This file is indexed.

/usr/lib/python2.7/dist-packages/mne/epochs.py is in python-mne 0.7.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
"""Tools for working with epoched data"""

# Authors: Alexandre Gramfort <gramfort@nmr.mgh.harvard.edu>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#          Denis Engemann <d.engemann@fz-juelich.de>
#          Mainak Jas <mainak@neuro.hut.fi>
#
# License: BSD (3-clause)

import copy as cp
import warnings

import numpy as np
from copy import deepcopy

from .fiff.write import (start_file, start_block, end_file, end_block,
                         write_int, write_float_matrix, write_float,
                         write_id, write_string)
from .fiff.meas_info import read_meas_info, write_meas_info
from .fiff.open import fiff_open
from .fiff.raw import _time_as_index, _index_as_time
from .fiff.tree import dir_tree_find
from .fiff.tag import read_tag
from .fiff import Evoked, FIFF
from .fiff.pick import (pick_types, channel_indices_by_type, channel_type,
                        pick_channels)
from .fiff.proj import setup_proj, ProjMixin
from .fiff.evoked import aspect_rev
from .baseline import rescale
from .utils import (check_random_state, _check_pandas_index_arguments,
                    _check_pandas_installed)
from .filter import resample, detrend
from .event import _read_events_fif
from .fixes import in1d
from .viz import _mutable_defaults, plot_epochs
from .utils import logger, verbose


class _BaseEpochs(ProjMixin):
    """Abstract base class for Epochs-type classes

    This class provides basic functionality and should never be instantiated
    directly. See Epochs below for an explanation of the parameters.
    """
    def __init__(self, info, event_id, tmin, tmax, baseline=(None, 0),
                 picks=None, name='Unknown', reject=None, flat=None,
                 decim=1, reject_tmin=None, reject_tmax=None, detrend=None,
                 add_eeg_ref=True, verbose=None):

        self.verbose = verbose
        self.name = name

        if isinstance(event_id, dict):
            if not all([isinstance(v, int) for v in event_id.values()]):
                raise ValueError('Event IDs must be of type integer')
            if not all([isinstance(k, basestring) for k in event_id]):
                raise ValueError('Event names must be of type str')
            self.event_id = event_id
        elif isinstance(event_id, list):
            if not all([isinstance(v, int) for v in event_id]):
                raise ValueError('Event IDs must be of type integer')
            self.event_id = dict(zip((str(i) for i in event_id), event_id))
        elif isinstance(event_id, int):
            self.event_id = {str(event_id): event_id}
        else:
            raise ValueError('event_id must be dict or int.')

        # check reject_tmin and reject_tmax
        if (reject_tmin is not None) and (reject_tmin < tmin):
            raise ValueError("reject_tmin needs to be None or >= tmin")
        if (reject_tmax is not None) and (reject_tmax > tmax):
            raise ValueError("reject_tmax needs to be None or <= tmax")
        if (reject_tmin is not None) and (reject_tmax is not None):
            if reject_tmin >= reject_tmax:
                raise ValueError('reject_tmin needs to be < reject_tmax')
        if not detrend in [None, 0, 1]:
            raise ValueError('detrend must be None, 0, or 1')

        self.tmin = tmin
        self.tmax = tmax
        self.baseline = baseline
        self.reject = reject
        self.reject_tmin = reject_tmin
        self.reject_tmax = reject_tmax
        self.flat = flat
        self.decim = decim = int(decim)
        self._bad_dropped = False
        self.drop_log = None
        self.detrend = detrend

        # Handle measurement info
        self.info = info
        if picks is None:
            picks = range(len(self.info['ch_names']))
        else:
            self.info['chs'] = [self.info['chs'][k] for k in picks]
            self.info['ch_names'] = [self.info['ch_names'][k] for k in picks]
            self.info['nchan'] = len(picks)
        self.picks = picks

        if len(picks) == 0:
            raise ValueError("Picks cannot be empty.")

        # Handle times
        if tmin >= tmax:
            raise ValueError('tmin has to be smaller than tmax')
        sfreq = float(self.info['sfreq'])
        n_times_min = int(round(tmin * sfreq))
        n_times_max = int(round(tmax * sfreq))
        times = np.arange(n_times_min, n_times_max + 1, dtype=np.float) / sfreq
        self.times = times
        self._raw_times = times  # times before decimation
        self._epoch_stop = ep_len = len(self.times)
        if decim > 1:
            new_sfreq = sfreq / decim
            lowpass = self.info['lowpass']
            if new_sfreq < 2.5 * lowpass:  # nyquist says 2 but 2.5 is safer
                msg = ('The measurement information indicates a low-pass '
                       'frequency of %g Hz. The decim=%i parameter will '
                       'result in a sampling frequency of %g Hz, which can '
                       'cause aliasing artifacts.'
                       % (lowpass, decim, new_sfreq))
                warnings.warn(msg)

            i_start = n_times_min % decim
            self._decim_idx = slice(i_start, ep_len, decim)
            self.times = self.times[self._decim_idx]
            self.info['sfreq'] = new_sfreq

        self.preload = False
        self._data = None
        self._offset = None

        # setup epoch rejection
        self._reject_setup()

    def _reject_setup(self):
        """Sets self._reject_time and self._channel_type_idx (called from
        __init__)
        """
        if self.reject is None and self.flat is None:
            return

        idx = channel_indices_by_type(self.info)
        for key in idx.keys():
            if (self.reject is not None and key in self.reject) \
                    or (self.flat is not None and key in self.flat):
                if len(idx[key]) == 0:
                    raise ValueError("No %s channel found. Cannot reject based"
                                     " on %s." % (key.upper(), key.upper()))

        self._channel_type_idx = idx

        if (self.reject_tmin is None) and (self.reject_tmax is None):
            self._reject_time = None
        else:
            if self.reject_tmin is None:
                reject_imin = None
            else:
                idxs = np.nonzero(self.times >= self.reject_tmin)[0]
                reject_imin = idxs[0]
            if self.reject_tmax is None:
                reject_imax = None
            else:
                idxs = np.nonzero(self.times <= self.reject_tmax)[0]
                reject_imax = idxs[-1]

            self._reject_time = slice(reject_imin, reject_imax)

    @verbose
    def _is_good_epoch(self, data, verbose=None):
        """Determine if epoch is good"""
        if data is None:
            return False, ['NO_DATA']
        n_times = len(self.times)
        if data.shape[1] < n_times:
            # epoch is too short ie at the end of the data
            return False, ['TOO_SHORT']
        if self.reject is None and self.flat is None:
            return True, None
        else:
            if self._reject_time is not None:
                data = data[:, self._reject_time]

            return _is_good(data, self.ch_names, self._channel_type_idx,
                            self.reject, self.flat, full_report=True,
                            ignore_chs=self.info['bads'])

    def get_data(self):
        """Get all epochs as a 3D array

        Returns
        -------
        data : array of shape [n_epochs, n_channels, n_times]
            The epochs data
        """
        if self.preload:
            return self._data
        else:
            data = self._get_data_from_disk()
            return data

    def iter_evoked(self):
        """Iterate over Evoked objects with nave=1
        """
        self._current = 0

        while True:
            evoked = Evoked(None)
            evoked.info = cp.deepcopy(self.info)

            evoked.times = self.times.copy()
            evoked.nave = 1
            evoked.first = int(self.times[0] * self.info['sfreq'])
            evoked.last = evoked.first + len(self.times) - 1

            evoked.data, event_id = self.next(True)
            evoked.comment = str(event_id)

            yield evoked

    def subtract_evoked(self, evoked=None):
        """Subtract an evoked response from each epoch

        Can be used to exclude the evoked response when analyzing induced
        activity, see e.g. [1].

