/usr/share/pyshared/mvpa/clfs/knn.py is in python-mvpa 0.4.8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236  | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""k-Nearest-Neighbour classifier."""
__docformat__ = 'restructuredtext'
import sys
# not worthy of externals checking
_dict_has_key = sys.version_info >= (2, 5)
import numpy as N
from mvpa.base import warning
from mvpa.misc.support import indentDoc
from mvpa.clfs.base import Classifier
from mvpa.base.dochelpers import enhancedDocString
from mvpa.clfs.distance import squared_euclidean_distance
if __debug__:
    from mvpa.base import debug
class kNN(Classifier):
    """
    k-Nearest-Neighbour classifier.
    This is a simple classifier that bases its decision on the distances
    between the training dataset samples and the test sample(s). Distances
    are computed using a customizable distance function. A certain number
    (`k`)of nearest neighbors is selected based on the smallest distances
    and the labels of this neighboring samples are fed into a voting
    function to determine the labels of the test sample.
    Training a kNN classifier is extremely quick, as no actuall training
    is performed as the training dataset is simply stored in the
    classifier. All computations are done during classifier prediction.
    .. note::
      If enabled, kNN stores the votes per class in the 'values' state after
      calling predict().
    """
    _clf_internals = ['knn', 'non-linear', 'binary', 'multiclass',
                      'notrain2predict' ]
    def __init__(self, k=2, dfx=squared_euclidean_distance,
                 voting='weighted', **kwargs):
        """
        :Parameters:
          k: unsigned integer
            Number of nearest neighbours to be used for voting.
          dfx: functor
            Function to compute the distances between training and test samples.
            Default: squared euclidean distance
          voting: str
            Voting method used to derive predictions from the nearest neighbors.
            Possible values are 'majority' (simple majority of classes
            determines vote) and 'weighted' (votes are weighted according to the
            relative frequencies of each class in the training data).
          **kwargs:
            Additonal arguments are passed to the base class.
        """
        # init base class first
        Classifier.__init__(self, **kwargs)
        self.__k = k
        self.__dfx = dfx
        self.__voting = voting
        self.__data = None
    def __repr__(self, prefixes=[]):
        """Representation of the object
        """
        return super(kNN, self).__repr__(
            ["k=%d" % self.__k, "dfx=%s" % self.__dfx,
             "voting=%s" % repr(self.__voting)]
            + prefixes)
    def __str__(self):
        return "%s\n data: %s" % \
            (Classifier.__str__(self), indentDoc(self.__data))
    def _train(self, data):
        """Train the classifier.
        For kNN it is degenerate -- just stores the data.
        """
        self.__data = data
        if __debug__:
            if str(data.samples.dtype).startswith('uint') \
                or str(data.samples.dtype).startswith('int'):
                warning("kNN: input data is in integers. " + \
                        "Overflow on arithmetic operations might result in"+\
                        " errors. Please convert dataset's samples into" +\
                        " floating datatype if any error is reported.")
        self.__weights = None
        # create dictionary with an item for each condition
        uniquelabels = data.uniquelabels
        self.__votes_init = dict(zip(uniquelabels,
                                     [0] * len(uniquelabels)))
    def _predict(self, data):
        """Predict the class labels for the provided data.
        Returns a list of class labels (one for each data sample).
        """
        # make sure we're talking about arrays
        data = N.asarray(data)
        # checks only in debug mode
        if __debug__:
            if not data.ndim == 2:
                raise ValueError, "Data array must be two-dimensional."
            if not data.shape[1] == self.__data.nfeatures:
                raise ValueError, "Length of data samples (features) does " \
                                  "not match the classifier."
        # compute the distance matrix between training and test data with
        # distances stored row-wise, ie. distances between test sample [0]
        # and all training samples will end up in row 0
        dists = self.__dfx(self.__data.samples, data).T
        # determine the k nearest neighbors per test sample
        knns = dists.argsort(axis=1)[:, :self.__k]
        # predicted class labels will go here
        predicted = []
        if self.__voting == 'majority':
            vfx = self.getMajorityVote
        elif self.__voting == 'weighted':
            vfx = self.getWeightedVote
        else:
            raise ValueError, "kNN told to perform unknown voting '%s'." \
                  % self.__voting
        # perform voting
        results = [vfx(knn) for knn in knns]
        # extract predictions
        predicted = [r[0] for r in results]
        # store the predictions in the state. Relies on State._setitem to do
        # nothing if the relevant state member is not enabled
        self.predictions = predicted
        self.values = [r[1] for r in results]
        return predicted
    def getMajorityVote(self, knn_ids):
        """Simple voting by choosing the majority of class neighbors.
        """
        # local bindings
        _data = self.__data
        labels = _data.labels
        # number of occerences for each unique class in kNNs
        votes = self.__votes_init.copy()
        for nn in knn_ids:
            votes[labels[nn]] += 1
        # find the class with most votes
        # return votes as well to store them in the state
        if _dict_has_key:
            # approx 5% faster implementation than below
            maxvotes = max(votes.iteritems(), key=lambda x:x[1])[0]
        else:
            # no key keyword for max in elderly versions
            maxvotes = max([(v, k) for k, v in votes.iteritems()])[1]
        return maxvotes, \
                [votes[ul] for ul in _data.uniquelabels] # transform into lists
    def getWeightedVote(self, knn_ids):
        """Vote with classes weighted by the number of samples per class.
        """
        # local bindings
        _data = self.__data
        uniquelabels = _data.uniquelabels
        # Lazy evaluation
        if self.__weights is None:
            #
            # It seemed to Yarik that this has to be evaluated just once per
            # training dataset.
            #
            self.__labels = labels = self.__data.labels
            Nlabels = len(labels)
            Nuniquelabels = len(uniquelabels)
            # TODO: To get proper speed up for the next line only,
            #       histogram should be computed
            #       via sorting + counting "same" elements while reducing.
            #       Guaranteed complexity is NlogN whenever now it is N^2
            # compute the relative proportion of samples belonging to each
            # class (do it in one loop to improve speed and reduce readability
            self.__weights = \
                [ 1.0 - ((labels == label).sum() / Nlabels) \
                    for label in uniquelabels ]
            self.__weights = dict(zip(uniquelabels, self.__weights))
        labels = self.__labels
        # number of occerences for each unique class in kNNs
        votes = self.__votes_init.copy()
        for nn in knn_ids:
            votes[labels[nn]] += 1
        # weight votes
        votes = [ self.__weights[ul] * votes[ul] for ul in uniquelabels]
        # find the class with most votes
        # return votes as well to store them in the state
        return uniquelabels[N.asarray(votes).argmax()], \
               votes
    def untrain(self):
        """Reset trained state"""
        self.__data = None
        super(kNN, self).untrain()
 |