This file is indexed.

/usr/share/pyshared/guppy/heapy/UniSet.py is in python-guppy 0.1.9-2ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
#._cv_part guppy.heapy.UniSet

import guppy

class UniSet(object):
    __slots__ = '_hiding_tag_', 'fam',  '_origin_'
    _help_url_ = 'heapy_UniSet.html#heapykinds.UniSet'
    _instahelp_ = ''

    _doc_nodes = """nodes: ImmNodeSet

The actual objects contained in x. These are called nodes because
they are treated with equality based on address, and not on the
generalized equality that is used by ordinary builtin sets or dicts."""


    def __and__(self, other):
	"""
Return the intersection of self and other.
"""
	return self.fam.c_binop('and', self, other)

    __rand__ = __and__

    def __call__(self, *args, **kwds):	return self.fam.c_call(self, args, kwds)

    def __contains__(self, other): 
	"""
Return True if other is a member of self, False otherwise.
"""
	return self.fam.c_contains(self, other)

    def __eq__(self, other):
	"""
Return True if self contains the same elements as other,
False otherwise."""
	return self <= other and self >= other

    def __hash__(self):
	"""
Return an hash based on the kind of the set of self and
the addresses of its elements, if any.
	"""
	return self.fam.c_hash(self)

    def __invert__(self):
	"""
Return the complement of self.
"""
	return self.fam.c_unop('invert', self)

    def __ge__(self, other):
	"""
Return True if self is a superset of (and may be equal to) other,
False otherwise.
"""
	if self is other:
	    return True
	if not isinstance(other, UniSet):
	    other = self.fam.c_uniset(other)
	return self.fam.c_ge(self, other)

    def __gt__(self, other):
	"""
Return True if self is a strict (may not be equal to) superset of other.
False otherwise.
"""
	return self >= other and not self <= other

    def __getattr__(self, other):
	"""
Get family-specific attribute.
"""
	return self.fam.mod.View.enter(lambda:self.fam.c_getattr(self, other))

    def __le__(self, other):
	"""
Return True if self is a subset of (and may be equal to) other,
False otherwise.
"""
	if self is other:
	    return True
	if not isinstance(other, UniSet):
	    other = self.fam.c_uniset(other)
	return self.fam.c_le(self, other)

    def __lshift__(return_spec, argument_spec):
	"""
<<This is about to change, does not work as one may expected.
Nov 19 2005. >>>

Return a 'mapping' set, which may be used for specification and test
purposes. It implements the syntax:

	return_spec << argument_spec

The elements of the set returned are the callable objects that return
values in return_spec, when called with arguments according to
argument_spec. The return_spec may be any kind of sets that can test
for element containment. The argument_spec may be a set or a tuple. If
it is a set, it should be able to generate some examples, to allow the
mapping to be tested.  When argument_spec is a set, the mapping will
have a single argument. Any number of arguments may be specified using
an argument_spec which is a tuple.  The arguments are then specified
with sets, that should be able to generate examples. Special features
of the mapping such as optional arguments may be specified in the same
way as when using the 'mapping' function in the Spec.py module.


"""
	return return_spec.fam.c_lshift(return_spec, argument_spec)

    def __lt__(self, other):
	"""
Return True if self is a strict (may not be equal to) subset of other,
False otherwise.
"""
    	return self <= other and not self >= other
    def __mul__(self, other):
	"""
Return the cartesian product of self and other, which is the set of
pairs where the first element is a member of self and the second
element is a member of other.

NOTE: Unlike what one might expect from the way the cartesian product
may be defined mathematically, the operation as implemented here is
nonassociative, i.e.

     a*b*c == (a*b)*c != a*(b*c)


In the mathematical case, a*b*c would be a set of triples, but here it
becomes a set of pairs with the first element in (a*b) and the second
element in c.

To create sets of triples etc. the cprod() factory function in Spec.py
could be used directly.
"""
	if not isinstance(other, UniSet):
	    other = self.fam.c_uniset(other)
	return self.fam.c_mul(self, other)

    def __ne__(self, other):
	"""
Return True if self does not equal other,
False otherwise. See also: __eq__.
"""
	return not self == other

    def __nonzero__(self):
	"""
Return True if self contains some element, 
False otherwise.
"""
	return self.fam.c_nonzero(self)

    def __or__(self, other):
	"""
Return the union of self and other.
"""
	return self.fam.c_binop('or', self, other)

    __ror__ = __or__

    def __repr__(self):
	"""
Return a string representing self.  This is usually the same string
as from __str__.

"""
	return self.fam.c_repr(self)

    def __str__(self):
	"""
Return a string representing self. The string is usually the same as the .brief
attribute, but a major exception is the IdentitySet class.

"""
	return self.fam.c_str(self)

    def __sub__(self, other):
	"""
Return the assymetrical set difference.  That is, the set of elements
in self, except those that are in others.
"""
	if not isinstance(other, UniSet):
	    other = self.fam.c_uniset(other)
	return self.fam.c_sub(self, other)

    def __rsub__(self, other):
	"""
Return the assymetrical set difference.  That is, the
set of elements in other, except those that are in self.

This is like __sub__ except it handles the case when the left
argument is not a UniSet (but convertible to a UniSet).
"""
	if not isinstance(other, UniSet):
	    other = self.fam.c_uniset(other)
	return other.fam.c_sub(other, self)

    def __xor__(self, other):
	"""
Return the symmetrical set difference.  That is, the set of elements
that are in one of self or other, but not in both.
"""
	if not isinstance(other, UniSet):
	    other = self.fam.c_uniset(other)
	return self.fam.c_xor(self, other)
    __rxor__ = __xor__

    brief = property(lambda self:self.fam.c_get_brief(self),
                     doc="""\
A string representation of self, which is brief relative to the
representation returned by __str__ and __repr__. (In many cases it is
the same - both are then brief - but for IdentitySet objects the brief
representation is typically much shorter than the non-brief one.)"""
                     )

    def _get_help(self):
        return self.fam.mod._root.guppy.doc.help_instance(self)

    #dir = property(lambda self:self.fam.mod._root.guppy.doc.get_dir(self))
    #dir = property(lambda self:self.fam.mod._root.guppy.doc.get_dir(self))
    #man = guppy.man_property
    #dir = guppy.gpdir_property

    #man = property(lambda self:self.fam.mod._root.guppy.doc.get_man(self))
    #man = property(guppy.getman)

    doc = property(lambda self:self.fam.mod._root.guppy.etc.Help.dir(self))

    def get_ckc(self):
	# Get low-level classification information, where available.
	# Returns a tuple (classifier, kind, comparator)
	return self.fam.c_get_ckc(self)

    def _derive_origin_(self, doc):
	"""
Return information about the 'origin' of the set. This was intended to be
used for specification purposes - is experimental, noncomplete, temporary.
"""
	return self.fam.c_derive_origin(self, doc)

    def disjoint(self, other):
	"""
Return True if self and other are disjoint sets, False otherwise. This
is equivalent to calculating

	(self & other) == Nothing

but may be implemented more efficiently in some cases.
"""
	return self.fam.c_disjoint(self, other)

    def get_examples(self, env):
	"""
Return an iterable object or an iterator, which provides someexamples
of the elements of self.  (A minimum of 2 examples should normally be
provided, but it may depend on some test configuration options.)

This is used for automatic test generation from specifications.  The
env argument is according to specification of TestEnv in Spec.py,
"""
	return self.fam.c_get_examples(self, env)

    def get_render(self):
	"""
Return a function that may be used to render the representation of the
elements of self. This is mainly intended for internal representation
support.

The function returned depends on the kind of elements self
contains. The rendering function is choosen so that it will be
appropriate, and can be used safely, for all objects of that kind.
For the most general kind of objects, the rendering function will only
return an address representation. For more specialized kinds, the
function may provide more information, and can be equivalent to the
builtin repr() when the kind is narrow enough that it would work for
all elements of that kind without exception.

"""
	return self.fam.c_get_render(self)

    def test_contains(self, element, env):
	"""
Test if self contains the element object.  This is used mainly for
internal use for automatic (experimental) testing of specifications.