        References
        ----------
        [1] David et al. "Mechanisms of evoked and induced responses in
        MEG/EEG", NeuroImage, vol. 31, no. 4, pp. 1580-1591, July 2006.

        Parameters
        ----------
        evoked : instance of mne.fiff.Evoked | None
            The evoked response to subtract. If None, the evoked response
            is computed from Epochs itself.

        Returns
        -------
        self : instance of mne.Epochs
            The modified instance (instance is also modified inplace).
        """
        logger.info('Subtracting Evoked from Epochs')
        if evoked is None:
            picks = pick_types(self.info, meg=True, eeg=True,
                               stim=False, eog=False, ecg=False,
                               emg=False, exclude=[])
            evoked = self.average(picks)

        # find the indices of the channels to use
        picks = pick_channels(evoked.ch_names, include=self.ch_names)

        # make sure the omitted channels are not data channels
        if len(picks) < len(self.ch_names):
            sel_ch = [evoked.ch_names[ii] for ii in picks]
            diff_ch = list(set(self.ch_names).difference(sel_ch))
            diff_idx = [self.ch_names.index(ch) for ch in diff_ch]
            diff_types = [channel_type(self.info, idx) for idx in diff_idx]
            bad_idx = [diff_types.index(t) for t in diff_types if t in
                       ['grad', 'mag', 'eeg']]
            if len(bad_idx) > 0:
                bad_str = ', '.join([diff_ch[ii] for ii in bad_idx])
                raise ValueError('The following data channels are missing '
                                 'in the evoked response: %s' % bad_str)
            logger.info('    The following channels are not included in the '
                        'subtraction: %s' % ', '.join(diff_ch))

        # make sure the times match
        if (len(self.times) != len(evoked.times) or
                np.max(np.abs(self.times - evoked.times)) >= 1e-7):
            raise ValueError('Epochs and Evoked object do not contain '
                             'the same time points.')

        # handle SSPs
        if not self.proj and evoked.proj:
            warnings.warn('Evoked has SSP applied while Epochs has not.')
        if self.proj and not evoked.proj:
            evoked = evoked.copy().apply_proj()

        # find the indices of the channels to use in Epochs
        ep_picks = [self.ch_names.index(evoked.ch_names[ii]) for ii in picks]

        # do the subtraction
        if self.preload:
            self._data[:, ep_picks, :] -= evoked.data[picks][None, :, :]
        else:
            if self._offset is None:
                self._offset = np.zeros((len(self.ch_names), len(self.times)),
                                        dtype=np.float)
            self._offset[ep_picks] -= evoked.data[picks]
        logger.info('[done]')

        return self

    def _get_data_from_disk(self, out=True, verbose=None):
        raise NotImplementedError('_get_data_from_disk() must be implemented '
                                  'in derived class.')

    def __iter__(self):
        """To make iteration over epochs easy.
        """
        self._current = 0
        return self

    def next(self, return_event_id=False):
        raise NotImplementedError('next() must be implemented in derived '
                                  'class.')

    def average(self, picks=None):
        """Compute average of epochs

        Parameters
        ----------
        picks : None | array of int
            If None only MEG and EEG channels are kept
            otherwise the channels indices in picks are kept.

        Returns
        -------
        evoked : Evoked instance
            The averaged epochs
        """

        return self._compute_mean_or_stderr(picks, 'ave')

    def standard_error(self, picks=None):
        """Compute standard error over epochs

        Parameters
        ----------
        picks : None | array of int
            If None only MEG and EEG channels are kept
            otherwise the channels indices in picks are kept.

        Returns
        -------
        evoked : Evoked instance
            The standard error over epochs
        """
        return self._compute_mean_or_stderr(picks, 'stderr')

    def _compute_mean_or_stderr(self, picks, mode='ave'):
        """Compute the mean or std over epochs and return Evoked"""

        _do_std = True if mode == 'stderr' else False
        evoked = Evoked(None)
        evoked.info = cp.deepcopy(self.info)
        # make sure projs are really copied.
        evoked.info['projs'] = [cp.deepcopy(p) for p in self.info['projs']]
        n_channels = len(self.ch_names)
        n_times = len(self.times)
        if self.preload:
            n_events = len(self.events)
            if not _do_std:
                data = np.mean(self._data, axis=0)
            else:
                data = np.std(self._data, axis=0)
            assert len(self.events) == len(self._data)
        else:
            data = np.zeros((n_channels, n_times))
            n_events = 0
            for e in self:
                data += e
                n_events += 1
            data /= n_events
            # convert to stderr if requested, could do in one pass but do in
            # two (slower) in case there are large numbers
            if _do_std:
                data_mean = cp.copy(data)
                data.fill(0.)
                for e in self:
                    data += (e - data_mean) ** 2
                data = np.sqrt(data / n_events)

        evoked.data = data
        evoked.times = self.times.copy()
        evoked.comment = self.name
        evoked.nave = n_events
        evoked.first = int(self.times[0] * self.info['sfreq'])
        evoked.last = evoked.first + len(self.times) - 1
        if not _do_std:
            evoked._aspect_kind = FIFF.FIFFV_ASPECT_AVERAGE
        else:
            evoked._aspect_kind = FIFF.FIFFV_ASPECT_STD_ERR
            evoked.data /= np.sqrt(evoked.nave)
        evoked.kind = aspect_rev.get(str(evoked._aspect_kind), 'Unknown')

        # dropping EOG, ECG and STIM channels. Keeping only data
        if picks is None:
            picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=True,
                               stim=False, eog=False, ecg=False,
                               emg=False, exclude=[])
            if len(picks) == 0:
                raise ValueError('No data channel found when averaging.')

        picks = np.sort(picks)  # make sure channel order does not change
        evoked.info['chs'] = [evoked.info['chs'][k] for k in picks]
        evoked.info['ch_names'] = [evoked.info['ch_names'][k]
                                   for k in picks]
        evoked.info['nchan'] = len(picks)
        evoked.data = evoked.data[picks]
        # otherwise the apply_proj will be confused
        evoked.proj = True if self.proj is True else None
        evoked.verbose = self.verbose

        return evoked

    @property
    def ch_names(self):
        return self.info['ch_names']

    def plot(self, epoch_idx=None, picks=None, scalings=None,
             title_str='#%003i', show=True, block=False):
        """ Visualize single trials using Trellis plot.

        Parameters
        ----------
        epoch_idx : array-like | int | None
            The epochs to visualize. If None, the frist 20 epochs are shoen.
            Defaults to None.
        picks : array-like | None
            Channels to be included. If None only good data channels are used.
            Defaults to None
            scalings : dict | None
        scalings : dict | None
            Scale factors for the traces. If None, defaults to:
            `dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4,
                  emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1, resp=1,
                  chpi=1e-4)`
        title_str : None | str
            The string formatting to use for axes titles. If None, no titles
            will be shown. Defaults expand to ``#001, #002, ...``
        show : bool
            Whether to show the figure or not.
        block : bool
            Whether to halt program execution until the figure is closed.
            Useful for rejecting bad trials on the fly by clicking on a
            sub plot.

