This file is indexed.

/usr/lib/python2.7/dist-packages/mne/proj.py is in python-mne 0.7.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Authors: Alexandre Gramfort <gramfort@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

import numpy as np
from scipy import linalg

from . import fiff, Epochs
from .utils import logger, verbose
from .fiff.pick import pick_types, pick_types_forward
from .fiff.proj import Projection, _has_eeg_average_ref_proj
from .event import make_fixed_length_events
from .parallel import parallel_func
from .cov import _check_n_samples
from .forward import (is_fixed_orient, _subject_from_forward,
                      convert_forward_solution)
from .source_estimate import SourceEstimate
from .fiff.proj import make_projector, make_eeg_average_ref_proj


def read_proj(fname):
    """Read projections from a FIF file.

    Parameters
    ----------
    fname : string
        The name of file containing the projections vectors.

    Returns
    -------
    projs : list
        The list of projection vectors.
    """
    fid, tree, _ = fiff.fiff_open(fname)
    projs = fiff.proj.read_proj(fid, tree)
    return projs


def write_proj(fname, projs):
    """Write projections to a FIF file.

    Parameters
    ----------
    fname : string
        The name of file containing the projections vectors.

    projs : list
        The list of projection vectors.
    """
    fid = fiff.write.start_file(fname)
    fiff.proj.write_proj(fid, projs)
    fiff.write.end_file(fid)


@verbose
def _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix, verbose=None):
    mag_ind = pick_types(info, meg='mag', ref_meg=False, exclude='bads')
    grad_ind = pick_types(info, meg='grad', ref_meg=False, exclude='bads')
    eeg_ind = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads')

    if (n_grad > 0) and len(grad_ind) == 0:
        logger.info("No gradiometers found. Forcing n_grad to 0")
        n_grad = 0
    if (n_mag > 0) and len(mag_ind) == 0:
        logger.info("No magnetometers found. Forcing n_mag to 0")
        n_mag = 0
    if (n_eeg > 0) and len(eeg_ind) == 0:
        logger.info("No EEG channels found. Forcing n_eeg to 0")
        n_eeg = 0

    ch_names = info['ch_names']
    grad_names, mag_names, eeg_names = ([ch_names[k] for k in ind]
                                        for ind in [grad_ind, mag_ind,
                                                    eeg_ind])

    projs = []
    for n, ind, names, desc in zip([n_grad, n_mag, n_eeg],
                                   [grad_ind, mag_ind, eeg_ind],
                                   [grad_names, mag_names, eeg_names],
                                   ['planar', 'axial', 'eeg']):
        if n == 0:
            continue
        data_ind = data[ind][:, ind]
        U = linalg.svd(data_ind, full_matrices=False,
                       overwrite_a=True)[0][:, :n]
        for k, u in enumerate(U.T):
            proj_data = dict(col_names=names, row_names=None,
                             data=u[np.newaxis, :], nrow=1, ncol=u.size)
            this_desc = "%s-%s-PCA-%02d" % (desc, desc_prefix, k + 1)
            logger.info("Adding projection: %s" % this_desc)
            proj = Projection(active=False, data=proj_data,
                              desc=this_desc, kind=1)
            projs.append(proj)

    return projs


@verbose
def compute_proj_epochs(epochs, n_grad=2, n_mag=2, n_eeg=2, n_jobs=1,
                        verbose=None):
    """Compute SSP (spatial space projection) vectors on Epochs

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs containing the artifact
    n_grad : int
        Number of vectors for gradiometers
    n_mag : int
        Number of vectors for magnetometers
    n_eeg : int
        Number of vectors for EEG channels
    n_jobs : int
        Number of jobs to use to compute covariance
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    projs: list
        List of projection vectors
    """
    # compute data covariance
    data = _compute_cov_epochs(epochs, n_jobs)
    event_id = epochs.event_id
    if event_id is None or len(event_id.keys()) == 0:
        event_id = '0'
    elif len(event_id.keys()) == 1:
        event_id = str(event_id.values()[0])
    else:
        event_id = 'Multiple-events'
    desc_prefix = "%s-%-.3f-%-.3f" % (event_id, epochs.tmin, epochs.tmax)
    return _compute_proj(data, epochs.info, n_grad, n_mag, n_eeg, desc_prefix)