The env argument is according to specification of TestEnv in Spec.py.
It provides support for things that depends on the specific test
situation, such as a test reporting protocol. If test_contains did
find the element to be contained in self, the method will return
(usually True). But if the element was not contained in self, the
method should call env.failed(message), and return whatever may
be returned; though typically env.failed() would raise an exception.
	 """
	return self.fam.c_test_contains(self, element, env)

    biper = property(lambda self:self.fam.c_get_biper(self),
                     doc = """\
A bipartitioning equivalence relation based on x. This may be used to
partition or classify sets into two equivalence classes:

x.biper(0) == x
    The set of elements that are in x.
x.biper(1) == ~x
    The set of elements that are not in x.
	""")

    dictof = property(lambda self:self.fam.c_get_dictof(self),
                      doc = """dictof: UniSet

If x represents a kind of objects with a builtin __dict__ attribute,
x.dictof is the kind representing the set of all those dict
objects. In effect, x.dictof maps lambda e:getattr(e, '__dict__') for
all objects e in x. But it is symbolically evaluated to generate a new
symbolic set (a Kind).""")

class Kind(UniSet):
    __slots__ = 'arg',
    def __init__(self, fam, arg):
	self.fam = fam
	self._hiding_tag_ = fam._hiding_tag_
	self.arg = arg
	self._origin_ = None

    def alt(self, cmp):
	return self.fam.c_alt(self, cmp)

class IdentitySet(UniSet):
    __slots__ = '_er', '_partition'
    _help_url_ = 'heapy_UniSet.html#heapykinds.IdentitySet'

    def __getitem__(self, idx):	return self.fam.c_getitem(self, idx)
    def __len__(self):		return self.fam.c_len(self)
    def __iter__(self):		return self.fam.c_iter(self)

    def __str__(self):
	"""
Return a string representating self. This differs from the .brief
attribute in that it is a tabular representation. 

...

"""

	return self.fam.c_str(self)


    def get_rp(self, depth=None, er=None, imdom=0, bf=0, src=None,
               stopkind=None, nocyc=False, ref=None):
	"""
x.get_rp(depth=None, er=None, imdom=0, bf=0, src=None, stopkind=None,
	nocyc=False, ref=None)

Return an object representing the pattern of references to the objects in X.
The returned object is of kind ReferencePattern.

Arguments
	depth	The depth to which the pattern will be generated. The
		default is taken from depth of this module.
	er	The equivalence relation to partition the referrers.
        	The default is Clodo.

	imdom   If true, the immediate dominators will be used instead
		of the referrers. This will take longer time to
		calculate, but may be useful to reduce the complexity
		of the reference pattern.

	bf	If true, the pattern will be printed in breadth-first
		order instead of depth-first. (Experimental.)
	src	If specified, an alternative reference source instead
		of the default root.
        stopkind
                The referrers of objects of kind stopkind will not be
		followed.
	nocyc	When True, certain cycles will not be followed.
        ref

See also
        rp (a shorthand for common cases)

"""
	return self.fam.RefPat.rp(self, depth, er, imdom, bf, src, stopkind,
                                  nocyc, ref)


    def get_shpaths(self, src=None, avoid_nodes=None, avoid_edges=()):
	"""x.get_shpaths(draw:[src, avoid_nodes, avoid_edges]) -> Paths

Return an object containing the shortest paths to objects in x.
The optional arguments are:

    src:IdentitySet		An alternative source set of objects
    avoid_nodes:IdentitySet	Nodes to avoid           
    avoid_edges:NodeGraph       Edges to avoid                  

"""
	return self.fam.Path.shpaths(self, src, avoid_nodes, avoid_edges)

    # 'Normal' methods

    def by(self, er):

        """ x.by(er) -> A copy of x, but using er for equiv. relation. """
        return self.fam.get_by(self, er)

    def diff(self, other):
	return self.stat - other.by(self.er).stat

    def dump(self, *args, **kwds):
        """ Dump statistical data to a file
          Shorthand for .stat.dump """
        self.stat.dump(*args, **kwds)

    byclass = property(lambda self:self.by('Class'), doc="""\
A copy of self, but with 'Class' as the equivalence relation.""")

    byclodo = property(lambda self:self.by('Clodo'), doc="""\
A copy of self, but with 'Clodo' as the equivalence relation.""")

    byidset = property(lambda self:self.by('Idset'), doc="""\
A copy of self, but with 'Idset' as the equivalence relation.

Note
    This is mainly for special purpose internal use. The Id
equivalence relation is more efficient when partitioning large
sets.""")

    byid = property(lambda self:self.by('Id'), doc="""\
A copy of self, but with 'Id' as the equivalence relation.""")

    bymodule = property(lambda self:self.by('Module'), doc="""\
A copy of self, but with 'Module' as the equivalence relation.""")

    byrcs = property(lambda self: self.by('Rcs'), doc="""\
A copy of self, but with 'Rcs' as the equivalence relation.""")

    bysize = property(lambda self: self.by('Size'), doc="""\
A copy of self, but with 'Size' as the equivalence relation.""")

    bytype = property(lambda self: self.by('Type'), doc="""\
A copy of self, but with 'Type' as the equivalence relation.""")

    byunity = property(lambda self: self.by('Unity'), doc="""\
A copy of self, but with 'Unity' as the equivalence relation.""")

    byvia = property(lambda self: self.by('Via'), doc="""
A copy of self, but with 'Via' as the equivalence relation.""")

    er = property(lambda self: self.fam.get_er(self), doc="""\
The equivalence relation used for partitioning when representing /
printing this set.""")

    count = property(lambda self: len(self.nodes), doc="""\
The number of individual objects in the set.""")

    dominos = property(lambda self: self.fam.View.dominos(self), doc="""\
The set 'dominated' by a set of objects. This is the objects that will
become deallocated, directly or indirectly, when the objects in the
set are deallocated.

See also: domisize.""")

    domisize = property(lambda self: self.fam.View.domisize(self), doc="""\
The dominated size of a set of objects. This is the total size of
memory that will become deallocated, directly or indirectly, when the
objects in the set are deallocated.

See also: dominos, size.
""")

    imdom = property(lambda self: self.fam.View.imdom(self), doc="""\
The immediate dominators of a set of objects. The immediate dominators
is a subset of the referrers. It includes only those referrers that
are reachable directly, avoiding any other referrer.""")

    indisize = size = property(lambda self:self.fam.View.indisize(self),doc="""\
The total 'individual' size of the set of objects.  The individual
size of an object is the size of memory that is allocated directly in
the object, not including any externally visible subobjects. See also:
domisize.""")

    kind = property(lambda self: self.er[self], doc="""\
The kind of objects in the set. The kind is the union of the
element-wise classifications as determined by the equivalence relation
in use by the set.""")

    maprox = property(lambda self: MappingProxy(self), doc="""\
An object that can be used to map operations to the objects in self,
forming a new set of the result. The returned object is an instance of
MappingProxy.

This works currently as follows:

o Getting an attribute of the MappingProxy object will get the
  attribute from each of the objects in the set and form a set of the
  results. If there was an exception when getting some attribute, it
  would be ignored.

o Indexing the MappingProxy object will index into each of the objects
  in the set and return a set of the results. Exceptions will be
  ignored.

Example:

>>> hp.iso({'a':'b'}, {'a':1}).maprox['a'].byid
Set of 2  objects. Total size = 40 bytes.
 Index     Size   %   Cumulative  %   Kind: Name/Value/Address
     0       28  70.0        28  70.0 str: 'b'
     1       12  30.0        40 100.0 int: 1
>>> 

<This is an experimental feature, so the name is intentionally made
mystically-sounding, and is a shorthand for 'mapping proxy'.>""")

    more = property(lambda self:self.fam.get_more(self), doc="""\
An object that can be used to show more lines of the string
representation of self. The object returned, a MorePrinter instance,
has a string representation that continues after the end of the
representation of self.""")

    owners = property(lambda self: self.fam.get_owners(self), doc="""\
The set of objects that 'own' objects in self. The owner is defined
for an object of type dict, as the object (if any) that refers to the
object via its special __dict__ attribute.""")

    partition = property(lambda self: self.fam.get_partition(self), doc="""\
A partition of the set of objects in self. The set is partitioned into
subsets by equal kind, as given by a equivalence relation.  Unless
otherwise specified, the equivalence relation used is 'byclodo', which
means it classifies 'by type or class or dict owner'. Different
equivalence relations are specified for sets created by the 'by_...'
attributes of any IdentitySet object.