        Returns
        -------
        fig : Instance of matplotlib.figure.Figure
            The figure.
        """
        plot_epochs(self, epoch_idx=epoch_idx, picks=picks, scalings=scalings,
                    title_str=title_str, show=show, block=block)


class Epochs(_BaseEpochs):
    """List of Epochs

    Parameters
    ----------
    raw : Raw object
        An instance of Raw.
    events : array, of shape [n_events, 3]
        Returned by the read_events function.
    event_id : int | list of int | dict | None
        The id of the event to consider. If dict,
        the keys can later be used to acces associated events. Example:
        dict(auditory=1, visual=3). If int, a dict will be created with
        the id as string. If a list, all events with the IDs specified
        in the list are used. If None, all events will be used with
        and a dict is created with string integer names corresponding
        to the event id integers.
    tmin : float
        Start time before event.
    tmax : float
        End time after event.
    name : string
        Comment that describes the Evoked data created.
    baseline : None or tuple of length 2 (default (None, 0))
        The time interval to apply baseline correction.
        If None do not apply it. If baseline is (a, b)
        the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used
        and if b is None then b is set to the end of the interval.
        If baseline is equal to (None, None) all the time
        interval is used.
    picks : None (default) or array of int
        Indices of channels to include (if None, all channels
        are used).
    preload : boolean
        Load all epochs from disk when creating the object
        or wait before accessing each epoch (more memory
        efficient but can be slower).
    reject : dict
        Epoch rejection parameters based on peak to peak amplitude.
        Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
        If reject is None then no rejection is done.
        Values are float. Example::

            reject = dict(grad=4000e-13, # T / m (gradiometers)
                          mag=4e-12, # T (magnetometers)
                          eeg=40e-6, # uV (EEG channels)
                          eog=250e-6 # uV (EOG channels)
                          )

    flat : dict
        Epoch rejection parameters based on flatness of signal
        Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'
        If flat is None then no rejection is done.
    proj : bool | 'delayed'
        Apply SSP projection vectors. If proj is 'delayed' and reject is not
        None the single epochs will be projected before the rejection
        decision, but used in unprojected state if they are kept.
        This way deciding which projection vectors are good can be postponed
        to the evoked stage without resulting in lower epoch counts and
        without producing results different from early SSP application
        given comparable parameters. Note that in this case baselining,
        detrending and temporal decimation will be postponed.
        If proj is False no projections will be applied which is the
        recommended value if SSPs are not used for cleaning the data.
    decim : int
        Factor by which to downsample the data from the raw file upon import.
        Warning: This simply selects every nth sample, data is not filtered
        here. If data is not properly filtered, aliasing artifacts may occur.
    reject_tmin : scalar | None
        Start of the time window used to reject epochs (with the default None,
        the window will start with tmin).
    reject_tmax : scalar | None
        End of the time window used to reject epochs (with the default None,
        the window will end with tmax).
    detrend : int | None
        If 0 or 1, the data channels (MEG and EEG) will be detrended when
        loaded. 0 is a constant (DC) detrend, 1 is a linear detrend. None
        is no detrending. Note that detrending is performed before baseline
        correction. If no DC offset is preferred (zeroth order detrending),
        either turn off baseline correction, as this may introduce a DC
        shift, or set baseline correction to use the entire time interval
        (will yield equivalent results but be slower).
    add_eeg_ref : bool
        If True, an EEG average reference will be added (unless one
        already exists).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).
        Defaults to raw.verbose.

    Attributes
    ----------
    info: dict
        Measurement info.
    event_id : dict
        Names of  of conditions corresponding to event_ids.
    ch_names : list of string
        List of channels' names.
    drop_log : list of lists
        This list (same length as events) contains the channel(s),
        or the reasons (count equalization, not reaching minimum duration),
        if any, that caused an event in the original event list to be dropped
        by drop_bad_epochs(). Caveat. The drop log will only know about the
        events passed to epochs. If the events represent a selection the
        drop log can be misaligned with regard to other external logs (e.g.,
        behavioral responses) that still refer to the complete list of events.
    verbose : bool, str, int, or None
        See above.

    Notes
    -----
    For indexing and slicing:

    epochs[idx] : Epochs
        Return Epochs object with a subset of epochs (supports single
        index and python-style slicing)

    For subset selection using categorial labels:

    epochs['name'] : Epochs
        Return Epochs object with a subset of epochs corresponding to an
        experimental condition as specified by 'name'.

    epochs[['name_1', 'name_2', ... ]] : Epochs
        Return Epochs object with a subset of epochs corresponding to multiple
        experimental conditions as specified by 'name_1', 'name_2', ... .

    See also
    --------
    mne.epochs.combine_event_ids
    mne.Epochs.equalize_event_counts
    """
    @verbose
    def __init__(self, raw, events, event_id, tmin, tmax, baseline=(None, 0),
                 picks=None, name='Unknown', preload=False, reject=None,
                 flat=None, proj=True, decim=1, reject_tmin=None,
                 reject_tmax=None, detrend=None, add_eeg_ref=True, verbose=None):
        if raw is None:
            return

        # prepare for calling the base constructor

        # Handle measurement info
        info = cp.deepcopy(raw.info)
        # make sure projs are really copied.
        info['projs'] = [cp.deepcopy(p) for p in info['projs']]

        if event_id is None:  # convert to int to make typing-checks happy
            event_id = dict((str(e), int(e)) for e in np.unique(events[:, 2]))

        proj = proj or raw.proj  # proj is on when applied in Raw

        # call _BaseEpochs constructor
        super(Epochs, self).__init__(info, event_id, tmin, tmax,
                                     baseline=baseline, picks=picks, name=name,
                                     reject=reject, flat=flat, decim=decim,
                                     reject_tmin=reject_tmin,
                                     reject_tmax=reject_tmax, detrend=detrend,
                                     add_eeg_ref=add_eeg_ref, verbose=verbose)

        # do the rest
        self.raw = raw
        proj = proj or raw.proj  # proj is on when applied in Raw
        if proj not in [True, 'delayed', False]:
            raise ValueError(r"'proj' must either be 'True', 'False' or "
                             "'delayed'")
        self.proj = proj
        if self._check_delayed():
            logger.info('Entering delayed SSP mode.')

        activate = False if self._check_delayed() else self.proj
        self._projector, self.info = setup_proj(self.info, add_eeg_ref,
                                                activate=activate)
        # Select the desired events
        selected = in1d(events[:, 2], self.event_id.values())
        self.events = events[selected]
        if len(self.events) > 1:
            if np.diff(self.events.astype(np.int64)[:, 0]).min() <= 0:
                warnings.warn('The events passed to the Epochs constructor '
                              'are not chronologically ordered.',
                              RuntimeWarning)
        n_events = len(self.events)
        if n_events > 0:
            logger.info('%d matching events found' % n_events)
        else:
            raise ValueError('No desired events found.')

        self.preload = preload
        if self.preload:
            self._data = self._get_data_from_disk()
            self.raw = None
        else:
            self._data = None

    def drop_picks(self, bad_picks):
        """Drop some picks

        Allows to discard some channels.
        """
        self.picks = list(self.picks)
        idx = [k for k, p in enumerate(self.picks) if p not in bad_picks]
        self.picks = [self.picks[k] for k in idx]

        # XXX : could maybe be factorized
        self.info['chs'] = [self.info['chs'][k] for k in idx]
        self.info['ch_names'] = [self.info['ch_names'][k] for k in idx]
        self.info['nchan'] = len(idx)

        if self._projector is not None:
            self._projector = self._projector[idx][:, idx]

        if self.preload:
            self._data = self._data[:, idx, :]

    def drop_bad_epochs(self):
        """Drop bad epochs without retaining the epochs data.

