This file is indexed.

/usr/lib/python2.7/dist-packages/mne/fixes.py is in python-mne 0.7.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
"""Compatibility fixes for older version of python, numpy and scipy

If you add content to this file, please give the version of the package
at which the fixe is no longer needed.

# XXX : copied from scikit-learn

"""
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
#          Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Fabian Pedregosa <fpedregosa@acm.org>
#          Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD

import collections
from operator import itemgetter
import inspect

import warnings
import numpy as np
import scipy
from scipy import linalg
from math import ceil, log
from numpy.fft import irfft
from scipy.signal import filtfilt as sp_filtfilt
from distutils.version import LooseVersion
from functools import partial
import copy_reg


class _Counter(collections.defaultdict):
    """Partial replacement for Python 2.7 collections.Counter."""
    def __init__(self, iterable=(), **kwargs):
        super(_Counter, self).__init__(int, **kwargs)
        self.update(iterable)

    def most_common(self):
        return sorted(self.iteritems(), key=itemgetter(1), reverse=True)

    def update(self, other):
        """Adds counts for elements in other"""
        if isinstance(other, self.__class__):
            for x, n in other.iteritems():
                self[x] += n
        else:
            for x in other:
                self[x] += 1

try:
    Counter = collections.Counter
except AttributeError:
    Counter = _Counter


def _unique(ar, return_index=False, return_inverse=False):
    """A replacement for the np.unique that appeared in numpy 1.4.

    While np.unique existed long before, keyword return_inverse was
    only added in 1.4.
    """
    try:
        ar = ar.flatten()
    except AttributeError:
        if not return_inverse and not return_index:
            items = sorted(set(ar))
            return np.asarray(items)
        else:
            ar = np.asarray(ar).flatten()

    if ar.size == 0:
        if return_inverse and return_index:
            return ar, np.empty(0, np.bool), np.empty(0, np.bool)
        elif return_inverse or return_index:
            return ar, np.empty(0, np.bool)
        else:
            return ar

    if return_inverse or return_index:
        perm = ar.argsort()
        aux = ar[perm]
        flag = np.concatenate(([True], aux[1:] != aux[:-1]))
        if return_inverse:
            iflag = np.cumsum(flag) - 1
            iperm = perm.argsort()
            if return_index:
                return aux[flag], perm[flag], iflag[iperm]
            else:
                return aux[flag], iflag[iperm]
        else:
            return aux[flag], perm[flag]

    else:
        ar.sort()
        flag = np.concatenate(([True], ar[1:] != ar[:-1]))
        return ar[flag]

if LooseVersion(np.__version__) < LooseVersion('1.5'):
    unique = _unique
else:
    unique = np.unique


def _bincount(X, weights=None, minlength=None):
    """Replacing np.bincount in numpy < 1.6 to provide minlength."""
    result = np.bincount(X, weights)
    if len(result) >= minlength:
        return result
    out = np.zeros(minlength, np.int)
    out[:len(result)] = result
    return out

if LooseVersion(np.__version__) < LooseVersion('1.6'):
    bincount = _bincount
else:
    bincount = np.bincount


def _copysign(x1, x2):
    """Slow replacement for np.copysign, which was introduced in numpy 1.4"""
    return np.abs(x1) * np.sign(x2)

if not hasattr(np, 'copysign'):
    copysign = _copysign
else:
    copysign = np.copysign


def _in1d(ar1, ar2, assume_unique=False):
    """Replacement for in1d that is provided for numpy >= 1.4"""
    if not assume_unique:
        ar1, rev_idx = unique(ar1, return_inverse=True)
        ar2 = np.unique(ar2)
    ar = np.concatenate((ar1, ar2))
    # We need this to be a stable sort, so always use 'mergesort'
    # here. The values from the first array should always come before
    # the values from the second array.
    order = ar.argsort(kind='mergesort')
    sar = ar[order]
    equal_adj = (sar[1:] == sar[:-1])
    flag = np.concatenate((equal_adj, [False]))
    indx = order.argsort(kind='mergesort')[:len(ar1)]

    if assume_unique:
        return flag[indx]
    else:
        return flag[indx][rev_idx]