The value is an instance of guppy.heapy.Part.Partition.""")

    parts = property(lambda self: self.fam.get_parts(self), doc="""\
An iterable object, that can be used to iterate over the 'parts' of
self. The iteration order is determined by the sorting order the set
has, in the table printed when partitioned.""")

    pathsin = property(lambda self: self.get_shpaths(self.referrers), doc="""\
The paths from the direct referrers of the objects in self.""")

    pathsout = property(lambda self:self.referents.get_shpaths(self), doc="""\
The paths to the referents of the objects in self.""")

    referents = property(lambda self: self.fam.View.referents(self), doc="""\
The set of objects that are directly referred to by any of the objects
in self.""")

    referrers = property(lambda self: self.fam.View.referrers(self), doc="""\
The set of objects that directly refer to any of the objects in self.""")

    rp = property(get_rp, doc="""\
rp: ReferencePattern

An object representing the pattern of references to the objects in X.

See also
    get_rp""")

    shpaths = property(get_shpaths, doc="""x.shpaths: Paths

An object containing the shortest paths to objects in x.

Synonym
    sp
See also
    get_shpaths""")

    shpaths = property(get_shpaths, doc="""x.sp: Paths

An object containing the shortest paths to objects in x.

Synonym
    sp
See also
    get_shpaths""")

    sp = property(get_shpaths, doc="""x.sp: Paths

An object containing the shortest paths to objects in x.

Synonym
    shpaths
See also
    get_shpaths""")



    stat = property(lambda self: self.partition.get_stat(), doc="""\
x.stat: Stat

An object summarizing the statistics of the partitioning of x. This is
useful when only the statistics is required, not the objects
themselves. The statistics can be dumped to a file, unlike the set of
objects itself.""")

    theone = property(lambda self: self.fam.get_theone(self), doc="""\
theone: Anything

The one object in a singleton set. In case the set does not contain
exactly one object, the exception ValueError will be raised.
""")
			 
class IdentitySetMulti(IdentitySet):
    __slots__ = 'nodes',

    def __init__(self, fam, nodes):
	self.fam = fam
	self._hiding_tag_ = fam._hiding_tag_
	self.nodes = nodes
	self._origin_ = None

class IdentitySetSingleton(IdentitySet):
    __slots__ = '_node',
    _help_url_ = 'heapy_UniSet.html#heapykinds.IdentitySetSingleton'

    def __init__(self, fam, node):
	self.fam = fam
	self._hiding_tag_ = fam._hiding_tag_
	self._node = node
	self._origin_ = None

    # RefPat (eg) depends on this being usable as a hashable key.
    nodes = property(lambda self: self.fam.immnodeset((self._node,)), doc="""\
x.nodes: ImmNodeSet

The actual objects contained in x. These are called nodes because they
are treated with equality based on address, and not on the generalized
equality that is used by ordinary builtin sets or dicts.""")

    def _get_theone(self):
	return self._node

    theone = property(_get_theone)


class EquivalenceRelation(UniSet):
    """\
An equivalence relation is a binary relation between two elements of a
set which groups them together as being "equivalent" in some way.

An equivalence relation is reflexive, symmetric, and transitive. In
other words, the following must hold for "~" to be an equivalence
relation on X:

    * Reflexivity: a ~ a
    * Symmetry: if a ~ b then b ~ a
    * Transitivity: if a ~ b and b ~ c then a ~ c.

An equivalence relation partitions a set into several disjoint
subsets, called equivalence classes. All the elements in a given
equivalence class are equivalent among themselves, and no element is
equivalent with any element from a different class.
"""

    __slots__ = 'classifier', 'erargs'
    _help_url_ = 'heapy_UniSet.html#heapykinds.EquivalenceRelation'

    def __init__(self, fam, classifier, erargs=()):
	self.fam = fam
	self._hiding_tag_ = fam._hiding_tag_
	self.classifier = classifier
	self.erargs = erargs
	self._origin_ = None
    
    def __getitem__(self, idx):
	return self.fam.c_getitem(self, idx)

    def _get_dictof(self):
	return self.fam.Classifiers.mker_dictof(self)
    dictof = property(_get_dictof)

    def _get_refdby(self):
	return self.fam.Classifiers.mker_refdby(self)
    refdby = property(_get_refdby)

    def sokind(self, *args, **kwds):
	return self.classifier.get_sokind(self, *args, **kwds)

class MappingProxy(object):
    __slots__ = '_set_',
    def __init__(self, set):
	self._set_ = set
	
    def __getattribute__(self, name):
	if name == '_set_':
	    return object.__getattribute__(self, name)
	return self._set_.fam.maprox_getattr(self._set_, name)

    def __getitem__(self, name):
	return self._set_.fam.maprox_getitem(self._set_, name)


class Family:
    supercl = None

    def __init__(self, mod):
	self.mod = mod
	self.Doc = mod._parent.Doc
	self._hiding_tag_ = mod._hiding_tag_
	self.types = mod.types
	self.disjoints = mod.immnodeset()
	self.export_dict = self.mod.export_dict
	self.supers = mod.immnodeset([self])
	self.Set = Kind

    def __call__(self, arg):
	return self.Set(self, arg)
	
    def _derive_origin_(self, origin):
	return self.Doc.add_origin(self, origin)

    def specotup(self, tup):
	r = self.Set(self, tup)
	r = self.Doc.add_origin(r, self.Doc.callfunc(self, *tup))
	return r

    def specoarg(self, arg):
	r = self.Set(self, arg)
	r = self.Doc.add_origin(r, self.Doc.callfunc(self, arg))
	return r

    def specoargtup(self, arg, tup):
	r = self.Set(self, arg)
	r = self.Doc.add_origin(r, self.Doc.callfunc(self, *tup))
	return r


    def add_export(self, name, value):
	if self.export_dict is self.mod.export_dict:
	    self.export_dict = self.mod.export_dict.copy()
	if name in self.export_dict and self.export_dict[name] is not value:
	    raise ValueError, 'Duplicate: %s'%name
	self.export_dict[name] = value

    def c_alt(self, a, cmp):
	raise ValueError, 'No alternative set for family %s.'%self
	

    def c_binop(self, op, a, b):
	if not isinstance(b, UniSet):
	    b = self.c_uniset(b)
	r = getattr(self, 'c_'+op)(a, b)
	# r = self.Doc.add_origin(r, self.Doc.binop(op, a.doc, b.doc))
	return r

    def c_unop(self, op, a):
	r = getattr(self, 'c_'+op)(a)
	# r = self.Doc.add_origin(r, self.Doc.unop(op, a.doc))
	return r

    def c_derive_origin(self, a, b):
	return self.Doc.add_origin(a, b)

    def c_call(self, a, args, kwds):
	raise ValueError, 'Not callable set'

    def c_contains(self, a, b):
	mod = self.mod
	return (a & mod.iso(b)) is not mod.Nothing

    def c_get_biper(self, a):
	return self.mod.Classifiers.biper(a)

    def c_get_dictof(self, a):
	return self.mod.Classifiers.dictof(a)

    def c_disjoint(self, a, b):
	# Determine if a, b are disjoint
	return (a & b) is self.mod.Nothing

    def c_factordisjoint(self, a, b):
	# Given a and b factors, and not a <= b and not b <= a,
	# determine if they are disjoint

	return getattr(self, '_factordisjoint_%s'%(b.fam.opname,)) (a, b)

    def c_get_brief_alt(self, a, alt):
	return '[%s %s]'%(alt, self.c_get_brief(a))

    def c_uniset(self, X):
	return self.mod.uniset_from_setcastable(X)

    def c_get_examples(self, a, env):
	return []

    def c_getattr(self, a, b, args=(), kwds={}):
	d = self.export_dict
	if b in d:
	    return d[b](a, *args, **kwds)
	return self.c_getattr2(a, b)

    def c_getattr2(self, a, b):
	raise AttributeError, b

    def c_get_render(self, a):
	return self.mod.summary_str.str_address

    def c_get_str_for(self, a, b):
	# A modification of str, for some cases,
	# when the set a is used as a determination of an idset b
	# Normally the same as brief, but.. 'dict of' will be different for eg module
	return a.brief