        Should be used before slicing operations.

        .. Warning:: Operation is slow since all epochs have to be read from
            disk. To avoid reading epochs form disk multiple times, initialize
            Epochs object with preload=True.

        """
        self._get_data_from_disk(out=False)

    def _check_delayed(self):
        """ Aux method
        """
        is_delayed = False
        if self.proj == 'delayed':
            if self.reject is None:
                raise RuntimeError('The delayed SSP mode was requested '
                                   'but no rejection parameters are present. '
                                   'Please add rejection parameters before '
                                   'using this option.')
            is_delayed = True
        return is_delayed

    @verbose
    def drop_epochs(self, indices, verbose=None):
        """Drop epochs based on indices or boolean mask

        Parameters
        ----------
        indices : array of ints or bools
            Set epochs to remove by specifying indices to remove or a boolean
            mask to apply (where True values get removed). Events are
            correspondingly modified.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
            Defaults to raw.verbose.
        """
        indices = np.asarray(indices)
        if indices.dtype == bool:
            indices = np.where(indices)[0]
        self.events = np.delete(self.events, indices, axis=0)
        if(self.preload):
            self._data = np.delete(self._data, indices, axis=0)
        count = len(indices)
        logger.info('Dropped %d epoch%s' % (count, '' if count == 1 else 's'))

    @verbose
    def _get_epoch_from_disk(self, idx, proj, verbose=None):
        """Load one epoch from disk"""
        if self.raw is None:
            # This should never happen, as raw=None only if preload=True
            raise ValueError('An error has occurred, no valid raw file found.'
                             ' Please report this to the mne-python '
                             'developers.')
        sfreq = self.raw.info['sfreq']

        if self.events.ndim == 1:
            # single event
            event_samp = self.events[0]
        else:
            event_samp = self.events[idx, 0]

        # Read a data segment
        first_samp = self.raw.first_samp
        start = int(round(event_samp + self.tmin * sfreq)) - first_samp
        stop = start + self._epoch_stop
        if start < 0:
            return None, None

        epoch_raw, _ = self.raw[self.picks, start:stop]

        # setup list of epochs to handle delayed SSP
        epochs = []
        # whenever requested, the first epoch is being projected.
        if self._projector is not None and proj is True:
            epochs += [np.dot(self._projector, epoch_raw)]
        else:
            epochs += [epoch_raw]

        # in case the proj passed is True but self proj is not we
        # have delayed SSP
        if self.proj != proj:  # so append another unprojected epoch
            epochs += [epoch_raw.copy()]

        # only preprocess first candidate, to make delayed SSP working
        # we need to postpone the preprocessing since projection comes
        # first.
        epochs[0] = self._preprocess(epochs[0], verbose)

        # return a second None if nothing is projected
        if len(epochs) == 1:
            epochs += [None]

        return epochs

    @verbose
    def _preprocess(self, epoch, verbose=None):
        """ Aux Function
        """
        if self.detrend is not None:
            picks = pick_types(self.info, meg=True, eeg=True, stim=False,
                               ref_meg=False, eog=False, ecg=False,
                               emg=False, exclude=[])
            epoch[picks] = detrend(epoch[picks], self.detrend, axis=1)
        # Baseline correct
        epoch = rescale(epoch, self._raw_times, self.baseline, 'mean',
                        copy=False, verbose=verbose)

        # handle offset
        if self._offset is not None:
            epoch += self._offset

        # Decimate
        if self.decim > 1:
            epoch = epoch[:, self._decim_idx]
        return epoch

    @verbose
    def _get_data_from_disk(self, out=True, verbose=None):
        """Load all data from disk

        Parameters
        ----------
        out : bool
            Return the data. Setting this to False is used to reject bad
            epochs without caching all the data, which saves memory.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
            Defaults to self.verbose.
        """
        n_events = len(self.events)
        data = np.array([])
        if self._bad_dropped:
            proj = False if self._check_delayed() else self.proj
            if not out:
                return
            for ii in xrange(n_events):
                # faster to pre-allocate memory here
                epoch, epoch_raw = self._get_epoch_from_disk(ii, proj=proj)
                if ii == 0:
                    data = np.empty((n_events, epoch.shape[0],
                                     epoch.shape[1]), dtype=epoch.dtype)
                if self._check_delayed():
                    epoch = epoch_raw
                data[ii] = epoch
        else:
            proj = True if self._check_delayed() else self.proj
            good_events = []
            drop_log = [[] for _ in range(n_events)]
            n_out = 0
            for idx in xrange(n_events):
                epoch, epoch_raw = self._get_epoch_from_disk(idx, proj=proj)
                is_good, offenders = self._is_good_epoch(epoch)
                if is_good:
                    good_events.append(idx)
                    if self._check_delayed():
                        epoch = epoch_raw
                    if out:
                        # faster to pre-allocate, then trim as necessary
                        if n_out == 0:
                            data = np.empty((n_events, epoch.shape[0],
                                             epoch.shape[1]),
                                            dtype=epoch.dtype, order='C')
                        data[n_out] = epoch
                        n_out += 1
                else:
                    drop_log[idx] = offenders

            self.drop_log = drop_log
            self.events = np.atleast_2d(self.events[good_events])
            self._bad_dropped = True
            logger.info("%d bad epochs dropped"
                        % (n_events - len(good_events)))
            if not out:
                return
            # just take the good events
            assert len(good_events) == n_out
            if n_out > 0:
                # slicing won't free the space, so we resize
                # we have ensured the C-contiguity of the array in allocation
                # so this operation will be safe unless np is very broken
                data.resize((n_out,) + data.shape[1:], refcheck=False)
        return data

