/usr/share/pyshared/bimdp/parallel/parallelbiflow.py is in python-mdp 3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 | """
Module for parallel flow training and execution.
Not that this module depends on bihinet, since it uses a BiFlowNode to
encapsulate the BiFlow in the tasks.
"""
import itertools
import mdp
n = mdp.numx
import mdp.parallel as parallel
from bimdp import (
BiFlow, BiFlowException, MessageResultContainer, BiCheckpointFlow,
EXIT_TARGET
)
from bimdp.hinet import BiFlowNode
### Train Task Classes ###
class BiFlowTrainCallable(parallel.FlowTrainCallable):
"""Task implementing a single training phase in a flow for a data block."""
def __call__(self, data):
"""Do the training and return the purged BiFlowNode.
data -- tuple containing x and msg
"""
x, msg = data
while True:
result = self._flownode.train(x, msg)
if (result is None) or isinstance(result, dict):
break
elif (isinstance(result, tuple) and
(result[2] in [1, -1, EXIT_TARGET])):
break
else:
err = ("Target node not found in flow during " +
"training, last result: " + str(result))
raise BiFlowException(err)
self._flownode.bi_reset()
if self._purge_nodes:
parallel._purge_flownode(self._flownode)
return self._flownode
def fork(self):
return self.__class__(self._flownode.fork(),
purge_nodes=self._purge_nodes)
### Execute Task Classes ###
class BiFlowExecuteCallable(parallel.FlowExecuteCallable):
"""Task implementing data execution for a BiFlowNode."""
def __init__(self, flownode, purge_nodes=True):
"""Store everything for the execution.
flownode -- FlowNode for the execution
purge_nodes -- If True nodes not needed for the join will be replaced
with dummy nodes to reduce the footprint.
"""
super(BiFlowExecuteCallable, self).__init__(flownode,
purge_nodes=purge_nodes)
def __call__(self, data):
"""Return the execution result and the BiFlowNode as a tuple.
If use_fork_execute is True for the flownode then it is returned
in the result tuple.
"""
x, msg, target = data
# by using _flow we do not have to reenter (like for train)
result = self._flownode._flow.execute(x, msg, target)
self._flownode.bi_reset()
if self._flownode.use_execute_fork():
if self._purge_nodes:
parallel._purge_flownode(self._flownode)
return (result, self._flownode)
else:
return (result, None)
def fork(self):
return self.__class__(self._flownode.fork(),
purge_nodes=self._purge_nodes)
### ParallelBiFlow Class ###
class ParallelBiFlowException(parallel.ParallelFlowException):
"""Standard exception for problems with ParallelBiFlow."""
class ParallelBiFlow(BiFlow, parallel.ParallelFlow):
"""A parallel provides the tasks for parallel training.
Note that even though a node input x or output y can be None, the data
iterables cannot be None themselves, since they define the iterator length
for the message iterator as well. They can, however, return None for each
iteration step.
"""
def __init__(self, flow, verbose=False, **kwargs):
"""Initialize the internal variables."""
self._train_msg_iterables = None
self._train_msg_iterator = None
self._stop_messages = None
self._exec_msg_iterator = None
self._exec_target_iterator = None
super(ParallelBiFlow, self).__init__(flow, verbose=verbose, **kwargs)
@mdp.with_extension("parallel")
def train(self, data_iterables, msg_iterables=None,
stop_messages=None,
scheduler=None,
train_callable_class=None,
overwrite_result_container=True,
**kwargs):
"""Parallel version of the standard train method.
If a scheduler is provided the training will be done in parallel on the
scheduler.
data_iterables -- A list of iterables, one for each node in the flow.
The iterators returned by the iterables must
return data arrays that are then used for the node training.
See Flow.train for more details.
If a custom train_callable_class is used to preprocess the data
then other data types can be used as well.
msg_iterables - A list of iterables for the messages.
stop_messages -- Sequence of messages for stop_training.
scheduler -- Value can be either None for normal training (default
value) or a Scheduler instance for parallel training with the
scheduler.
If the scheduler value is an iterable or iterator then it is
assumed that it contains a scheduler for each training phase.
After a node has been trained the scheduler is shutdown. Note that
you can e.g. use a generator to create the schedulers just in time.