if not hasattr(np, 'in1d'):
    in1d = _in1d
else:
    in1d = np.in1d


def _tril_indices(n, k=0):
    """Replacement for tril_indices that is provided for numpy >= 1.4"""
    mask = np.greater_equal(np.subtract.outer(np.arange(n), np.arange(n)), -k)
    indices = np.where(mask)

    return indices

if not hasattr(np, 'tril_indices'):
    tril_indices = _tril_indices
else:
    tril_indices = np.tril_indices


def _unravel_index(indices, dims):
    """Add support for multiple indices in unravel_index that is provided
    for numpy >= 1.4"""
    indices_arr = np.asarray(indices)
    if indices_arr.size == 1:
        return np.unravel_index(indices, dims)
    else:
        if indices_arr.ndim != 1:
            raise ValueError('indices should be one dimensional')

        ndims = len(dims)
        unraveled_coords = np.empty((indices_arr.size, ndims), dtype=np.int)
        for coord, idx in zip(unraveled_coords, indices_arr):
            coord[:] = np.unravel_index(idx, dims)
        return tuple(unraveled_coords.T)


if LooseVersion(np.__version__) < LooseVersion('1.4'):
    unravel_index = _unravel_index
else:
    unravel_index = np.unravel_index


def _qr_economic_old(A, **kwargs):
    """
    Compat function for the QR-decomposition in economic mode
    Scipy 0.9 changed the keyword econ=True to mode='economic'
    """
    with warnings.catch_warnings(True):
        return linalg.qr(A, econ=True, **kwargs)


def _qr_economic_new(A, **kwargs):
    return linalg.qr(A, mode='economic', **kwargs)


if LooseVersion(scipy.__version__) < LooseVersion('0.9'):
    qr_economic = _qr_economic_old
else:
    qr_economic = _qr_economic_new


def savemat(file_name, mdict, oned_as="column", **kwargs):
    """MATLAB-format output routine that is compatible with SciPy 0.7's.

    0.7.2 (or .1?) added the oned_as keyword arg with 'column' as the default
    value. It issues a warning if this is not provided, stating that "This will
    change to 'row' in future versions."
    """
    import scipy.io
    try:
        return scipy.io.savemat(file_name, mdict, oned_as=oned_as, **kwargs)
    except TypeError:
        return scipy.io.savemat(file_name, mdict, **kwargs)

if hasattr(np, 'count_nonzero'):
    from numpy import count_nonzero
else:
    def count_nonzero(X):
        return len(np.flatnonzero(X))

# little dance to see if np.copy has an 'order' keyword argument
if 'order' in inspect.getargspec(np.copy)[0]:
    def safe_copy(X):
        # Copy, but keep the order
        return np.copy(X, order='K')
else:
    # Before an 'order' argument was introduced, numpy wouldn't muck with
    # the ordering
    safe_copy = np.copy


# wrap filtfilt, excluding padding arguments
def _filtfilt(*args, **kwargs):
    # cut out filter args
    if len(args) > 4:
        args = args[:4]
    if 'padlen' in kwargs:
        del kwargs['padlen']
    return sp_filtfilt(*args, **kwargs)

if 'padlen' not in inspect.getargspec(sp_filtfilt)[0]:
    filtfilt = _filtfilt
else:
    filtfilt = sp_filtfilt


###############################################################################
# Back porting firwin2 for older scipy

# Original version of firwin2 from scipy ticket #457, submitted by "tash".
#
# Rewritten by Warren Weckesser, 2010.


def _firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=1.0):
    """FIR filter design using the window method.

    From the given frequencies `freq` and corresponding gains `gain`,
    this function constructs an FIR filter with linear phase and
    (approximately) the given frequency response.

    Parameters
    ----------
    numtaps : int
        The number of taps in the FIR filter.  `numtaps` must be less than
        `nfreqs`.  If the gain at the Nyquist rate, `gain[-1]`, is not 0,
        then `numtaps` must be odd.

    freq : array-like, 1D
        The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being
        Nyquist.  The Nyquist frequency can be redefined with the argument
        `nyq`.

