximal probabilitity")


(options, infiles) = parser.parse_args()
#atlas.relativeToOrigin = options.coordRelativeToOrigin

if len(infiles)>1:
    print "We cannot handle multiple input files at once"
    sys.exit(1)

fileIn = None
coordT = None
niftiInput = None
# define data type for coordinates
if options.input_voxels:
    ctype = int
    query_voxel = True
else:
    ctype = float
    query_voxel = False

# Setup coordinates read-in
volQForm = None

#
# compatibility with older talairachlabel
if options.inputCoordFile:
    fileIn = open(options.inputCoordFile)
    coordsIterator = parsed_coordinates_iterator(
        options.inputLineFormat, fileIn, ctype=ctype)
# input is stdin
elif len(infiles)==0:
    coordsIterator = parsed_coordinates_iterator(
        options.inputLineFormat, ctype=ctype)
else:
    if len(infiles)>1:
        print "Just a single file should be provided at the command line"
        sys.exit(1)
    infile = infiles[0]
    # got a volume/file to process
    if __debug__:
        debug('ATL', "Testing if 0th element in the list a volume")
    niftiInput = None
    try:
        niftiInput = nb.load(infile)
        if __debug__:
            debug('ATL', "Yes it is")
    except Exception, e:
        if __debug__:
            debug('ATL', "No it is not due to %s. Trying to parse the file" % e)

    if niftiInput:
        # if we got here -- it is a proper volume
        # XXX ask Michael to remove nasty warning message
        coordsIterator = select_from_volume_iterator(
            infile, options.lowerThreshold, options.upperThreshold)
        assert(coordT is None)
        coordT = Linear(niftiInput.get_header().get_qform())
        # lets store volumeQForm for possible conversion of voxels into coordinates
        volQForm = coordT
        # previous iterator returns space coordinates
        options.coordRelativeToOrigin = True
    else:
        fileIn = open(infile)
        coordsIterator = parsed_coordinates_iterator(
            options.inputLineFormat, fileIn, ctype=ctype)

# Open and initialize atlas lookup
if options.atlasFile is None:
    if options.atlasPath is None:
        options.atlasPath = KNOWN_ATLASES[options.atlasName]
    options.atlasFile = options.atlasPath % ( {'name': options.atlasName} )

akwargs_common = {}
if options.atlasImageFile:
    akwargs_common['image_file'] = options.atlasImageFile

if not options.forbidDirectMapping \
       and niftiInput is not None and not options.transformationFile:
    akwargs = {'resolution': niftiInput.get_header().get_zooms()[0]}
    query_voxel = True   # if we can query directly by voxel, do so

    akwargs.update(akwargs_common)
    verbose(1, "Will attempt direct mapping from input voxels into atlas "
               "voxels at resolution %.2f" % akwargs['resolution'])

    atlas = Atlas(options.atlasFile, **akwargs)

    # verify that we got the same qforms in atlas and in the data file
    if atlas.space != options.inputSpace:
        verbose(0,
            "Cannot do direct mapping between input image in %s space and"
            " atlas in %s space. Use -I switch to override input space if"
            " it misspecified, or use -T to provide transformation. Trying"
            " to proceed" %(options.inputSpace, atlas.space))
        query_voxel = False
    elif not (niftiInput.get_header().get_qform() == atlas._image.get_header().get_qform()).all():
        if options.atlasImageFile is None:
            warning(
                "Cannot do direct mapping between files with different qforms."
                " Please provide original transformation (-T)."
                "\n Input qform:\n%s\n Atlas qform: \n%s"
                %(niftiInput.get_header().get_qform(), atlas._image.get_header().get_qform), 1)
            # reset ability to query by voxels
            query_voxel = False
        else:
            warning(
                "QForms are different between input image and "
                "provided atlas image."
                "\n Input qform of %s:\n%s\n Atlas qform of %s:\n%s"
                %(infile, niftiInput.get_header().get_qform(),
                  options.atlasImageFile, atlas._image.get_header().get_qform()), 1)
    else:
        coordT = None
else:
    atlas = Atlas(options.atlasFile, **akwargs_common)


if isinstance(atlas, ReferencesAtlas):
    options.referenceLevel = options.referenceLevel.replace('/', ' ')
    atlas.set_reference_level(options.referenceLevel)
    atlas.distance = options.maxDistance
else:
    options.showReferencedCoordinates = False

if isinstance(atlas, FSLProbabilisticAtlas):
    atlas.strategy = options.probStrategy
    atlas.thr = options.probThr