For nodes which are not trained the scheduler can be None.
train_callable_class -- Class used to create training callables for the
scheduler. By specifying your own class you can implement data
transformations before the data is actually fed into the flow
(e.g. from 8 bit image to 64 bit double precision).
Note that the train_callable_class is only used if a scheduler was
provided. If a scheduler is provided the default class used is
NodeResultContainer.
overwrite_result_container -- If set to True (default value) then
the result container in the scheduler will be overwritten with an
instance of NodeResultContainer, if it is not already an instance
of NodeResultContainer.
"""
if self.is_parallel_training:
raise ParallelBiFlowException("Parallel training is underway.")
if scheduler is None:
if train_callable_class is not None:
err = ("A train_callable_class was specified but no scheduler "
"was given, so the train_callable_class has no effect.")
raise ParallelBiFlowException(err)
super(ParallelBiFlow, self).train(data_iterables, msg_iterables,
stop_messages,
**kwargs)
else:
if train_callable_class is None:
train_callable_class = BiFlowTrainCallable
schedulers = None
# do parallel training
try:
self.setup_parallel_training(
data_iterables=data_iterables,
msg_iterables=msg_iterables,
stop_messages=stop_messages,
train_callable_class=train_callable_class,
**kwargs)
# prepare scheduler
if not isinstance(scheduler, parallel.Scheduler):
# scheduler contains an iterable with the schedulers
# self._i_train_node was set in setup_parallel_training
schedulers = iter(scheduler)
scheduler = schedulers.next()
if self._i_train_node > 0:
# dispose schedulers for pretrained nodes
for _ in range(self._i_train_node):
if scheduler is not None:
scheduler.shutdown()
scheduler = schedulers.next()
elif self._i_train_node is None:
# all nodes are already trained, dispose schedulers
for _ in range(len(self.flow) - 1):
if scheduler is not None:
scheduler.shutdown()
# the last scheduler will be shutdown in finally
scheduler = schedulers.next()
last_trained_node = self._i_train_node
else:
schedulers = None
# check that the scheduler is compatible
if ((scheduler is not None) and
overwrite_result_container and
(not isinstance(scheduler.result_container,
parallel.TrainResultContainer))):
scheduler.result_container = \
parallel.TrainResultContainer()
while self.is_parallel_training:
while self.task_available:
task = self.get_task()
scheduler.add_task(*task)
results = scheduler.get_results()
if results == []:
err = ("Could not get any training tasks or results "
"for the current training phase.")
raise Exception(err)
else:
self.use_results(results)
# check if we have to switch to next scheduler
if ((schedulers is not None) and
(self._i_train_node > last_trained_node)):
# dispose unused schedulers
for _ in range(self._i_train_node - last_trained_node):
if scheduler is not None:
scheduler.shutdown()
scheduler = schedulers.next()
last_trained_node = self._i_train_node
# check that the scheduler is compatible
if ((scheduler is not None) and
overwrite_result_container and
(not isinstance(scheduler.result_container,
parallel.TrainResultContainer))):
scheduler.result_container = \
parallel.TrainResultContainer()
finally:
# reset remaining iterator references, which cannot be pickled
self._train_data_iterator = None
self._train_msg_iterator = None
if (schedulers is not None) and (scheduler is not None):
scheduler.shutdown()
def setup_parallel_training(self, data_iterables, msg_iterables=None,
stop_messages=None,
train_callable_class=BiFlowTrainCallable):
"""Prepare the flow for handing out tasks to do the training.
After calling setup_parallel_training one has to pick up the
tasks with get_task, run them and finally return the results via
use_results. tasks are available as long as task_available is
True. Training may require multiple phases, which are each closed by
calling use_results.
data_iterables -- A list of iterables, one for each node in the flow.
The iterators returned by the iterables must
return data arrays that are then used for the node training.
See Flow.train for more details.
If a custom train_callable_class is used to preprocess the data
then other data types can be used as well.
msg_iterables - A list of iterables for the messages. Can also be
a single message if data_iterables is a single array.
stop_messages -- Sequence of messages for stop_training.
train_callable_class -- Class used to create training callables for the
scheduler. By specifying your own class you can implement data
transformations before the data is actually fed into the flow
(e.g. from 8 bit image to 64 bit double precision).