    def c_get_idpart_header(self, a):
	render = a.get_render()
	h = getattr(render, 'im_func', render)
	h = getattr(h, '_idpart_header', None)
	if not h:
	    h = 'Value'
	return h

    def c_get_idpart_label(self, a):
	return '<%s>'%a

    def c_get_idpart_render(self, a):
	return self.c_get_render(a)

    def c_get_idpart_sortrender(self, a):
	render = self.c_get_idpart_render(a)
	if render is repr:
	    return 'IDENTITY'
	h = getattr(render, 'im_func', render)
	render = getattr(h, '_idpart_sortrender', render)
	return render

    def c_hash(self, a):
	return hash(a.arg)

    def c_iter(self, a):
	raise TypeError, 'iteration over non-sequence'

    def c_len(self, a):
	raise TypeError, 'len() of unsized object'

    def c_nonzero(self, a):
	return True

    def c_mul(self, a, b):
	return self.mod._parent.Spec.cprod(a, b)

    def c_lshift(self, a, b):
	return self.Doc.add_origin(self.c_map(a, b), self.Doc.binop('lshift', a, b))

    def c_map(self, a, b):
	if isinstance(b, list):
	    b = tuple(b)
	if not isinstance(b, tuple):
	    b = b,
	t = b + ('->', a)
	return self.mod._parent.Spec.mapping(*t)

    def c_repr(self, a):
	return self.c_str(a)

    def c_str(self, a):
	return self.c_get_brief(a)

    def c_sub(self, a, b):
	return a & ~b

    def c_test_contains(self, a, b, env):
	if not self.c_contains(a, b):
	    return env.failed('%s: %s does not contain %s'%(self.__class__, env.name(a), env.name(b)))
	return True

    def c_xor(self, a, b):
	return (a - b) | (b - a)

    def _or_OR(self, a, b):
	return b.fam._or_TERM(b, a)

    def _rand_ATOM(self, a, b):
	return self._and_ATOM(a, b)

class AtomFamily(Family):
    isatom = True
    isfactor = True
    opname = 'ATOM'

    def __init__(self, mod):
	Family.__init__(self, mod)
	self.disjoints |= [self]

    def c_and(self, a, b):
	return b.fam._and_ATOM(b, a)

    def _and_ATOM(self, a, b):
	return self.mod.fam_And(a, b)

    def _and_AND(self, a, b):
	return b.fam._and_ATOM(b, a)
    
    def _and_FACTOR(self, a, b):
	return self.mod.fam_And(a, b)

    def _and_INVERT(self, a, b):
	return b.fam._and_ATOM(b, a)

    def _factordisjoint_ATOM(self, a, b):
	return (a.fam.disjoints & b.fam.supers or
		b.fam.disjoints & a.fam.supers)

    def _factordisjoint_INVERT(self, a, b):
	return b.fam._factordisjoint_ATOM(b, a)

    def c_le(self, a, b):
	return b.fam._ge_ATOM(b, a)

    _le_AND = _le_INVERT = _le_AND = c_le

    def _le_ATOM(self, a, b):
	# b is known to not be Nothing since its c_ge doesn't call back
	return self.supercl is not None and self.supercl <= b

    def c_ge(self, a, b):
	return b.fam._le_ATOM(b, a)

    _ge_INVERT = _ge_AND = c_ge

    def _ge_ATOM(self, a, b):
	# b is known to not be Nothing since its c_le doesn't call back
	return b.fam.supercl is not None and b.fam.supercl <= a

    def c_or(self, a, b):
	return b.fam._or_ATOM(b, a)

    def _or_ATOM(self, a, b):
	return self.mod.fam_Or(a, b)

    _or_AND = _or_INVERT = c_or

    def c_invert(self, a):
	return self.mod.fam_Invert(a)

    def defrefining(self, arg):
	self.supercl = arg
	self.supers |= arg.fam.supers
	
    def defdisjoint(self, *args):
	# Define disjointness of sets under the condition that
	# neither of them is a subset of the other (determined in some other way.)
	# I.E., define that there is no partial overlap.
	# Declare that all sets of my (self) family are disjoint under this condition
	# from all sets of each family in args.

	self.disjoints |= args
	sc = self.supercl
	if sc is not None:
	    self.disjoints |= sc.fam.disjoints

    def defrefidis(self, arg):
	self.defrefining(arg)
	self.defdisjoint(arg.fam)

    def fam_union(self):
	return self.supercl


class ArgAtomFamily(AtomFamily):
    def _and_ID(self, a, b):
	cla, k, cmp = self.c_get_ckc(a)
	return cla.select_ids(b, k, cmp)
	
    def _ge_ATOM(self, a, b):
	# b is known to not be Nothing since its c_le doesn't call back
	if self is b.fam:
	    return a.arg == b.arg
	return b.fam.supercl is not None and b.fam.supercl <= a

    def _le_ATOM(self, a, b):
	# b is known to not be Nothing since its c_ge doesn't call back
	if self is b.fam:
	    return a.arg == b.arg
	return self.supercl is not None and self.supercl <= b

    def c_get_ckc(self, a):
	return self.classifier, a.arg, '=='


class AndFamily(Family):
    opname = 'AND'
    isatom = False
    isfactor = False

    def __call__(self, a, b):
	if a <= b:
	    return a
	if b <= a:
	    return b
	if a.fam.c_factordisjoint(a, b):
	    return self.mod.Nothing
	return self._cons((a, b))

    def _cons(self, arg):
	# We allow explicit non-normalized constructions, as an optimization
	# for a in arg:
	#    assert a.fam.isatom or isinstance(a.fam, InvertFamily)
	if len(arg) > 1:
	    return self.Set(self, tuple(arg))
	elif len(arg) == 1:
	    return arg[0]
	else:
	    return self.mod.Nothing

    def c_get_examples(self, a, env):
	ex = []
	for ai in a.arg:
	    try:
		e = env.get_examples(ai)
	    except CoverageError:
		pass
	    else:
		for ei in list(e):
		    for aj in a.arg:
			if aj is not ai:
			    if not env.contains(aj, ei):
				break
		    else:
			ex.append(ei)
	return ex


    def c_and(self, a, b):
	return b.fam._and_AND(b, a)

    def _and_AND(self, a, b):
	for b in b.arg:
	    a &= b
	return a

    def _and_FACTOR(self, a, b):
	# a0 & a1 & ... & b
	xs = []
	for ai in a.arg:
	    if ai <= b:
		return a
	    elif b <= ai:
		pass
	    elif ai.fam.c_factordisjoint(ai, b):
		return self.mod.Nothing
	    else:
		xs.append(ai)
	xs.append(b)
	return self._cons(xs)

    _and_ATOM = _and_INVERT = _and_FACTOR

    def _and_ID(self, a, b):
	b = a.arg[0] & b
	for a in a.arg[1:]:
	    if b is self.mod.Nothing:
		break
	    b = a & b
	return b


    def c_le(self, a, b):
	return b.fam._ge_AND(b, a)

    def _le_TERM(self, a, b):
	b = a & b
	if b.fam is not self or len(b.arg) != len(a.arg):
	    return False
	for x in a.arg:
	    for y in b.arg:
		if x <= y:
		    break
	    else:
		return False
	return True
	
    _le_ATOM = _le_INVERT = _le_AND = _le_TERM

    def c_ge(self, a, b):
	return b.fam._le_AND(b, a)

    def _ge_TERM(self, a, b):
	for a in a.arg:
	    if not a >= b:
		return False
	return True

    _ge_ATOM = _ge_INVERT = _ge_AND = _ge_TERM

    def c_or(self, a, b):
	return b.fam._or_AND(b, a)

    def _or_AND(self, a, b):
	# a0 & a1 ... | b0 & b1 ...
	# = 
	Omega = ~self.mod.Nothing
	for i, ai in enumerate(a.arg):
	    for j, bj in enumerate(b.arg):
		if ai | bj == Omega:
		    aa = self._cons(a.arg[:i] + a.arg[i+1:])
		    bb = self._cons(b.arg[:j] + b.arg[j+1:])
		    if aa == bb:
			return aa
	return self.mod.fam_Or(a, b)

    def _or_TERM(self, a, b):
	# a0 & a1 ... | b
	if a <= b:
	    return b
	if b <= a:
	    return a
	
	xs = []
	for ai in a.arg:
	    aib = ai | b
	    if aib.fam.isfactor:
		xs.append(aib)
	    else:
		break
	else:
	    r = ~self.mod.Nothing
	    for x in xs:
		r &= x
	    return r
	return self.mod.fam_Or(a, b)
	