        The values in `freq` must be nondecreasing.  A value can be repeated
        once to implement a discontinuity.  The first value in `freq` must
        be 0, and the last value must be `nyq`.

    gain : array-like
        The filter gains at the frequency sampling points.

    nfreqs : int, optional
        The size of the interpolation mesh used to construct the filter.
        For most efficient behavior, this should be a power of 2 plus 1
        (e.g, 129, 257, etc).  The default is one more than the smallest
        power of 2 that is not less than `numtaps`.  `nfreqs` must be greater
        than `numtaps`.

    window : string or (string, float) or float, or None, optional
        Window function to use. Default is "hamming".  See
        `scipy.signal.get_window` for the complete list of possible values.
        If None, no window function is applied.

    nyq : float
        Nyquist frequency.  Each frequency in `freq` must be between 0 and
        `nyq` (inclusive).

    Returns
    -------
    taps : numpy 1D array of length `numtaps`
        The filter coefficients of the FIR filter.

    Examples
    --------
    A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and
    that decreases linearly on [0.5, 1.0] from 1 to 0:

    >>> taps = firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
    >>> print(taps[72:78])
    [-0.02286961 -0.06362756  0.57310236  0.57310236 -0.06362756 -0.02286961]

    See also
    --------
    scipy.signal.firwin

    Notes
    -----

    From the given set of frequencies and gains, the desired response is
    constructed in the frequency domain.  The inverse FFT is applied to the
    desired response to create the associated convolution kernel, and the
    first `numtaps` coefficients of this kernel, scaled by `window`, are
    returned.

    The FIR filter will have linear phase.  The filter is Type I if `numtaps`
    is odd and Type II if `numtaps` is even.  Because Type II filters always
    have a zero at the Nyquist frequency, `numtaps` must be odd if `gain[-1]`
    is not zero.

    .. versionadded:: 0.9.0

    References
    ----------
    .. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal
       Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989).
       (See, for example, Section 7.4.)

    .. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital
       Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm

    """

    if len(freq) != len(gain):
        raise ValueError('freq and gain must be of same length.')

    if nfreqs is not None and numtaps >= nfreqs:
        raise ValueError('ntaps must be less than nfreqs, but firwin2 was '
                         'called with ntaps=%d and nfreqs=%s'
                         % (numtaps, nfreqs))

    if freq[0] != 0 or freq[-1] != nyq:
        raise ValueError('freq must start with 0 and end with `nyq`.')
    d = np.diff(freq)
    if (d < 0).any():
        raise ValueError('The values in freq must be nondecreasing.')
    d2 = d[:-1] + d[1:]
    if (d2 == 0).any():
        raise ValueError('A value in freq must not occur more than twice.')

    if numtaps % 2 == 0 and gain[-1] != 0.0:
        raise ValueError("A filter with an even number of coefficients must "
                         "have zero gain at the Nyquist rate.")

    if nfreqs is None:
        nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2)))

    # Tweak any repeated values in freq so that interp works.
    eps = np.finfo(float).eps
    for k in range(len(freq)):
        if k < len(freq) - 1 and freq[k] == freq[k + 1]:
            freq[k] = freq[k] - eps
            freq[k + 1] = freq[k + 1] + eps

    # Linearly interpolate the desired response on a uniform mesh `x`.
    x = np.linspace(0.0, nyq, nfreqs)
    fx = np.interp(x, freq, gain)

    # Adjust the phases of the coefficients so that the first `ntaps` of the
    # inverse FFT are the desired filter coefficients.
    shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq)
    fx2 = fx * shift

    # Use irfft to compute the inverse FFT.
    out_full = irfft(fx2)

    if window is not None:
        # Create the window to apply to the filter coefficients.
        from scipy.signal.signaltools import get_window
        wind = get_window(window, numtaps, fftbins=False)
    else:
        wind = 1

    # Keep only the first `numtaps` coefficients in `out`, and multiply by
    # the window.
    out = out_full[:numtaps] * wind

    return out

if hasattr(scipy.signal, 'firwin2'):
    from scipy.signal import firwin2
else:
    firwin2 = _firwin2


###############################################################################
# Back porting matrix_rank for numpy < 1.7


def _matrix_rank(M, tol=None):
    """ Return matrix rank of array using SVD method

    Rank of the array is the number of SVD singular values of the array that
    are greater than `tol`.