    @verbose
    def _is_good_epoch(self, data, verbose=None):
        """Determine if epoch is good"""
        if data is None:
            return False, ['NO_DATA']
        n_times = len(self.times)
        if data.shape[1] < n_times:
            # epoch is too short ie at the end of the data
            return False, ['TOO_SHORT']
        if self.reject is None and self.flat is None:
            return True, None
        else:
            if self._reject_time is not None:
                data = data[:, self._reject_time]

            return _is_good(data, self.ch_names, self._channel_type_idx,
                            self.reject, self.flat, full_report=True,
                            ignore_chs=self.info['bads'])

    def get_data(self):
        """Get all epochs as a 3D array

        Returns
        -------
        data : array of shape [n_epochs, n_channels, n_times]
            The epochs data
        """
        if self.preload:
            data_ = self._data
        else:
            data_ = self._get_data_from_disk()
        if self._check_delayed():
            data = np.zeros_like(data_)
            for ii, e in enumerate(data_):
                data[ii] = self._preprocess(e.copy(), self.verbose)
        else:
            data = data_

        return data

    def _reject_setup(self):
        """Sets self._reject_time and self._channel_type_idx (called from
        __init__)
        """
        if self.reject is None and self.flat is None:
            return

        idx = channel_indices_by_type(self.info)
        for key in idx.keys():
            if (self.reject is not None and key in self.reject) \
                    or (self.flat is not None and key in self.flat):
                if len(idx[key]) == 0:
                    raise ValueError("No %s channel found. Cannot reject based"
                                     " on %s." % (key.upper(), key.upper()))

        self._channel_type_idx = idx

        if (self.reject_tmin is None) and (self.reject_tmax is None):
            self._reject_time = None
        else:
            if self.reject_tmin is None:
                reject_imin = None
            else:
                idxs = np.nonzero(self.times >= self.reject_tmin)[0]
                reject_imin = idxs[0]
            if self.reject_tmax is None:
                reject_imax = None
            else:
                idxs = np.nonzero(self.times <= self.reject_tmax)[0]
                reject_imax = idxs[-1]

            self._reject_time = slice(reject_imin, reject_imax)

    def __len__(self):
        """Number of epochs.
        """
        if not self._bad_dropped:
            err = ("Since bad epochs have not been dropped, the length of the "
                   "Epochs is not known. Load the Epochs with preload=True, "
                   "or call Epochs.drop_bad_epochs(). To find the number of "
                   "events in the Epochs, use len(Epochs.events).")
            raise RuntimeError(err)
        return len(self.events)

    def __iter__(self):
        """To make iteration over epochs easy.
        """
        self._current = 0
        return self

    def next(self, return_event_id=False):
        """To make iteration over epochs easy.
        """
        if self.preload:
            if self._current >= len(self._data):
                raise StopIteration
            epoch = self._data[self._current]
            if self._check_delayed():
                epoch = self._preprocess(epoch.copy())
            self._current += 1
        else:
            proj = True if self._check_delayed() else self.proj
            is_good = False
            while not is_good:
                if self._current >= len(self.events):
                    raise StopIteration
                epoch, epoch_raw = self._get_epoch_from_disk(self._current,
                                                             proj=proj)
                self._current += 1
                is_good, _ = self._is_good_epoch(epoch)
            # If delayed-ssp mode, pass 'virgin' data after rejection decision.
            if self._check_delayed():
                epoch = self._preprocess(epoch_raw)

        if not return_event_id:
            return epoch
        else:
            return epoch, self.events[self._current - 1][-1]

        return epoch if not return_event_id else epoch, self.event_id

    def __repr__(self):
        """ Build string representation
        """
        if not self._bad_dropped:
            s = 'n_events : %s (good & bad)' % len(self.events)
        else:
            s = 'n_events : %s (all good)' % len(self.events)
        s += ', tmin : %s (s)' % self.tmin
        s += ', tmax : %s (s)' % self.tmax
        s += ', baseline : %s' % str(self.baseline)
        if len(self.event_id) > 1:
            counts = ['%r: %i' % (k, sum(self.events[:, 2] == v))
                      for k, v in self.event_id.items()]
            s += ',\n %s' % ', '.join(counts)

        return '<Epochs  |  %s>' % s

    def _key_match(self, key):
        """Helper function for event dict use"""
        if key not in self.event_id:
            raise KeyError('Event "%s" is not in Epochs.' % key)
        return self.events[:, 2] == self.event_id[key]

    def __getitem__(self, key):
        """Return an Epochs object with a subset of epochs
        """

        data = self._data
        del self._data
        epochs = self.copy()
        self._data, epochs._data = data, data

        if isinstance(key, basestring):
            key = [key]

        if isinstance(key, list) and isinstance(key[0], basestring):
            key_match = np.any(np.atleast_2d([epochs._key_match(k)
                                              for k in key]), axis=0)
            select = key_match
            epochs.name = ('-'.join(key) if epochs.name == 'Unknown'
                           else 'epochs_%s' % '-'.join(key))
        else:
            key_match = key
            select = key if isinstance(key, slice) else np.atleast_1d(key)
            if not epochs._bad_dropped:
                # Only matters if preload is not true, since bad epochs are
                # dropped on preload; doesn't mater for key lookup, either
                warnings.warn("Bad epochs have not been dropped, indexing will"
                              " be inaccurate. Use drop_bad_epochs() or"
                              " preload=True")

        epochs.events = np.atleast_2d(epochs.events[key_match])
        if epochs.preload:
            epochs._data = epochs._data[select]

        return epochs

    def crop(self, tmin=None, tmax=None, copy=False):
        """Crops a time interval from epochs object.

        Parameters
        ----------
        tmin : float
            Start time of selection in seconds.
        tmax : float
            End time of selection in seconds.
        copy : bool
            If False epochs is cropped in place.

        Returns
        -------
        epochs : Epochs instance
            The cropped epochs.
        """
        if not self.preload:
            raise RuntimeError('Modifying data of epochs is only supported '
                               'when preloading is used. Use preload=True '
                               'in the constructor.')

        if tmin is None:
            tmin = self.tmin
        elif tmin < self.tmin:
            warnings.warn("tmin is not in epochs' time interval."
                          "tmin is set to epochs.tmin")
            tmin = self.tmin

        if tmax is None:
            tmax = self.tmax
        elif tmax > self.tmax:
            warnings.warn("tmax is not in epochs' time interval."
                          "tmax is set to epochs.tmax")
            tmax = self.tmax

        tmask = (self.times >= tmin) & (self.times <= tmax)
        tidx = np.where(tmask)[0]

        this_epochs = self if not copy else self.copy()
        this_epochs.tmin = this_epochs.times[tidx[0]]
        this_epochs.tmax = this_epochs.times[tidx[-1]]
        this_epochs.times = this_epochs.times[tmask]
        this_epochs._data = this_epochs._data[:, :, tmask]
        return this_epochs

    @verbose
    def resample(self, sfreq, npad=100, window='boxcar', n_jobs=1,
                 verbose=None):
        """Resample preloaded data

        Parameters
        ----------
        sfreq : float
            New sample rate to use
        npad : int
            Amount to pad the start and end of the data.
        window : string or tuple
            Window to use in resampling. See scipy.signal.resample.
        n_jobs : int
            Number of jobs to run in parallel.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see mne.verbose).
            Defaults to self.verbose.