    _or_ATOM = _or_INVERT = _or_TERM
	
    def c_invert(self, a):
	# ~(a0 & a1 ...) = ~a0 | ~a1 ...
	r = self.mod.Nothing
	for ai in a.arg:
	    r |= ~ai
	return r

    def c_contains(self, a, b):
	for x in a.arg:
	    if b not in x:
		return False
	return True

    def c_test_contains(self, a, b, env):
	for x in a.arg:
	    if not env.test_contains(x, b, 'and'):
		return env.failed('Failed')
	return True

    def c_disjoint3(self, a, b):
	return (a & b) is self.mod.Nothing

    def c_get_render(self, c):
	for kind in c.arg:
	    r = kind.get_render()
	    if r:
		return r
	def r(o):
	    return hex(id(o))
	return r

    def c_get_brief(self, c):
	names = [kind.brief for kind in c.arg]
	# names.sort() ?? I think now I want them in given order.
	return '(%s)'%' & '.join(names) + ')'

    def c_get_ckc(self, a):
	return (
	    self.mod.Classifiers.mker_and([x.biper for x in a.arg]).classifier,
	    (0,)*len(a.arg),
	    '=='
	    )

    def c_repr(self, a):
	reprs = [repr(k) for k in a.arg]
	return '(%s)'%' & '.join(reprs)

class OrFamily(Family):
    opname = 'OR'
    isatom = False
    isfactor = False
    def __call__(self, a, b):
	if b <= a:
	    return a
	if a <= b:
	    return b
	return self._cons((a, b))

    def _cons(self, arg):
	# Must only be called with maximalized args
	for a in arg:
	    assert a.fam.isfactor or isinstance(a.fam, AndFamily)
	if len(arg) > 1:
	    return Family.__call__(self, tuple(arg))
	elif len(arg) == 1:
	    return arg[0]
	else:
	    return self.mod.Nothing

    def c_contains(self, a, b):
	for x in a.arg:
	    if b in x:
		return True
	return False

    def c_get_ckc(self, a):
	return self.mod.Use.findex(*a.arg).classifier, len(a.arg), '<'

    def c_get_examples(self, a, env):
	exa = [iter(env.get_examples(x)) for x in a.arg]
	while 1:
	    n = 0
	    for i, e in enumerate(exa):
		if e is not None:
		    try:
			yield e.next()
		    except StopIteration:
			exa[i] = None
		    else:
			n += 1
	    if not n:
		break

    def c_test_contains(self, a, b, env):
	return env.forsome(a.arg, lambda x:env.test_contains(x, b, 'Some x'), 'or')

    def c_and(self, a, b):
	if self is b.fam:
	    return self._and_OR(a, b)
	else:
	    return self._and_TERM(a, b)
	
    def _and_TERM(self, a, b):
	# (a0 | a1 ..) & b = a0 & b | a1 & b | ...
	r = self.mod.Nothing
	for a in a.arg:
	    r |= a & b
	return r

    _and_ATOM = _and_INVERT = _and_AND = _and_TERM


    def _and_OR(self, a, b):
	# (a0 | a1 ..) & (b0 | b1 ..) = a0 & b0 | a0 & b1 ... a1 & b0 | a1 & b1 ...
	r = self.mod.Nothing
	for a in a.arg:
	    for bi in b.arg:
		r |= a & bi
	return r

    def _and_ID(self, a, b):
	ai = a.arg[0]
	r = ai.fam._and_ID(ai, b)
	for ai in a.arg[1:]:
	    r |= ai.fam._and_ID(ai, b)
	return r

    def _ge_TERM(self, a, b):
	#pdb.set_trace()
	a = a & b
	if a.fam is self:
	    if b.fam is not a.fam or len(b.arg) != len(a.arg):
		return False
	    assert 0
	else:
	    return b <= a

    _ge_ATOM = _ge_INVERT = _ge_AND = _ge_TERM

    def c_ge(self, a, b):
	if b.fam is self:
	    return self.c_le(b, a)
	else:
	    return self._ge_TERM(a, b)

    def c_le(self, a, b):
	for x in a.arg:
	    if not x <= b:
		return False
	return True

    _le_ATOM = _le_INVERT = _le_AND = c_le

    def c_or(self, a, b):
	return b.fam._or_OR(b, a)
	
    def _or_TERM(self, a, b):
	# a0 | a1 ... | b
	xs = []
	lt = False
	for a in a.arg:
	    if not b >= a:
		xs.append(a)
		if b <= a:
		    lt = True
	if not lt:
	    xs.append(b)
	return self._cons(xs)

    _or_ATOM = _or_INVERT = _or_AND = _or_TERM

    def _or_OR(self, a, b):
	# (a0 | a1 ...) | (b0 | b1 ...)
	xs = maximals(a.arg + b.arg)
	return self._cons(xs)

    def c_invert(self, a):
	# ~(a0 | a1 ...) = ~a0 & ~a1 ...
	r = ~a.arg[0]
	for ai in a.arg[1:]:
	    r &= ~ai
	return r

    def c_get_render(self, c):
	renders = self.mod.mutnodeset([kind.get_render() for kind in c.arg])
	if len(renders) == 1:
	    return list(renders)[0]
	else:
	    def r(o):
		return hex(id(o))
	    r._idpart_header = 'Address'
	    r._idpart_sortrender = lambda x:id(x)
	    return r

    def c_get_brief(self, c):
	names = [kind.brief for kind in c.arg]
	names.sort()
	return '(' + ' | '.join(names) + ')'

    def c_get_idpart_header(self, a):
	return 'Brief'

    def c_get_idpart_label(self, a):
	return '<mixed>'

    def c_get_idpart_render(self, a):
	er = self.mod.Use.Clodo
	cla = er.classifier
	cli = cla.cli

	brmemo = {}

	def render(x):
	    k = cli.classify(x)

	    br = brmemo.get(k)
	    if br is None:
		kind = cla.get_kind(k)
		b = cla.get_kind(k).brief
		r = kind.get_render()
		br = (b, r)
		brmemo[k] = br
	    b, r = br

	    return '%s: %s'%(b, r(x))
	
	return render

    def c_get_idpart_sortrender(self, a):
	er = self.mod.Use.Clodo
	cla = er.classifier
	cli = cla.cli

	brmemo = {}

	def render(x):
	    k = cli.classify(x)
	    br = brmemo.get(k)
	    if br is None:
		kind = cla.get_kind(k)
		b = cla.get_kind(k).brief
		r = kind.fam.c_get_idpart_sortrender(kind)
		br = (b, r)
		brmemo[k] = br
	    else:
		b, r = br
	    if r != 'IDENTITY':
		x = r(x)
	    return (b, x)
	return render

    def c_repr(self, a):
	reprs = [repr(k) for k in a.arg]
	reprs.sort()
	return '(%s)'%' | '.join(reprs)


class InvertFamily(Family):
    opname = 'INVERT'
    isatom = False
    isfactor = True
    def __call__(self, a):
	assert a.fam.isatom
	if a is self.mod.Nothing:
	    return self.mod.NotNothing
	else:
	    return Family.__call__(self, a)

    def c_test_contains(self, a, b, env):
	return env.test_contains_not(a.arg, b, 'InvertFamily')

    def c_contains(self, a, b):
	return not b in a.arg

    def c_and(self, a, b):
	return b.fam._and_INVERT(b, a)

    _and_AND = c_and

    def _and_FACTOR(self, a, b):
	# ~a.arg & ~b.arg
	# ~a.arg & b
	# Is normal form?
	x = a.arg & b
	if x.fam.isatom:
	    a = self(x)
	return self.mod.fam_And(a, b)