def _compute_cov_epochs(epochs, n_jobs):
    """Helper function for computing epochs covariance"""
    parallel, p_fun, _ = parallel_func(np.dot, n_jobs)
    data = parallel(p_fun(e, e.T) for e in epochs)
    n_epochs = len(data)
    if n_epochs == 0:
        raise RuntimeError('No good epochs found')

    n_chan, n_samples = epochs.__iter__().next().shape
    _check_n_samples(n_samples * n_epochs, n_chan)
    data = sum(data)
    return data


@verbose
def compute_proj_evoked(evoked, n_grad=2, n_mag=2, n_eeg=2, verbose=None):
    """Compute SSP (spatial space projection) vectors on Evoked

    Parameters
    ----------
    evoked : instance of Evoked
        The Evoked obtained by averaging the artifact
    n_grad : int
        Number of vectors for gradiometers
    n_mag : int
        Number of vectors for magnetometers
    n_eeg : int
        Number of vectors for EEG channels
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    projs : list
        List of projection vectors
    """
    data = np.dot(evoked.data, evoked.data.T)  # compute data covariance
    desc_prefix = "%-.3f-%-.3f" % (evoked.times[0], evoked.times[-1])
    return _compute_proj(data, evoked.info, n_grad, n_mag, n_eeg, desc_prefix)


@verbose
def compute_proj_raw(raw, start=0, stop=None, duration=1, n_grad=2, n_mag=2,
                     n_eeg=0, reject=None, flat=None, n_jobs=1, verbose=None):
    """Compute SSP (spatial space projection) vectors on Raw

    Parameters
    ----------
    raw : instance of Raw
        A raw object to use the data from
    start : float
        Time (in sec) to start computing SSP
    stop : float
        Time (in sec) to stop computing SSP
        None will go to the end of the file
    duration : float
        Duration (in sec) to chunk data into for SSP
        If duration is None, data will not be chunked.
    n_grad : int
        Number of vectors for gradiometers
    n_mag : int
        Number of vectors for magnetometers
    n_eeg : int
        Number of vectors for EEG channels
    reject : dict
        Epoch rejection configuration (see Epochs)
    flat : dict
        Epoch flat configuration (see Epochs)
    n_jobs : int
        Number of jobs to use to compute covariance
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    projs: list
        List of projection vectors
    """
    if duration is not None:
        events = make_fixed_length_events(raw, 999, start, stop, duration)
        epochs = Epochs(raw, events, None, tmin=0., tmax=duration,
                        picks=pick_types(raw.info, meg=True, eeg=True,
                                         eog=True, ecg=True, emg=True,
                                         exclude='bads'),
                        reject=reject, flat=flat)
        data = _compute_cov_epochs(epochs, n_jobs)
        info = epochs.info
        if not stop:
            stop = raw.n_times / raw.info['sfreq']
    else:
        # convert to sample indices
        start = max(raw.time_as_index(start)[0], 0)
        stop = raw.time_as_index(stop)[0] if stop else raw.n_times
        stop = min(stop, raw.n_times)
        data, times = raw[:, start:stop]
        _check_n_samples(stop - start, data.shape[0])
        data = np.dot(data, data.T)  # compute data covariance
        info = raw.info
        # convert back to times
        start = start / raw.info['sfreq']
        stop = stop / raw.info['sfreq']

    desc_prefix = "Raw-%-.3f-%-.3f" % (start, stop)
    projs = _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix)
    return projs


def sensitivity_map(fwd, projs=None, ch_type='grad', mode='fixed', exclude=[],
                    verbose=None):
    """Compute sensitivity map

    Such maps are used to know how much sources are visible by a type
    of sensor, and how much projections shadow some sources.