        Notes
        -----
        For some data, it may be more accurate to use npad=0 to reduce
        artifacts. This is dataset dependent -- check your data!
        """
        if self.preload:
            o_sfreq = self.info['sfreq']
            self._data = resample(self._data, sfreq, o_sfreq, npad,
                                  n_jobs=n_jobs)
            # adjust indirectly affected variables
            self.info['sfreq'] = sfreq
            self.times = (np.arange(self._data.shape[2], dtype=np.float)
                          / sfreq + self.times[0])
        else:
            raise RuntimeError('Can only resample preloaded data')

    def copy(self):
        """Return copy of Epochs instance"""
        raw = self.raw
        del self.raw
        new = deepcopy(self)
        self.raw = raw
        new.raw = raw

        return new

    def save(self, fname):
        """Save epochs in a fif file

        Parameters
        ----------
        fname : str
            The name of the file.
        """
        # Create the file and save the essentials
        fid = start_file(fname)

        start_block(fid, FIFF.FIFFB_MEAS)
        write_id(fid, FIFF.FIFF_BLOCK_ID)
        if self.info['meas_id'] is not None:
            write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, self.info['meas_id'])

        # Write measurement info
        write_meas_info(fid, self.info)

        # One or more evoked data sets
        start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
        start_block(fid, FIFF.FIFFB_EPOCHS)

        # write events out after getting data to ensure bad events are dropped
        data = self.get_data()
        start_block(fid, FIFF.FIFFB_MNE_EVENTS)
        write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, self.events.T)
        mapping_ = ';'.join([k + ':' + str(v) for k, v in
                             self.event_id.items()])
        write_string(fid, FIFF.FIFF_DESCRIPTION, mapping_)
        end_block(fid, FIFF.FIFFB_MNE_EVENTS)

        # First and last sample
        first = int(self.times[0] * self.info['sfreq'])
        last = first + len(self.times) - 1
        write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first)
        write_int(fid, FIFF.FIFF_LAST_SAMPLE, last)

        # save baseline
        if self.baseline is not None:
            bmin, bmax = self.baseline
            bmin = self.times[0] if bmin is None else bmin
            bmax = self.times[-1] if bmax is None else bmax
            write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
            write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)

        # The epochs itself
        decal = np.empty(self.info['nchan'])
        for k in range(self.info['nchan']):
            decal[k] = 1.0 / (self.info['chs'][k]['cal']
                              * self.info['chs'][k].get('scale', 1.0))

        data *= decal[np.newaxis, :, np.newaxis]

        write_float_matrix(fid, FIFF.FIFF_EPOCH, data)

        # undo modifications to data
        data /= decal[np.newaxis, :, np.newaxis]
        end_block(fid, FIFF.FIFFB_EPOCHS)

        end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
        end_block(fid, FIFF.FIFFB_MEAS)
        end_file(fid)

    def as_data_frame(self, picks=None, index=None, scale_time=1e3,
                      scalings=None, copy=True):
        """Get the epochs as Pandas DataFrame

        Export epochs data in tabular structure with MEG channels as columns
        and three additional info columns 'epoch', 'condition', and 'time'.
        The format matches a long table format commonly used to represent
        repeated measures in within-subject designs.

        Parameters
        ----------
        picks : None | array of int
            If None only MEG and EEG channels are kept
            otherwise the channels indices in picks are kept.
        index : tuple of str | None
            Column to be used as index for the data. Valid string options
            are 'epoch', 'time' and 'condition'. If None, all three info
            columns will be included in the table as categorial data.
        scale_time : float
            Scaling to be applied to time units.
        scalings : dict | None
            Scaling to be applied to the channels picked. If None, defaults to
            ``scalings=dict(eeg=1e6, grad=1e13, mag=1e15, misc=1.0)`.
        copy : bool
            If true, data will be copied. Else data may be modified in place.

        Returns
        -------
        df : instance of pandas.core.DataFrame
            Epochs exported into tabular data structure.
        """

        pd = _check_pandas_installed()

        default_index = ['condition', 'epoch', 'time']
        if index is not None:
            _check_pandas_index_arguments(index, default_index)
        else:
            index = default_index

        if picks is None:
            picks = range(self.info['nchan'])
        else:
            if not in1d(picks, np.arange(len(self.events))).all():
                raise ValueError('At least one picked channel is not present '
                                 'in this eppochs instance.')

        data = self.get_data()[:, picks, :]
        shape = data.shape
        data = np.hstack(data).T
        if copy:
            data = data.copy()

        types = [channel_type(self.info, idx) for idx in picks]
        n_channel_types = 0
        ch_types_used = []

        scalings = _mutable_defaults(('scalings', scalings))[0]
        for t in scalings.keys():
            if t in types:
                n_channel_types += 1
                ch_types_used.append(t)

        for t in ch_types_used:
            scaling = scalings[t]
            idx = [picks[i] for i in range(len(picks)) if types[i] == t]
            if len(idx) > 0:
                data[:, idx] *= scaling

        id_swapped = dict((v, k) for k, v in self.event_id.items())
        names = [id_swapped[k] for k in self.events[:, 2]]

        mindex = list()
        mindex.append(('condition', np.repeat(names, shape[2])))
        mindex.append(('time', np.tile(self.times, shape[0]) *
                      scale_time))  # if 'epoch' in index:
        mindex.append(('epoch', np.repeat(np.arange(shape[0]),
                      shape[2])))

        assert all(len(mdx) == len(mindex[0]) for mdx in mindex)
        col_names = [self.ch_names[k] for k in picks]

        df = pd.DataFrame(data, columns=col_names)
        [df.insert(i, k, v) for i, (k, v) in enumerate(mindex)]
        if index is not None:
            with warnings.catch_warnings(True):
                if 'time' in index:
                    df['time'] = df['time'].astype(np.int64)
                df.set_index(index, inplace=True)

        return df

    def to_nitime(self, picks=None, epochs_idx=None, collapse=False,
                  copy=True, first_samp=0):
        """ Export epochs as nitime TimeSeries

        Parameters
        ----------
        picks : array-like | None
            Indices for exporting subsets of the epochs channels. If None
            all good channels will be used.
        epochs_idx : slice | array-like | None
            Epochs index for single or selective epochs exports. If None, all
            epochs will be used.
        collapse : boolean
            If True export epochs and time slices will be collapsed to 2D
            array. This may be required by some nitime functions.
        copy : boolean
            If True exports copy of epochs data.
        first_samp : int
            Number of samples to offset the times by. Use raw.first_samp to
            have the time returned relative to the session onset, or zero
            (default) for time relative to the recording onset.

        Returns
        -------
        epochs_ts : instance of nitime.TimeSeries
            The Epochs as nitime TimeSeries object.
        """
        try:
            from nitime import TimeSeries  # to avoid strong dependency
        except ImportError:
            raise Exception('the nitime package is missing')

        if picks is None:
            picks = pick_types(self.info, include=self.ch_names,
                               exclude='bads')
        if epochs_idx is None:
            epochs_idx = slice(len(self.events))

        data = self.get_data()[epochs_idx, picks]

        if copy is True:
            data = data.copy()

        if collapse is True:
            data = np.hstack(data).copy()

        offset = _time_as_index(abs(self.tmin), self.info['sfreq'],
                                first_samp, True)
        t0 = _index_as_time(self.events[0, 0] - offset, self.info['sfreq'],
                            first_samp, True)[0]
        epochs_ts = TimeSeries(data, sampling_rate=self.info['sfreq'], t0=t0)
        epochs_ts.ch_names = np.array(self.ch_names)[picks].tolist()

        return epochs_ts

    def equalize_event_counts(self, event_ids, method='mintime', copy=True):
        """Equalize the number of trials in each condition

        It tries to make the remaining epochs occurring as close as possible in
        time. This method works based on the idea that if there happened to be
        some time-varying (like on the scale of minutes) noise characteristics
        during a recording, they could be compensated for (to some extent) in
        the equalization process. This method thus seeks to reduce any of
        those effects by minimizing the differences in the times of the events
        in the two sets of epochs. For example, if one had event times
        [1, 2, 3, 4, 120, 121] and the other one had [3.5, 4.5, 120.5, 121.5],
        it would remove events at times [1, 2] in the first epochs and not
        [20, 21].