Note that the train_callable_class is only used if a scheduler was
provided. If a scheduler is provided the default class used is
NodeResultContainer.
"""
self._bi_reset() # normally not required, just for safety
if self.is_parallel_training:
err = "Parallel training is already underway."
raise ParallelBiFlowException(err)
self._train_callable_class = train_callable_class
data_iterables, msg_iterables = self._sanitize_training_iterables(
data_iterables=data_iterables,
msg_iterables=msg_iterables)
self._train_data_iterables = data_iterables
self._train_msg_iterables = msg_iterables
if stop_messages is None:
stop_messages = [None] * len(data_iterables)
self._stop_messages = stop_messages
self._flownode = BiFlowNode(BiFlow(self.flow))
self._i_train_node = 0
self._next_train_phase()
def _next_train_phase(self):
"""Find the next phase or node for parallel training.
When it is found the corresponding internal variables are set.
Nodes which are not derived from ParallelNode are trained locally.
If a fork() fails due to a TrainingPhaseNotParallelException
in a certain train phase, then the training is done locally as well
(but fork() is tested again for the next phase).
"""
# find next node that can be forked, if required do local training
while self._i_train_node < len(self.flow):
current_node = self.flow[self._i_train_node]
if not current_node.is_training():
self._i_train_node += 1
continue
iterable = self._train_data_iterables[self._i_train_node]
msg_iterable = self._train_msg_iterables[self._i_train_node]
iterable, msg_iterable, _ = self._sanitize_iterables(iterable,
msg_iterable)
try:
self._flownode.fork()
# fork successful, prepare parallel training
if self.verbose:
print ("start parallel training phase of " +
"node no. %d in parallel flow" %
(self._i_train_node+1))
self._train_data_iterator = iter(iterable)
self._train_msg_iterator = iter(msg_iterable)
first_task = self._create_train_task()
# make sure that iterator is not empty
if first_task is None:
if current_node.get_current_train_phase() == 1:
err_str = ("The training data iteration for node "
"no. %d could not be repeated for the "
"second training phase, you probably "
"provided an iterator instead of an "
"iterable." % (self._i_train_node+1))
raise mdp.FlowException(err_str)
else:
err_str = ("The training data iterator for node "
"no. %d is empty." % (self._i_train_node+1))
raise mdp.FlowException(err_str)
task_data_chunk = first_task[0]
if task_data_chunk is None:
err = "Training data iterator is empty."
raise ParallelBiFlowException(err)
# Only first task contains the new callable (enable caching).
# A fork is not required here, since the callable is always
# forked in the scheduler.
self._next_task = (task_data_chunk,
self._train_callable_class(self._flownode,
purge_nodes=True))
break
except parallel.NotForkableParallelException, exception:
if self.verbose:
print ("could not fork node no. %d: %s" %
(self._i_train_node + 1, str(exception)))
print ("start nonparallel training phase of " +
"node no. %d in parallel flow" %
(self._i_train_node+1))
self._local_train_phase(iterable, msg_iterable)
if self.verbose:
print ("finished nonparallel training phase of " +
"node no. %d in parallel flow" %
(self._i_train_node+1))
if not self.flow[self._i_train_node].is_training():
self._i_train_node += 1
else:
# training is finished
self._i_train_node = None
def _local_train_phase(self, iterable, msg_iterable):
"""Perform a single training phase locally.
The internal _train_callable_class is used for the training.
"""
task_callable = self._train_callable_class(self._flownode,
purge_nodes=False)
i_task = 0
for (x, msg) in itertools.izip(iterable, msg_iterable):
i_task += 1
# Note: if x contains additional args assume that the
# callable can handle this
task_callable((x, msg))
if self.verbose:
print (" finished nonparallel task no. %d" % i_task)
# perform stop_training with result check
self._stop_training_hook()
result = self._flownode.stop_training(
self._stop_messages[self._i_train_node])
self._post_stop_training_hook()
if (result is not None) and (not isinstance(result, dict)):
if (isinstance(result, tuple) and
(result[2] in [1, -1, EXIT_TARGET])):
pass
else:
err = ("Target node not found in flow during " +
"stop_training phase, last result: " +
str(result))
raise BiFlowException(err)
self._bi_reset()
def _create_train_task(self):
"""Create and return a single training task without callable.