## If not in Talairach -- in MNI with voxel size 2x2x2
# Original talairachlabel assumed that if respective to origin -- voxels were
# scaled already.
#if options.coordInTalairachSpace:
#   voxelSizeOriginal = np.array([1, 1, 1])
#else:
#   voxelSizeOriginal = np.array([2, 2, 2])

if options.coordInTalairachSpace:
        options.inputSpace = "Talairach"

if not (options.inputSpace == atlas.space or
        (options.inputSpace in ["MNI", "Talairach"] and
         atlas.space == "Talairach")):
    raise XMLAtlasException("Unknown space '%s' which is not the same as atlas"
                            "space '%s' either" % ( inputSpace, atlas.space ))

if query_voxel:
    # we do direct mapping
    coordT = None
else:
    verbose(2, "Chaining needed transformations")
    # by default -- no transformation
    if options.transformationFile:
        externals.exists('scipy', raise_=True)
        from scipy.io import read_array

        transfMatrix = read_array(options.transformationFile)
        coordT = Linear(transfMatrix, previous=coordT)
        verbose(2, "coordT got linear transformation from file %s" %
                   options.transformationFile)

    voxelOriginOriginal = None
    voxelSizeOriginal = None

    if not options.coordRelativeToOrigin:
        if options.inputSpace == "Talairach":
            # assume that atlas is in Talairach space already
            voxelOriginOriginal = atlas.origin
            voxelSizeOriginal = np.array([1, 1, 1])
        elif options.inputSpace == "MNI":
            # need to adjust for MNI origin as it was thought to be at
            # in terms of voxels
            #voxelOriginOriginal = np.array([46, 64, 37])
            voxelOriginOriginal = np.array([45, 63, 36])
            voxelSizeOriginal = np.array([2.0, 2.0, 2.0])
            warning("Assuming elderly sizes for MNI volumes with"
                       " origin %s and sizes %s" %\
                       ( `voxelOriginOriginal`, `voxelSizeOriginal`))


    if not (voxelOriginOriginal is None and voxelSizeOriginal is None):
        verbose(2, "Assigning origin adjusting transformation with"+\
                " origin=%s and voxelSize=%s" %\
                ( `voxelOriginOriginal`, `voxelSizeOriginal`))

        coordT = SpaceTransformation(origin=voxelOriginOriginal,
                                     voxelSize=voxelSizeOriginal,
                                     to_real_space=True, previous=coordT)

    # besides adjusting for different origin we need to transform into
    # Talairach space
    if options.inputSpace == "MNI" and atlas.space == "Talairach":
        verbose(2, "Assigning transformation %s" %
                   options.MNI2TalTransformation)
        # What transformation to use
        coordT = {"matthewbrett": MNI2Tal_MatthewBrett,
                  "lancaster07fsl":  mni_to_tal_lancaster07_fsl,
                  "lancaster07pooled":  mni_to_tal_lancaster07pooled,
                  "meyerlindenberg98":  mni_to_tal_meyer_lindenberg98,
                  "yohflirt": mni_to_tal_yohflirt
                  }\
                  [options.MNI2TalTransformation](previous=coordT)

    if options.inputSpace == "MNI" and options.halfVoxelCorrection:
        originCorrection = np.array([0.5, 0.5, 0.5])
    else:
        # perform transformation any way to convert to voxel space (integers)
        originCorrection = None