        Parameters
        ----------
        event_ids : list
            The event types to equalize. Each entry in the list can either be
            a str (single event) or a list of str. In the case where one of
            the entries is a list of str, event_ids in that list will be
            grouped together before equalizing trial counts across conditions.
        method : str
            If 'truncate', events will be truncated from the end of each event
            list. If 'mintime', timing differences between each event list will
            be minimized.
        copy : bool
            If True, a copy of epochs will be returned. Otherwise, the
            function will operate in-place.

        Returns
        -------
        epochs : instance of Epochs
            The modified Epochs instance.
        indices : array of int
            Indices from the original events list that were dropped.

        Notes
        ----
        For example (if epochs.event_id was {'Left': 1, 'Right': 2,
        'Nonspatial':3}:

            epochs.equalize_event_counts([['Left', 'Right'], 'Nonspatial'])

        would equalize the number of trials in the 'Nonspatial' condition with
        the total number of trials in the 'Left' and 'Right' conditions.
        """
        if copy is True:
            epochs = self.copy()
        else:
            epochs = self
        if len(event_ids) == 0:
            raise ValueError('event_ids must have at least one element')
        if not epochs._bad_dropped:
            epochs.drop_bad_epochs()
        # figure out how to equalize
        eq_inds = list()
        for eq in event_ids:
            eq = np.atleast_1d(eq)
            # eq is now a list of types
            key_match = np.zeros(epochs.events.shape[0])
            for key in eq:
                key_match = np.logical_or(key_match, epochs._key_match(key))
            eq_inds.append(np.where(key_match)[0])

        event_times = [epochs.events[eq, 0] for eq in eq_inds]
        indices = _get_drop_indices(event_times, method)
        # need to re-index indices
        indices = np.concatenate([eq[inds]
                                  for eq, inds in zip(eq_inds, indices)])
        epochs = _check_add_drop_log(epochs, indices)
        epochs.drop_epochs(indices)
        # actually remove the indices
        return epochs, indices


def combine_event_ids(epochs, old_event_ids, new_event_id, copy=True):
    """Collapse event_ids from an epochs instance into a new event_id

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs to operate on.
    old_event_ids : str, or list
        Conditions to collapse together.
    new_event_id : dict, or int
        A one-element dict (or a single integer) for the new
        condition. Note that for safety, this cannot be any
        existing id (in epochs.event_id.values()).
    copy : bool
        If True, a copy of epochs will be returned. Otherwise, the
        function will operate in-place.

    Notes
    -----
    This For example (if epochs.event_id was {'Left': 1, 'Right': 2}:

        combine_event_ids(epochs, ['Left', 'Right'], {'Directional': 12})

    would create a 'Directional' entry in epochs.event_id replacing
    'Left' and 'Right' (combining their trials).
    """
    if copy:
        epochs = epochs.copy()
    old_event_ids = np.asanyarray(old_event_ids)
    if isinstance(new_event_id, int):
        new_event_id = {str(new_event_id): new_event_id}
    else:
        if not isinstance(new_event_id, dict):
            raise ValueError('new_event_id must be a dict or int')
        if not len(new_event_id.keys()) == 1:
            raise ValueError('new_event_id dict must have one entry')
    new_event_num = new_event_id.values()[0]
    if not isinstance(new_event_num, int):
        raise ValueError('new_event_id value must be an integer')
    if new_event_num in epochs.event_id.values():
        raise ValueError('new_event_id value must not already exist')
    # could use .pop() here, but if a latter one doesn't exist, we're
    # in trouble, so run them all here and pop() later
    old_event_nums = np.array([epochs.event_id[key] for key in old_event_ids])
    # find the ones to replace
    inds = np.any(epochs.events[:, 2][:, np.newaxis] ==
                  old_event_nums[np.newaxis, :], axis=1)
    # replace the event numbers in the events list
    epochs.events[inds, 2] = new_event_num
    # delete old entries
    [epochs.event_id.pop(key) for key in old_event_ids]
    # add the new entry
    epochs.event_id.update(new_event_id)
    return epochs


def equalize_epoch_counts(epochs_list, method='mintime'):
    """Equalize the number of trials in multiple Epoch instances

    It tries to make the remaining epochs occurring as close as possible in
    time. This method works based on the idea that if there happened to be some
    time-varying (like on the scale of minutes) noise characteristics during
    a recording, they could be compensated for (to some extent) in the
    equalization process. This method thus seeks to reduce any of those effects
    by minimizing the differences in the times of the events in the two sets of
    epochs. For example, if one had event times [1, 2, 3, 4, 120, 121] and the
    other one had [3.5, 4.5, 120.5, 121.5], it would remove events at times
    [1, 2] in the first epochs and not [20, 21].

    Note that this operates on the Epochs instances in-place.

    Example:

        equalize_epoch_counts(epochs1, epochs2)

    Parameters
    ----------
    epochs_list : list of Epochs instances
        The Epochs instances to equalize trial counts for.
    method : str
        If 'truncate', events will be truncated from the end of each event
        list. If 'mintime', timing differences between each event list will be
        minimized.
    """
    if not all([isinstance(e, Epochs) for e in epochs_list]):
        raise ValueError('All inputs must be Epochs instances')

    # make sure bad epochs are dropped
    [e.drop_bad_epochs() if not e._bad_dropped else None for e in epochs_list]
    event_times = [e.events[:, 0] for e in epochs_list]
    indices = _get_drop_indices(event_times, method)
    for e, inds in zip(epochs_list, indices):
        e = _check_add_drop_log(e, inds)
        e.drop_epochs(inds)


def _get_drop_indices(event_times, method):
    """Helper to get indices to drop from multiple event timing lists"""
    small_idx = np.argmin([e.shape[0] for e in event_times])
    small_e_times = event_times[small_idx]
    if not method in ['mintime', 'truncate']:
        raise ValueError('method must be either mintime or truncate, not '
                         '%s' % method)
    indices = list()
    for e in event_times:
        if method == 'mintime':
            mask = _minimize_time_diff(small_e_times, e)
        else:
            mask = np.ones(e.shape[0], dtype=bool)
            mask[small_e_times.shape[0]:] = False
        indices.append(np.where(np.logical_not(mask))[0])

    return indices


def _minimize_time_diff(t_shorter, t_longer):
    """Find a boolean mask to minimize timing differences"""
    keep = np.ones((len(t_longer)), dtype=bool)
    scores = np.ones((len(t_longer)))
    for iter in range(len(t_longer) - len(t_shorter)):
        scores.fill(np.inf)
        # Check every possible removal to see if it minimizes
        for idx in np.where(keep)[0]:
            keep[idx] = False
            scores[idx] = _area_between_times(t_shorter, t_longer[keep])
            keep[idx] = True
        keep[np.argmin(scores)] = False
    return keep


def _area_between_times(t1, t2):
    """Quantify the difference between two timing sets"""
    x1 = range(len(t1))
    x2 = range(len(t2))
    xs = np.concatenate((x1, x2))
    return np.sum(np.abs(np.interp(xs, x1, t1) - np.interp(xs, x2, t2)))