    Parameters
    ----------
    fwd : dict
        The forward operator.
    projs : list
        List of projection vectors.
    ch_type : 'grad' | 'mag' | 'eeg'
        The type of sensors to use.
    mode : str
        The type of sensitivity map computed. See manual. Should be 'free',
        'fixed', 'ratio', 'radiality', 'angle', 'remaining', or 'dampening'
        corresponding to the argument --map 1, 2, 3, 4, 5, 6 and 7 of the
        command mne_sensitivity_map.
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any (default).
        If 'bads', exclude channels in fwd['info']['bads'].
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Return
    ------
    stc : SourceEstimate
        The sensitivity map as a SourceEstimate instance for
        visualization.
    """
    # check strings
    if not ch_type in ['eeg', 'grad', 'mag']:
        raise ValueError("ch_type should be 'eeg', 'mag' or 'grad (got %s)"
                         % ch_type)
    if not mode in ['free', 'fixed', 'ratio', 'radiality', 'angle',
                    'remaining', 'dampening']:
        raise ValueError('Unknown mode type (got %s)' % mode)

    # check forward
    if is_fixed_orient(fwd, orig=True):
        raise ValueError('fwd should must be computed with free orientation')
    fwd = convert_forward_solution(fwd, surf_ori=True, force_fixed=False,
                                   verbose=False)
    if not fwd['surf_ori'] or is_fixed_orient(fwd):
        raise RuntimeError('Error converting solution, please notify '
                           'mne-python developers')

    # limit forward
    if ch_type == 'eeg':
        fwd = pick_types_forward(fwd, meg=False, eeg=True, exclude=exclude)
    else:
        fwd = pick_types_forward(fwd, meg=ch_type, eeg=False, exclude=exclude)

    gain = fwd['sol']['data']

    # Make sure EEG has average
    if ch_type == 'eeg':
        if projs is None or not _has_eeg_average_ref_proj(projs):
            eeg_ave = [make_eeg_average_ref_proj(fwd['info'])]
        else:
            eeg_ave = []
        projs = eeg_ave if projs is None else projs + eeg_ave

    # Construct the projector
    if projs is not None:
        proj, ncomp, U = make_projector(projs, fwd['sol']['row_names'],
                                        include_active=True)
        # do projection for most types
        if mode not in ['angle', 'remaining', 'dampening']:
            gain = np.dot(proj, gain)

    # can only run the last couple methods if there are projectors
    elif mode in ['angle', 'remaining', 'dampening']:
        raise ValueError('No projectors used, cannot compute %s' % mode)

    n_sensors, n_dipoles = gain.shape
    n_locations = n_dipoles // 3
    sensitivity_map = np.empty(n_locations)

    for k in xrange(n_locations):
        gg = gain[:, 3 * k:3 * (k + 1)]
        if mode != 'fixed':
            s = linalg.svd(gg, full_matrices=False, compute_uv=False)
        if mode == 'free':
            sensitivity_map[k] = s[0]
        else:
            gz = linalg.norm(gg[:, 2])  # the normal component
            if mode == 'fixed':
                sensitivity_map[k] = gz
            elif mode == 'ratio':
                sensitivity_map[k] = gz / s[0]
            elif mode == 'radiality':
                sensitivity_map[k] = 1. - (gz / s[0])
            else:
                if mode == 'angle':
                    co = linalg.norm(np.dot(gg[:, 2], U))
                    sensitivity_map[k] = co / gz
                else:
                    p = linalg.norm(np.dot(proj, gg[:, 2]))
                    if mode == 'remaining':
                        sensitivity_map[k] = p / gz
                    elif mode == 'dampening':
                        sensitivity_map[k] = 1. - p / gz
                    else:
                        raise ValueError('Unknown mode type (got %s)' % mode)

    # only normalize fixed and free methods
    if mode in ['fixed', 'free']:
        sensitivity_map /= np.max(sensitivity_map)

    vertices = [fwd['src'][0]['vertno'], fwd['src'][1]['vertno']]
    subject = _subject_from_forward(fwd)
    stc = SourceEstimate(sensitivity_map[:, np.newaxis],
                         vertices=vertices, tmin=0, tstep=1,
                         subject=subject)
    return stc