    # To be closer to what original talairachlabel did -- add 0.5 to each coord
    coordT = SpaceTransformation(origin=originCorrection, voxelSize=None,
                                     to_real_space=False, previous = coordT)

if options.createSummary:
    summary = {}
    if options.levels is None:
        options.levels = str(min(4, atlas.nlevels-1))
if options.levels is None:
    options.levels = range(atlas.nlevels)
elif isinstance(options.levels, basestring):
    if options.levels == 'list':
        print "Known levels and their indicies:\n" + atlas.levels_listing()
        sys.exit(0)
    slevels = options.levels.split(',')
    options.levels = []
    for level in slevels:
        try:
            int_level = int(level)
        except:
            if atlas.levels.has_key(level):
                int_level = atlas.levels[level].index
            else:
                raise RuntimeError(
                    "Unknown level '%s'. " % level +
                    "Known levels and their indicies:\n"
                    + atlas.levels_listing())
        options.levels += [int_level]
else:
    raise ValueError("Don't know how to handle list of levels %s."
                     "Example is '1,2,3'" % (options.levels,))

verbose(3, "Operating on following levels: %s" % options.levels)
# assign levels to the atlas
atlas.default_levels = options.levels

if options.outputFile:
    output = open(options.outputFile, 'w')
else:
    output = sys.stdout

# validity check
if options.dumpmapFile:
    if niftiInput is None:
        raise RuntimeError, "You asked to dump indexes into the volume, " \
              "but input wasn't a volume"
        sys.exit(1)
    ni_dump = nb.load(infile)
    ni_dump_data = np.zeros(ni_dump.get_header().get_data_shape()[:3] + (len(options.levels),))

# Also check if we have provided voxels but not querying by voxels
if options.input_voxels:
    if coordT is not None:
        raise NotImplementedError, \
              "Cannot perform voxels querying having coordT defined"
    if not query_voxel:
        raise NotImplementedError, \
              "query_voxel was reset to False, can't do queries by voxel"

# Read coordinates
numVoxels = 0
for c in coordsIterator:

    value, coord_orig, t = c[0], c[1:4], c[4]
    if __debug__:
        debug('ATL', "Obtained coord_orig=%s with value %s"
              % (repr(coord_orig), value))

    lt, ut = options.lowerThreshold, options.upperThreshold
    if lt is not None and value < lt:
        verbose(5, "Value %s is less than lower threshold %s, thus voxel "
                "is skipped" % (value, options.lowerThreshold))
        continue
    if ut is not None and value > ut:
        verbose(5, "Value %s is greater than upper threshold %s, thus voxel "
                "is skipped" % (value, options.upperThreshold))
        continue

    numVoxels += 1

    # Apply necessary transformations
    coord = coord_orig = np.array(coord_orig)

    if coordT:
        coord = coordT[ coord_orig ]

    # Query label
    if query_voxel:
        voxel = atlas[coord]
    else:
        voxel = atlas(coord)
    voxel['coord_orig'] = coord_orig
    voxel['value'] = value
    voxel['t'] = t
    if options.createSummary:
        summaryIndex = ""
        voxel_labels = voxel["labels"]
        for i,ind in enumerate(options.levels):
            voxel_label = voxel_labels[i]
            text = present_labels(voxel_label)
            #if len(voxel_label):
            #   assert(voxel_label['index'] == ind)
            summaryIndex += text + " / "
        if not summary.has_key(summaryIndex):
            summary[summaryIndex] = {'values':[], 'max':value,
                                     'maxcoord':coord_orig}
            if voxel.has_key('voxel_referenced'):
                summary[summaryIndex]['distances'] = []
        summary_ = summary[summaryIndex]
        summary_['values'].append(value)
        if summary_['max'] < value:
            summary_['max'] = value
            summary_['maxcoord'] = coord_orig
        if voxel.has_key('voxel_referenced'):
            if voxel['voxel_referenced'] and voxel['distance']>=1e-3:
                verbose(5, 'Appending distance %e for voxel at %s'
                        % (voxel['distance'], voxel['coord_orig']))
                summary_['distances'].append(voxel['distance'])
    else:
        # Display while reading/processing
        first, out = True, ""

        if options.showValues:
            out += "%(value)5.2f "
        if options.showOriginalCoordinates:
            out += "%(coord_orig)s ->"
        if options.showReferencedCoordinates:
            out += " %(voxel_referenced)s=>%(distance).2f=>%(voxel_queried)s ->"
        if options.showTargetCoordinates:
            out += " %(coord_queried)s: "
            #out += "(%d,%d,%d): " % tuple(map(lambda x:int(round(x)),coord))
        if options.showTargetVoxel:
            out += " %(voxel_queried)s ->"