Returns None if data iterator end is reached.
Raises NoTaskException if any other problem arises.
"""
try:
x = self._train_data_iterator.next()
msg = self._train_msg_iterator.next()
return ((x, msg), None)
except StopIteration:
return None
@mdp.with_extension("parallel") # needed for fork in local scheduler
def execute(self, iterable=None, msg_iterable=None, target_iterable=None,
scheduler=None,
execute_callable_class=None,
overwrite_result_container=True):
"""Execute the flow and return (y, msg).
If a scheduler is provided the execution will be done in parallel on
the scheduler.
iterable -- Single array or iterable.
msg_iterable -- Single message or iterable.
target_iterable -- Single target or iterable.
scheduler -- Value can be either None for normal execution (default
value) or a Scheduler instance for parallel execution with the
scheduler.
execute_callable_class -- Class used to create execution callables for
the scheduler. By specifying your own class you can implement data
transformations before the data is actually fed into the flow
(e.g. from 8 bit image to 64 bit double precision).
Note that the execute_callable_class is only used if a scheduler was
provided. If a scheduler is provided the default class used is
NodeResultContainer.
overwrite_result_container -- If set to True (default value) then
the result container in the scheduler will be overwritten with an
instance of OrderedResultContainer, if it is not already an
instance of OrderedResultContainer.
"""
if self.is_parallel_training:
raise ParallelBiFlowException("Parallel training is underway.")
if scheduler is None:
if execute_callable_class is not None:
err = ("A execute_callable_class was specified but no "
"scheduler was given, so the execute_callable_class "
"has no effect.")
raise ParallelBiFlowException(err)
return super(ParallelBiFlow, self).execute(iterable, msg_iterable,
target_iterable)
if execute_callable_class is None:
execute_callable_class = BiFlowExecuteCallable
# check that the scheduler is compatible
if overwrite_result_container:
if not isinstance(scheduler.result_container,
parallel.ExecuteResultContainer):
scheduler.result_container = parallel.ExecuteResultContainer()
# do parallel execution
self._flownode = BiFlowNode(BiFlow(self.flow))
try:
self.setup_parallel_execution(
iterable=iterable,
msg_iterable=msg_iterable,
target_iterable=target_iterable,
execute_callable_class=execute_callable_class)
while self.task_available:
task = self.get_task()
scheduler.add_task(*task)
result = self.use_results(scheduler.get_results())
finally:
# reset remaining iterator references, which cannot be pickled
self._exec_data_iterator = None
self._exec_msg_iterator = None
self._exec_target_iterator = None
return result
def setup_parallel_execution(self, iterable, msg_iterable=None,
target_iterable=None,
execute_callable_class=BiFlowExecuteCallable):
"""Prepare the flow for handing out tasks to do the execution.
Instead of automatically executing the _flow with the iterable, it only
prepares the tasks for the scheduler.
iterable -- Single array or iterable.
msg_iterable -- Single message or iterable.
target_iterable -- Single target or iterable.
execute_callable_class -- Class used to create execution callables for
the scheduler. By specifying your own class you can implement data
transformations before the data is actually fed into the flow
(e.g. from 8 bit image to 64 bit double precision).
Note that the execute_callable_class is only used if a scheduler
was provided. If a scheduler is provided the default class used is
NodeResultContainer.
"""
self._bi_reset() # normally not required, just for safety
if self.is_parallel_training:
raise ParallelBiFlowException("Parallel training is underway.")
self._execute_callable_class = execute_callable_class
iterable, msg_iterable, target_iterable = self._sanitize_iterables(
iterable,
msg_iterable,
target_iterable)
self._exec_data_iterator = iter(iterable)
self._exec_msg_iterator = iter(msg_iterable)
self._exec_target_iterator = iter(target_iterable)
first_task = self._create_execute_task()
if first_task is None:
err = ("The execute data iterable is empty.")
raise mdp.FlowException(err)
task_data_chunk = first_task[0]
if task_data_chunk is None:
err = "Execution data iterable is empty."
raise ParallelBiFlowException(err)
# Only first task contains the new callable (enable caching).
# A fork is not required here, since the callable is always
# forked in the scheduler.
self._next_task = (task_data_chunk,
self._execute_callable_class(self._flownode,
purge_nodes=True))
def _create_execute_task(self):
"""Create and return a single execution task.