    _and_ATOM = _and_INVERT = _and_FACTOR

    def _and_ID(self, a, b):
	return b - (b & a.arg)

    def _factordisjoint_ATOM(self, a, b):
	# ~ a.arg <disjoint> b
	return b <= a.arg

    def _factordisjoint_INVERT(self, a, b):
	# ~ a.arg <disjoint> ~b.arg
	return False

    def c_le(self, a, b):
	return b.fam._ge_INVERT(b, a)

    _le_AND = c_le

    def _le_ATOM(self, a, b):
	# ~a.arg <= b
	return False 

    def _le_INVERT(self, a, b):
	# ~a.arg <= ~b.arg
	return b.arg <= a.arg

    def c_ge(self, a, b):
	# ~a.arg >= b
	return a.arg.disjoint(b)
	
    _ge_ATOM = _ge_INVERT = _ge_AND = c_ge

    def c_or(self, a, b):
	return b.fam._or_INVERT(b, a)

    _or_AND = c_or

    def _or_FACTOR(self, a, b):
	# ~a.arg | b
	if a.arg <= b:
	    return ~self.mod.Nothing
	x = a.arg & b
	if x is self.mod.Nothing:
	    return a
	return self.mod.fam_Or(a, b)

    _or_ATOM = _or_INVERT = _or_FACTOR

    def c_invert(self, a):
	# ~(~a.arg) = a.arg
	return a.arg

    def c_get_render(self, a):
	return a.arg.get_render()

    def c_get_brief(self, a):
	n = a.arg.brief
	if (not (n.startswith('(') or n.startswith('<')) and
	    ' ' in n):
	    n = '(%s)'%n
	return '~%s'%n

    def c_get_ckc(self, a):
	# This uses only existing machinery for C-level classification.
	# The alternatives are discussed in Notes 21 Sep 2005.
	
	return (
	    a.arg.biper.classifier,
	    0,
	    '!='
	    )

    def c_repr(self, a):
	return '~%s'%repr(a.arg)

class FamilyFamily(AtomFamily):
    def __init__(self, mod):
	AtomFamily.__init__(self, mod)
	self.add_export('union', lambda x: x.arg.fam_union())

    def c_contains(self, a, b):
	return isinstance(b, UniSet) and b.fam is a.arg

    def c_get_brief(self, c):
	return '<Family: %s>'%c.arg.__class__

class IdentitySetFamily(AtomFamily):
    def __init__(self, mod):
	AtomFamily.__init__(self, mod)
	self.defrefining(mod.Anything)
	# I think this is wrong
	# It's not used?
	#
	if 0:
	    self.defdisjoint(mod.Anything.fam) # No overlap with sets of other families??

	self.immnodeset = mod.immnodeset
	self.Part = mod.Part
	self.Path = mod.Path
	self.RefPat = mod.RefPat
	self.View = mod.View
	self.Use = mod.Use

    def __call__(self, *args, **kwds):
	return self._cons(args, **kwds)

    def _cons(self, arg, er=None):
	# arg is a sequence of nodes
	arg = self.immnodeset(arg)
	if not arg:
	    return self.mod.Nothing

	# elif len(arg) == 1: # Not using special case. Screws up some things Note 27 Oct 2005
	#     r = IdentitySetSingleton(self, tuple(arg)[0])
	else:
	    r = IdentitySetMulti(self, arg)
	if er is not None:
	    r._er = er
	return r

    def c_and(self, a, b):
	if b.fam is self:
	    return self._cons(a.nodes & b.nodes)
	elif b.fam is self.mod.fam_Invert:
	    return self._and_INVERT(a, b)
	else:
	    return b.fam._and_ID(b, a)

    def _and_ATOM(self, a, b):
	if b.fam is self:
	    return self._cons(a.nodes & b.nodes)
	else:
	    return b.fam._and_ID(b, a)

    def _and_AND(self, a, b):
	return b.fam._and_ID(b, a)

    def _and_ID(self, a, b):
	return self._cons(a.nodes & b.nodes)

    def _and_INVERT(self, a, b):
	if b.arg.fam  is self:
	    return self._cons(a.nodes - b.arg.nodes)
	elif b is self.mod.NotNothing:
	    return a
	else:
	    return b.fam._and_ID(b, a)

    def c_get_ckc(self, a):
	return self.mod.Classifiers.Idset.classifier, a.nodes, '<='

    def c_hash(self, a):
	return hash(a.nodes)

    def c_iter(self, a):
	# It's not well-defined to iterate and is considered error-prone
	# and may be SO much slower than expected
	# they need to be explicit to iterate over elements or partition subset
	raise TypeError, 'iteration over non-sequence'


    def c_len(self, a):
	# The length corresponds to 
	# o the number of rows in how it is printed
	# o the max getitem-wise index + 1
	# (Notes May 13 2005)
	return a.partition.numrows

    def c_contains(self, a, b):
	return b in a.nodes

    def c_le(self, a, b):
	if not b.fam is self:
	    b = b.fam._and_ID(b, a)
	return a.nodes <= b.nodes

    _le_ATOM = _le_INVERT = _le_AND = c_le

    def c_or(self, a, b):
	if b.fam is self:
	    return self._cons(a.nodes | b.nodes)
	else:
	    a = a - b.fam._and_ID(b, a)
	    return b.fam._or_ATOM(b, a)

    _or_ATOM = _or_INVERT = _or_AND = _or_OR = c_or

    def c_get_brief(self, c):
	return self.get_str_summary(c)

    def c_get_render(self, a):
	return a.kind.get_render()

    def c_getitem(self, a, idx):
	return a.partition.get_set(idx)

    def c_str(self, a):
	ob = self.mod._parent.OutputHandling.output_buffer()
	a.fam.get_partition(a).ppob(ob)
	return ob.getvalue().rstrip()

    def maprox_getattr(self, set, name):
	ns = self.mod.mutnodeset()
	for x in set.nodes:
	    try:
		v = getattr(x, name)
	    except:
		pass
	    else:
		ns.add(v)
	return self._cons(self.mod.immnodeset(ns))


    def maprox_getitem(self, set, idx):
	ns = self.mod.mutnodeset()
	for x in set.nodes:
	    try:
		v = x[idx]
	    except:
		pass
	    else:
		ns.add(v)
	return self._cons(self.mod.immnodeset(ns))

    def c_get_idpart_header(self, a):
	return 'Kind: Name/Value/Address'

    def c_get_idpart_label(self, a):
	return ''

    def c_get_idpart_render(self, a):
	def render(x):
	    x = self.mod.iso(x)
	    r = x.brief.lstrip('<1 ').rstrip('>')
	    return r
	return render

    def get_by(self, a, er):
	ers = []
	if isinstance(er, EquivalenceRelation):
	    ers.append(er)
	else:
	    try:
		ss = er.split('&')
	    except:
		raise TypeError, 'by(): Equivalence relation or string expected.'
	    if ss == ['']:
		ss = []
	    for s in ss:
		try:
		    if not s.istitle() or s.startswith('er_'):
			s = 'er_'+s
		    er = getattr(self.Use, s)
		except AttributeError:
		    raise ValueError, 'by(): No such equivalence relation defined in heapy.Use: %r'%s
		ers.append(er)
		    
	if not ers:
	    er = self.Use.Unity
	else:
	    er = ers[0]
	    for i in range(1, len(ers)):
		er &= ers[i]
	if a.er is not er:
	    a = self._cons(a.nodes, er=er)
	return a

    def get_er(self, a):
	try:
	    er = a._er
	except AttributeError:
	    er = self.mod.Use.Clodo
	    a._er = er
	return er

    def get_more(self, a):
	return self.mod.OutputHandling.basic_more_printer(a, a.partition)

    def get_owners(self, a):
	return self.mod.Use.Clodo.classifier.owners(a)

    def get_partition(self, a):
	try:
	    p = a._partition
	except AttributeError:
	    a.fam.View.clear_check()
	    p = a.fam.Part.partition(a, a.er)
	    self._partition = p
	return p




    def get_str_idpart(self, set, cla):
	# Get the string that is used for the 'identity partition'
	# when the objects share a common classification (cla)
	s = cla.fam.c_get_str_for(cla, set)
	return s