@verbose
def _is_good(e, ch_names, channel_type_idx, reject, flat, full_report=False,
             ignore_chs=[], verbose=None):
    """Test if data segment e is good according to the criteria
    defined in reject and flat. If full_report=True, it will give
    True/False as well as a list of all offending channels.
    """
    bad_list = list()
    has_printed = False
    checkable = np.ones(len(ch_names), dtype=bool)
    checkable[np.array([c in ignore_chs
                        for c in ch_names], dtype=bool)] = False
    for refl, f, t in zip([reject, flat], [np.greater, np.less], ['', 'flat']):
        if refl is not None:
            for key, thresh in refl.iteritems():
                idx = channel_type_idx[key]
                name = key.upper()
                if len(idx) > 0:
                    e_idx = e[idx]
                    deltas = np.max(e_idx, axis=1) - np.min(e_idx, axis=1)
                    checkable_idx = checkable[idx]
                    idx_deltas = np.where(np.logical_and(f(deltas, thresh),
                                                         checkable_idx))[0]

                    if len(idx_deltas) > 0:
                        ch_name = [ch_names[idx[i]] for i in idx_deltas]
                        if (not has_printed):
                            logger.info('    Rejecting %s epoch based on %s : '
                                        '%s' % (t, name, ch_name))
                            has_printed = True
                        if not full_report:
                            return False
                        else:
                            bad_list.extend(ch_name)

    if not full_report:
        return True
    else:
        if bad_list == []:
            return True, None
        else:
            return False, bad_list


@verbose
def read_epochs(fname, proj=True, add_eeg_ref=True, verbose=None):
    """Read epochs from a fif file

    Parameters
    ----------
    fname : str
        The name of the file.
    proj : bool | 'delayed'
        Apply SSP projection vectors. If proj is 'delayed' and reject is not
        None the single epochs will be projected before the rejection
        decision, but used in unprojected state if they are kept.
        This way deciding which projection vectors are good can be postponed
        to the evoked stage without resulting in lower epoch counts and
        without producing results different from early SSP application
        given comparable parameters. Note that in this case baselining,
        detrending and temporal decimation will be postponed.
        If proj is False no projections will be applied which is the
        recommended value if SSPs are not used for cleaning the data.
    add_eeg_ref : bool
        If True, an EEG average reference will be added (unless one
        already exists).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).
        Defaults to raw.verbose.

    Returns
    -------
    epochs : instance of Epochs
        The epochs
    """
    epochs = Epochs(None, None, None, None, None)

    logger.info('Reading %s ...' % fname)
    fid, tree, _ = fiff_open(fname)

    #   Read the measurement info
    info, meas = read_meas_info(fid, tree)
    info['filename'] = fname

    events, mappings = _read_events_fif(fid, tree)

    #   Locate the data of interest
    processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
    if len(processed) == 0:
        fid.close()
        raise ValueError('Could not find processed data')

    epochs_node = dir_tree_find(tree, FIFF.FIFFB_EPOCHS)
    if len(epochs_node) == 0:
        fid.close()
        raise ValueError('Could not find epochs data')

    my_epochs = epochs_node[0]

    # Now find the data in the block
    comment = None
    data = None
    bmin, bmax = None, None
    baseline = None
    for k in range(my_epochs['nent']):
        kind = my_epochs['directory'][k].kind
        pos = my_epochs['directory'][k].pos
        if kind == FIFF.FIFF_FIRST_SAMPLE:
            tag = read_tag(fid, pos)
            first = int(tag.data)
        elif kind == FIFF.FIFF_LAST_SAMPLE:
            tag = read_tag(fid, pos)
            last = int(tag.data)
        elif kind == FIFF.FIFF_COMMENT:
            tag = read_tag(fid, pos)
            comment = tag.data
        elif kind == FIFF.FIFF_EPOCH:
            tag = read_tag(fid, pos)
            data = tag.data.astype(np.float)
        elif kind == FIFF.FIFF_MNE_BASELINE_MIN:
            tag = read_tag(fid, pos)
            bmin = float(tag.data)
        elif kind == FIFF.FIFF_MNE_BASELINE_MAX:
            tag = read_tag(fid, pos)
            bmax = float(tag.data)

    if bmin is not None or bmax is not None:
        baseline = (bmin, bmax)

    nsamp = last - first + 1
    logger.info('    Found the data of interest:')
    logger.info('        t = %10.2f ... %10.2f ms (%s)'
                % (1000 * first / info['sfreq'],
                   1000 * last / info['sfreq'], comment))
    if info['comps'] is not None:
        logger.info('        %d CTF compensation matrices available'
                    % len(info['comps']))

    # Read the data
    if data is None:
        raise ValueError('Epochs data not found')

    if data.shape[2] != nsamp:
        fid.close()
        raise ValueError('Incorrect number of samples (%d instead of %d)'
                         % (data.shape[2], nsamp))

    # Calibrate
    cals = np.array([info['chs'][k]['cal'] * info['chs'][k].get('scale', 1.0)
                     for k in range(info['nchan'])])
    data *= cals[np.newaxis, :, np.newaxis]

    times = np.arange(first, last + 1, dtype=np.float) / info['sfreq']
    tmin = times[0]
    tmax = times[-1]

    # Put it all together
    epochs.preload = True
    epochs.raw = None
    epochs._bad_dropped = True
    epochs.events = events
    epochs._data = data
    epochs.info = info
    epochs.tmin = tmin
    epochs.tmax = tmax
    epochs.name = comment
    epochs.times = times
    epochs._data = data
    epochs.proj = proj
    activate = False if epochs._check_delayed() else proj
    epochs._projector, epochs.info = setup_proj(info, add_eeg_ref,
                                                activate=activate)

    epochs.baseline = baseline
    epochs.event_id = (dict((str(e), e) for e in np.unique(events[:, 2]))
                       if mappings is None else mappings)
    epochs.verbose = verbose
    epochs.drop_log = []
    fid.close()

    return epochs


def bootstrap(epochs, random_state=None):
    """Compute epochs selected by bootstrapping

    Parameters
    ----------
    epochs : Epochs instance
        epochs data to be bootstrapped
    random_state : None | int | np.random.RandomState
        To specify the random generator state

    Returns
    -------
    epochs : Epochs instance
        The bootstrap samples
    """
    if not epochs.preload:
        raise RuntimeError('Modifying data of epochs is only supported '
                           'when preloading is used. Use preload=True '
                           'in the constructor.')

    rng = check_random_state(random_state)
    epochs_bootstrap = epochs.copy()
    n_events = len(epochs_bootstrap.events)
    idx = rng.randint(0, n_events, n_events)
    epochs_bootstrap = epochs_bootstrap[idx]
    return epochs_bootstrap


def _check_add_drop_log(epochs, inds):
    """Aux Function"""
    new_idx, new_drop_log = 0, []
    for idx, log in enumerate(epochs.drop_log):
        if not log:
            new_idx += 1
        if new_idx in inds:
            new_log = ['EQUALIZED_COUNT']
        elif log:
            new_log = log
        else:
            new_log = []
        new_drop_log.append(new_log)
    epochs.drop_log = new_drop_log
    return epochs