        if options.levels is None:
            options.levels = range(len(voxel['labels']))

        labels = [present_labels(voxel['labels'][i]) for i in options.levels]
        out += ','.join(labels)
        #if options.abbreviatedLabels:
        #   out += ','.join([l.abbr for l in labels])
        #else:
        #   out += ','.join([l.text for l in labels])
        #try:
        output.write(out % voxel + "\n")
        #except:
        #    import pydb
        #    pydb.debugger()

    if options.dumpmapFile:
        try:
            ni_dump_data[coord_orig[0], coord_orig[1], coord_orig[2]] = \
              [voxel['labels'][i]['label'].index
               for i,ind in enumerate(options.levels)]
        except Exception, e:
            import pydb
            pydb.debugger()

# if we opened any file -- close it
if fileIn:
    fileIn.close()

if options.dumpmapFile:
    ni_dump = nb.Nifti1Image(ni_dump_data, None, ni_dump.get_header())
    ni_dump.to_filename(options.dumpmapFile)


def statistics(values):
    N_ = len(values)
    if N_==0:
        return 0, None, None, None, None, ""
    mean = np.mean(values)
    std = np.std(values)
    minv = np.min(values)
    maxv = np.max(values)
    ssummary = "[%3.2f : %3.2f] %3.2f+-%3.2f" % (minv, maxv, mean, std)
    return N_, mean, std, minv, maxv, ssummary


##REF: Name was automagically refactored
def get_summary(summary, output):
    """Output the summary
    """
    # Sort either by the name (then ascending) or by the number of
    # elements (then descending)
    sort_keys = [(k, len(v['values']), v['maxcoord'][1])
                 for k,v in summary.iteritems()]
    sort_index, sort_reverse = {
        'name' : (0, False),
        'count': (1, True),
        'a-p': (2, True)}[options.sortSummaryBy]
    sort_keys.sort(cmp=lambda x,y: cmp(x[sort_index], y[sort_index]),
                   reverse=sort_reverse)
    # and here are the keys
    keys = [x[0] for x in sort_keys]
    maxkeylength = max (map(len, keys))

    # may be I should have simply made a counter ;-)
    total = sum(map(lambda x:len(x['values']), summary.values()))
    count_reported = 0
    for index in keys:
        if index.rstrip(' /') == 'None' and options.suppressNone:
            continue
        summary_ = summary[index]
        values = summary_['values']
        N, mean, std, minv, maxv, ssummary = statistics(values)
        Npercent = 100.0*N/total
        if N < options.countThreshold \
               or Npercent < options.countPercentThreshold:
            continue
        count_reported += N
        msg = "%%%ds:" % maxkeylength
        output.write(msg % index)
        output.write("%4d/%4.1f%% items" \
                     % (N, Npercent))

        if options.createSummary>1:
            output.write(" %s" % ssummary)

        if options.createSummary>2:
            output.write(" max at %s" % summary_['maxcoord'])
            if options.showOriginalCoordinates and volQForm:
                #import pydb
                #pydb.debugger()
                #coord = np.dot(volQForm, summary_['maxcoord']+[1])[:3]
                coord = volQForm[summary_['maxcoord']]
                output.write(" %r" % (tuple(coord),))

        if options.createSummary>3 and summary_.has_key('distances'):
            # if we got statistics over referenced voxels
            Nr, mean, std, minv, maxv, ssummary = \
                statistics(summary_['distances'])
            Nr = len(summary_['distances'])
            # print "N=", N, " Nr=", Nr
            output.write(" Referenced: %d/%d%% Distances: %s" \
                         % (Nr, int(Nr*100.0 / N), \
                            ssummary))
        output.write("\n")
        # output might fail to flush, like in the case with broken pipe
        # -- imho that is not a big deal, ie not worth scaring the user
        try:
            output.flush()
        except IOError:
            pass
    output.write("-----\n")
    output.write("TOTAL: %d items" % count_reported)
    if total != count_reported:
        output.write(" (out of %i, %i were excluded)" % (total, total-count_reported))
    output.write("\n")

if options.createSummary:
    if numVoxels == 0:
        verbose(1, "No matching voxels were found.")
    else:
        get_summary(summary, output)

if options.outputFile:
    output.close()