This file is indexed.

/usr/share/pyshared/mvpa/measures/pls.py is in python-mvpa 0.4.8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##

__docformat__ = 'restructuredtext'

import numpy as N

from mvpa.measures.base import FeaturewiseDatasetMeasure

if __debug__:
    from mvpa.base import debug


class PLS(FeaturewiseDatasetMeasure):
    def __init__(self, num_permutations=200, num_bootstraps=100, **kwargs):
        # init base classes first
        FeaturewiseDatasetMeasure.__init__(self, **kwargs)

        # save the args for the analysis
        self.num_permutations = num_permutations
        self.num_bootstraps = num_bootstraps
        
    def _calc_pls(self,mat,labels):
        # take mean within condition(label) and concat to make a
        # condition by features matrix
        X = []
        for ul in N.unique(labels):
            X.append(mat[labels==ul].mean(axis=0))
        X = N.asarray(X)
        
        # center each condition by subtracting the grand mean
        X -= X.mean(axis=1)[:,N.newaxis].repeat(X.shape[1],axis=1)
        
        # run SVD (checking to transpose if necessary)
        U,s,Vh = N.linalg.svd(X, full_matrices=0)

        # run procrust to reorder if necessary

    def _procrust():
        pass

    def _call(self,dataset):
        
        # 
        pass

class TaskPLS(PLS):
    pass