Returns None if data iterator end is reached.
Raises NoTaskException if no task is available.
"""
try:
x = self._exec_data_iterator.next()
msg = self._exec_msg_iterator.next()
target = self._exec_target_iterator.next()
return ((x, msg, target), None)
except StopIteration:
return None
def use_results(self, results):
"""Use the result from the scheduler.
During parallel training this will start the next training phase.
For parallel execution this will return the result, like a normal
execute would. In addition it will join any forked nodes.
results -- Iterable containing the results, normally the return value
of scheduler.ResultContainer.get_results().
The individual results can be the return values of the tasks.
"""
if self.is_parallel_training:
for result in results:
self._flownode.join(result)
# perform local stop_training with result check
self._stop_training_hook()
result = self._flownode.stop_training(
self._stop_messages[self._i_train_node])
self._post_stop_training_hook()
if (result is not None):
target = result[2]
# values of +1, -1 and EXIT_TARGET are tolerated
if target not in [1, -1, EXIT_TARGET]:
err = ("Target node not found in flow during " +
"stop_training phase, last result: " +
str(result))
raise BiFlowException(err)
self._flownode.bi_reset()
if self.verbose:
print ("finished parallel training phase of node no. " +
"%d in parallel flow" % (self._i_train_node+1))
if not self.flow[self._i_train_node].is_training():
self._i_train_node += 1
self._next_train_phase()
elif self.is_parallel_executing:
self._exec_data_iterator = None
self._exec_msg_iterator = None
self._exec_target_iterator = None
y_results = []
msg_results = MessageResultContainer()
# use internal flownode to join all biflownodes
self._flownode = BiFlowNode(BiFlow(self.flow))
for result_tuple in results:
result, forked_biflownode = result_tuple
# consolidate results
if isinstance(result, tuple) and (len(result) == 2):
y, msg = result
msg_results.add_message(msg)
else:
y = result
if y is not None:
try:
y_results.append(y)
except:
err = "Some but not all y return values were None."
raise BiFlowException(err)
else:
y_results = None
# join biflownode
if forked_biflownode is not None:
self._flownode.join(forked_biflownode)
# return results
if y_results is not None:
y_results = n.concatenate(y_results)
return (y_results, msg_results.get_message())
else:
err = "It seems that there are no results to retrieve."
raise BiFlowException(err)
class ParallelCheckpointBiFlow(mdp.parallel.ParallelCheckpointFlow,
ParallelBiFlow, BiCheckpointFlow):
"""Parallel version of CheckpointFlow.
Can be used for saving intermediate results.
"""
def train(self, data_iterables, checkpoints, msg_iterables=None,
stop_messages=None,
scheduler=None,
train_callable_class=None,
overwrite_result_container=True,
**kwargs):
"""Train all trainable nodes in the flow.
Same as the train method in ParallelFlow, but with additional support
of checkpoint functions as in CheckpointFlow.
"""
# this call goes via ParallelCheckpointFlow to ParallelBiFlow and then:
# the train call in ParallelBiFlow then goes to BiCheckpointFlow
# the setup_parallel_training goes to ParallelCheckpointBiFlow
kwargs["checkpoints"] = checkpoints
super(ParallelCheckpointBiFlow, self).train(
data_iterables=data_iterables,
scheduler=scheduler,
train_callable_class=train_callable_class,
overwrite_result_container=overwrite_result_container,
msg_iterables=msg_iterables,
**kwargs)
def setup_parallel_training(self, data_iterables, checkpoints,
msg_iterables=None,
train_callable_class=BiFlowTrainCallable,
**kwargs):
"""Checkpoint version of parallel training."""
# this call goes to ParallelCheckpointFlow and then ParallelBiFlow
super(ParallelCheckpointBiFlow, self).setup_parallel_training(
data_iterables=data_iterables,
checkpoints=checkpoints,
train_callable_class=train_callable_class,
msg_iterables=msg_iterables,
**kwargs)
|