    Parameters
    ----------
    M : {(M,), (M, N)} array_like
        array of <=2 dimensions
    tol : {None, float}, optional
       threshold below which SVD values are considered zero. If `tol` is
       None, and ``S`` is an array with singular values for `M`, and
       ``eps`` is the epsilon value for datatype of ``S``, then `tol` is
       set to ``S.max() * max(M.shape) * eps``.

    Notes
    -----
    The default threshold to detect rank deficiency is a test on the magnitude
    of the singular values of `M`. By default, we identify singular values less
    than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with
    the symbols defined above). This is the algorithm MATLAB uses [1]. It also
    appears in *Numerical recipes* in the discussion of SVD solutions for
    linear least squares [2].

    This default threshold is designed to detect rank deficiency accounting
    for the numerical errors of the SVD computation. Imagine that there is a
    column in `M` that is an exact (in floating point) linear combination of
    other columns in `M`. Computing the SVD on `M` will not produce a
    singular value exactly equal to 0 in general: any difference of the
    smallest SVD value from 0 will be caused by numerical imprecision in the
    calculation of the SVD. Our threshold for small SVD values takes this
    numerical imprecision into account, and the default threshold will detect
    such numerical rank deficiency. The threshold may declare a matrix `M`
    rank deficient even if the linear combination of some columns of `M` is
    not exactly equal to another column of `M` but only numerically very
    close to another column of `M`.

    We chose our default threshold because it is in wide use. Other
    thresholds are possible. For example, elsewhere in the 2007 edition of
    *Numerical recipes* there is an alternative threshold of ``S.max() *
    np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
    this threshold as being based on "expected roundoff error" (p 71).

    The thresholds above deal with floating point roundoff error in the
    calculation of the SVD. However, you may have more information about the
    sources of error in `M` that would make you consider other tolerance
    values to detect *effective* rank deficiency. The most useful measure of
    the tolerance depends on the operations you intend to use on your matrix.
    For example, if your data come from uncertain measurements with
    uncertainties greater than floating point epsilon, choosing a tolerance
    near that uncertainty may be preferable. The tolerance may be absolute if
    the uncertainties are absolute rather than relative.

    References
    ----------
    .. [1] MATLAB reference documention, "Rank"
           http://www.mathworks.com/help/techdoc/ref/rank.html
    .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
           "Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
           page 795.

    Examples
    --------
    >>> from numpy.linalg import matrix_rank
    >>> matrix_rank(np.eye(4)) # Full rank matrix
    4
    >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
    >>> matrix_rank(I)
    3
    >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
    1
    >>> matrix_rank(np.zeros((4,)))
    0
    """
    M = np.asarray(M)
    if M.ndim > 2:
        raise TypeError('array should have 2 or fewer dimensions')
    if M.ndim < 2:
        return np.int(not all(M == 0))
    S = np.linalg.svd(M, compute_uv=False)
    if tol is None:
        tol = S.max() * np.max(M.shape) * np.finfo(S.dtype).eps
    return np.sum(S > tol)

if LooseVersion(np.__version__) > '1.7.1':
    from numpy.linalg import matrix_rank
else:
    matrix_rank = _matrix_rank


def _reconstruct_partial(func, args, kwargs):
    """Helper to pickle partial functions"""
    return partial(func, *args, **(kwargs or {}))


def _reduce_partial(p):
    """Helper to pickle partial functions"""
    return _reconstruct_partial, (p.func, p.args, p.keywords)

# This adds pickling functionality to older Python 2.6
# Please always import partial from here.
copy_reg.pickle(partial, _reduce_partial)


def normalize_colors(vmin, vmax, clip=False):
    """Helper to handle matplotlib API"""
    import matplotlib.pyplot as plt
    if 'Normalize' in vars(plt):
        return plt.Normalize(vmin, vmax, clip=clip)
    else:
        return plt.normalize(vmin, vmax, clip=clip)