    def get_str_refpat(self, set, cla, max_length):
	# Get the string that is used at the end of a reference pattern line
	strs = []
	strs.append('%d '%set.count)
	strs.append(cla.fam.c_get_str_for(cla, set))
	strs.append(': ')
	strs.append(self.get_str_rendered(set, cla, max_length-len(''.join(strs))))
	s = ''.join(strs)
	if len(s) > max_length:
	    s = s[:max_length - 3]+'...'
	return s

    def get_str_rendered(self, set, cla, max_length=None):
	if max_length is None:
	    max_length = 50
	strs = []
	lens = 0
	render = cla.get_render()
	for p in set.nodes:
	    rs = render(p)
	    if lens and lens + len(rs) + 2 >= max_length:
		strs[-1] +='...' # but what can be done in limited time
		break
	    lens += len(rs) + 2
	    strs.append(rs)
	strs.sort()
	return ', '.join(strs)


    def get_str_summary(self, c, max_length=None, er=None):
	if max_length is None:
	    max_length = self.mod.max_summary_length
	if er is None:
	    er = c.er
	set = c.nodes
	items = er.classifier.partition(set)
	keys = [k for k, v in items]
	cla = reduce(lambda x, y: x | y, keys)
	s = '<%d %s'%(len(set), cla.fam.c_get_str_for(cla, c))
	s += ': '
	bslen = len(s)

	bstrs = []
	for cla, set in items:
	    css = self.get_str_rendered(set, cla, max_length-bslen)
	    if len(items) > 1:
		css = '<%d %s: %s>'%(set.count, cla, css)
	    bstrs.append(css)
	    bslen += len(css) + 3
	    if bslen > max_length:
		break
	def comp(a, b):
	    # Don't use the initial count when comparing
	    return cmp(a[a.index(' '):],b[b.index(' '):])
	bstrs.sort(comp)
	s += ' | '.join(bstrs) + '>'
	if len(s) > max_length:
	    s = s[:max_length-4]+'...>'
	return s

    def get_parts(self, X):
	return [x for x in X.partition.get_sets()]

    def get_theone(self, set):
	if len(set.nodes) == 1:
	    return list(set.nodes)[0]
	raise ValueError, 'theone requires a singleton set'

class EmptyFamily(IdentitySetFamily):
    # Inherits from IdentitySetFamily because the special exported methods
    # tend to be required by applications.
    # There is only one object of EmptyFamily: UniSet.Nothing
    # The new method implementations added here are mostly for optimization.
    # (Other families may assume the EmptyFamily have these methods.)
    # The .nodes is an empty immnodeset so IdentitySetFamily methods should work.
    # The main change from IdentitySetFamily is the representations.
    def __init__(self, mod):
	IdentitySetFamily.__init__(self, mod)

    def c_and(self, a, b):
	return a

    _and_ATOM = _and_INVERT = _and_AND = _and_OR = _and_ID = c_and

    def c_contains(self, a, b):
	return False

    def c_ge(self, a, b):
	if b is a:
	    return True
	return False

    _ge_ATOM = _ge_INVERT = _ge_AND = c_ge

    def c_get_brief(self, a):
	return '<Nothing>'

    def c_repr(self, a):
	return '%s%s'%(self.mod.Use.reprefix, 'Nothing')

    def c_iter(self, a):
	return iter(())

    def c_le(self, a, b):
	return True

    _le_ATOM = _le_INVERT = _le_AND = c_le

    def c_len(self, a):
	return 0

    def c_nonzero(self, a):
	return False

    def c_or(self, a, b):
	return b

    _or_ATOM = _or_INVERT = _or_AND = _or_OR = c_or

    def c_str(self, a):
	return self.c_get_brief(a)

    def c_sub(self, a, b):
	return a

    def c_xor(self, a, b):
	return b

class EquivalenceRelationFamily(AtomFamily):
    def __init__(self, mod):
	AtomFamily.__init__(self, mod)
	self.Set = EquivalenceRelation
	self.Use = mod.Use
	self.Classifiers = mod.Classifiers

    def __call__(self, constructor, *args, **kwds):
	# Passing classifier constructor rather than constructed classifier,
	# to make sure there is a 1-1 relation between equivalence relations and classifers.
	cl = constructor(*args, **kwds)
	er = self.Set(self, cl)
	cl.er = er
	return er

    def c_contains(self, a, b):
	# XXX should have a smoother protocol
	try:
	    return len(b.by(a)) == 1
	except AttributeError:
	    try:
		ckc = b.get_ckc()
	    except:
		return False
	    else:
		return ckc[0].er <= a and ckc[2] == '=='

    def c_getattr(self, a, name):
	classifier = a.classifier
	try:
	    g = getattr(classifier, 'get_attr_for_er')
	except AttributeError:
	    raise AttributeError, name
	return g(name)
	

    def c_and(self, a, b):
	if b.fam is not self:
	    return AtomFamily.c_and(self, a, b)
	ers = []
	for x in (a, b):
	    if x.erargs:
		ers.extend(x.erargs)
	    else:
		ers.append(x)
	ers = minimals(ers)
	if len(ers) == 1:
	    return ers[0]
	er = self.Classifiers.mker_and(ers)
	er.erargs = tuple(ers)
	return er

    def _ge_ATOM(self, a, b):
	if b.fam is self:
	    return a.classifier in b.classifier.super_classifiers
	return False
	

    def _le_ATOM(self, a, b):
	if b.fam is self:
	    return b.classifier in a.classifier.super_classifiers
	return False

    def c_call(self, a, args, kwds):
	return a.classifier.get_userkind(*args, **kwds)

    def c_get_brief(self, a):
	return 'Equiv. relation %s'%a.classifier

    def c_getitem(self, a, idx):
	return a.classifier.relimg(self.mod.nodeset_adapt(idx))
    
    def c_repr(self, a):
	return a.classifier.get_reprname()

class Summary_str:
    def __init__(self, mod):
	self.mod = mod
	types = mod.types._module
	self.invtypes = {}
	for k, v in types.__dict__.items():
	    if isinstance(v, types.TypeType):
		self.invtypes[v] = 'types.%s'%k
	for k, v in types.__builtins__.items():
	    if isinstance(v, types.TypeType) and v in self.invtypes:
		self.invtypes[v] = k

	# This is to make common printouts prettier / shorter (: and clearer ? :)
	# but may be disabled for clearer repr()
	
	self.shorter_invtypes = {}
	for name in ('module', 'class', 'function'):
	    t = getattr(types, name.capitalize()+'Type')
	    self.shorter_invtypes[t] = name

	#

	self.table = {
	        mod.NodeSet: self.str_address_len,
		types.BooleanType: self.str_repr,
		types.BuiltinFunctionType: self.str_builtin_function,
		types.ClassType: self.str_class,
		types.CodeType: self.str_code,
		types.ComplexType: self.str_repr,
		types.DictType: self.str_address_len,
		types.FloatType: self.str_repr,
		types.FrameType: self.str_frame,
		types.FunctionType: self.str_function,
		types.InstanceType: self.str_instance,
		types.IntType: self.str_repr,
		types.ListType: self.str_address_len,
		types.LongType: self.str_repr,
		types.NoneType: self.str_repr,
		types.MethodType: self.str_method,
		types.ModuleType: self.str_module,
		types.TracebackType: self.str_traceback,
		types.StringType: self.str_limrepr,
		types.UnicodeType: self.str_limrepr,
		types.TupleType: self.str_address_len,
		types.TypeType: self.str_type,
		}
    def __call__(self, key, longer=False):
	x = self.table.get(key)
	if x is None:
	    x = self.str_address
	if longer and 'longer' in x.im_func.func_code.co_varnames:
	    return lambda k:x(k, longer=longer)
	else:
	    return x

    def set_function(self, type, func):
	self.table[type] = func

    def str_address(self, x):
	return hex(id(x))
    str_address._idpart_header = 'Address'
    str_address._idpart_sortrender = id
    def str_address_len(self, x):
	return self.str_address(x)+self.str_len(x)
    str_address_len._idpart_header = 'Address*Length'
    str_address_len._idpart_sortrender = id
    def str_builtin_function(self, x):
	n = x.__name__
	m = x.__module__
	if m != '__builtin__':
	    n = '%s.%s'%(m, n)
	return n
    str_builtin_function._idpart_header = 'Name'
    def str_class(self, x):
	return str(x)
    str_class._idpart_header = 'Name'
    def str_code(self, x):
	return '%s:%d:%s'%(self.mod._root.os.path.basename(x.co_filename),
			   x.co_firstlineno,
			   x.co_name)
    str_code._idpart_header = 'File:Line:Name'
    def str_frame(self, x):
	return '<%s at %s>'%(x.f_code.co_name, self.str_address(x))
    str_frame._idpart_header = 'Name at Address'
    def str_function(self, x):
	return '%s.%s'%(x.__module__, x.func_name)
    str_function._idpart_header = 'Name'
    def str_instance(self, x):
	return '<%s at %s>' %(self.str_class(x.__class__), self.str_address(x))
    str_instance._idpart_header = 'Name at Address'
    def str_len(self, x):
	return '*%d'%len(x)
    str_len._idpart_header = 'Length'
    def str_method(self, x):
	cn = self.str_type(x.im_class)
	if x.im_self is not None:
	    cn = '<%s at %s>'%(cn, self.str_address(x.im_self))
	func = x.im_func
	try:
	    func_name = func.im_func
	except AttributeError:
	    func_name = func.__name__
	return '%s.%s'%(cn, func_name)
    str_method._idpart_header = 'Class/<Class at address> . method'
    def str_module(self, x):
	return x.__name__
    str_module._idpart_header = 'Name'
    def str_limrepr(self, x):
	return self.mod._root.repr.repr(x)
    str_limrepr._idpart_header = 'Representation (limited)'
    str_limrepr._idpart_sortrender = 'IDENTITY'
    str_repr = repr
    def str_traceback(self, x):
	return '<in frame %s at %s>'%(self.str_frame(x.tb_frame), self.str_address(x))
    str_traceback._idpart_header = 'Frame at Address'
    def str_type(self, x, longer=False):
	if x in self.shorter_invtypes and not longer:
	    return self.shorter_invtypes[x]
	if x in self.invtypes:
	    return self.invtypes[x]
	return '%s.%s'%(x.__module__, x.__name__)
    str_type._idpart_header = 'Name'
    def str_type_longer(self, x):
	if x in self.invtypes:
	    return self.invtypes[x]
	return '%s.%s'%(x.__module__, x.__name__)
    str_type._longer_method = lambda x:str_type


def maximals(A, le=lambda x,y:x<=y):
    " Find the maximal element(s) of a partially ordered sequence"
    r = []
    for x in A:
	for a in A:
	    if le(x, a) and not le(a, x):
		break
	else:
	    for a in r:
		if le(x, a):
		    break
	    else:
		r.append(x)
    return r

def minimals(A, le=lambda x,y:x<=y):
    " Find the minimal element(s) of a sequence of partially ordered elements"
    r = []
    for x in A:
	for a in A:
	    if le(a, x) and not le(x, a):
		break
	else:
	    for a in r:
		if le(a, x):
		    break
	    else:
		r.append(x)
    return r


class _GLUECLAMP_:
    max_summary_length = 80
    auto_convert_type = True
    auto_convert_class = True
    auto_convert_iter = False	# Can give problems if enabled; notes 22/11-04
    out_reach_module_names = ('UniSet', 'View', 'Path', 'RefPat')

    _chgable_ = ('max_summary_length','out_reach_module_names',
		 'auto_convert_type', 'auto_convert_class', 'auto_convert_iter', 'output')

    # _preload_ = ('_hiding_tag_',)

    # Module 'imports'

    _imports_ = (
	'_parent:Classifiers',
	'_parent:ImpSet',
	'_parent.ImpSet:emptynodeset',
	'_parent.ImpSet:immnodeset',
	'_parent.ImpSet:mutnodeset',
	'_parent.ImpSet:NodeSet',
	'_parent:Part',
	'_parent:Path',
	'_parent:RefPat',
	'_parent:OutputHandling',
	'_parent:View',
	'_parent.View:_hiding_tag_',
	'_parent.View:hv',
	'_parent:Use',
	'_root:types',
	)

    #

    def _get_Anything(self):	return self.Use.Unity.classifier.get_kind(None)
    def _get_Nothing(self):	return IdentitySetMulti(EmptyFamily(self), self.emptynodeset)
    def _get_NotNothing(self):	return Family.__call__(self.fam_Invert, self.Nothing)

    def _get_export_dict(self):
	d = {}
	for k, v in self.out_reach_dict.items():
	    sc = getattr(v, '_uniset_exports', ())
	    for sc in sc:
		x = getattr(v, sc)
		if sc in d and d[sc] is not x:
		    raise RuntimeError, 'Duplicate export: %r defined in: %r'%(sc, k)
		d[sc] = x
	return d

    def _get_out_reach_dict(self):
	d = {}
	for name in self.out_reach_module_names:
	    d[name] = getattr(self._parent, name)
	return d

    def _get_summary_str(self):	return self.Summary_str(self)

    def _get_fam_And(self):	return self.AndFamily(self)
    def _get_fam_EquivalenceRelation(self): return EquivalenceRelationFamily(self)
    def _get_fam_Or(self):	return self.OrFamily(self)
    def _get_fam_IdentitySet(self):return self.IdentitySetFamily(self)
    def _get_fam_Invert(self): 	return self.InvertFamily(self)
    def _get_fam_Family(self): 	return self.FamilyFamily(self)
    

    def _get_fam_mixin_argatom(self):
	memo = {}
	def f(Mixin, *args, **kwds):
	    C = memo.get(Mixin)
	    if C is None:
		class C(Mixin, self.ArgAtomFamily):
		    def __init__(self, mod, *args, **kwds):
			mod.ArgAtomFamily.__init__(self, mod)
			Mixin.__init__(self, mod, *args, **kwds)

		C.__name__ = Mixin.__name__
		memo[Mixin] = C
	    return C(self, *args, **kwds)
	return f

    def idset_adapt(self, X):
        if isinstance(X, self.IdentitySet):
	    ids = X
	elif isinstance(X, self.NodeSet):
	    ids = self.idset(X)
	else:
	    raise TypeError, 'IdentitySet or NodeSet expected, got %r.'%type(X)
	if X._hiding_tag_ is not self._hiding_tag_:
	    raise ValueError,	\
		  "The argument has wrong _hiding_tag_, you may convert it by Use.idset or Use.iso."
	return ids

    def idset(self, iterable, er=None):
	return self.fam_IdentitySet._cons(self.immnodeset(iterable), er=er)

    def _get_iso(self):
	return self.fam_IdentitySet

    def isuniset(self, obj):
	return isinstance(obj, self.UniSet)
	# Or has some particular attributes?

    def nodeset_adapt(self, X):
	if isinstance(X, self.NodeSet):
	    ns = X
	elif isinstance(X, self.IdentitySet):
	    ns = X.nodes
	else:
	    raise TypeError, 'IdentitySet or NodeSet expected, got %r.'%type(X)
	if X._hiding_tag_ is not self._hiding_tag_:
	    raise ValueError,	\
		  "The argument has wrong _hiding_tag_, you may convert it by Use.idset or Use.iso."
	return ns

    def retset(self, X):
	if not isinstance(X, self.IdentitySet):
	    X = self.idset(X)
	return X

    def union(self, args, maximized=False):
	if not args:
	    return self.Nothing
	a = args[0]
	for b in args[1:]:
	    a |= b
	return a

        # This optimization didn't work for idsets!!
	# XXX to fix back

	if not maximized:
	    args = maximals(args)
	return self.fam_Or._cons(args)

    def uniset_from_setcastable(self, X):
	if isinstance(X, UniSet) and X._hiding_tag_ is self._hiding_tag_:
	    return X
	
	types = self.types
	if isinstance(X, types.TypeType) and self.auto_convert_type:
	    return self.Use.Type(X)
	elif isinstance(X, types.ClassType) and self.auto_convert_class:
	    return self.Use.Class(X)
	elif isinstance(X, self.NodeSet) and X._hiding_tag_ is self._hiding_tag_:
	    return self.idset(X)
	elif self.auto_convert_iter:
	    try:
		it = iter(X)
	    except TypeError:
		pass # Will raise a 'more informative' exception below
	    else:
		return self.idset(it)
	raise TypeError, \
          "Argument is not automatically convertible to a UniSet with correct _hiding_tag_."