This file is indexed.

/usr/share/pyshared/guppy/etc/KnuthBendix.py is in python-guppy 0.1.9-2ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#._cv_part guppy.etc.KnuthBendix

"""
    An implementation of the Knuth-Bendix algorithm,
    as described in (1), p. 143.
    For determining if two paths in a category are equal.

The algorithm as given here,
takes a set of equations in the form of a sequence:

E = [(a, b), (c, d) ...]

where a, b, c, d are 'paths'.

Paths are given as strings, for example:

E = [ ('fhk', 'gh'), ('m', 'kkm') ]

means that the path 'fhk' equals 'gh' and 'm' equals 'kkm'.

Each arrow in the path is here a single character.  If longer arrow
names are required, a delimiter string can be specified as in:

kb(E, delim='.')

The paths must then be given by the delimiter between each arrow;

E = [ ('h_arrow.g_arrow', 'g_arrow.k_arrow') ... ]


The function kb(E) returns an object, say A, which is

o callable: A(a, b)->boolean determines if two paths given by a, b are equal.
o has a method A.reduce(a)->pathstring, which reduces a path to normal form.

An optional parameter to kb, max_iterations, determines the maximum
number of iterations the algorithm should try making the reduction
system 'confluent'. The algorithm is not guaranteed to terminate
with a confluent system in a finite number of iterations, so if the
number of iterations needed exceeds max_iterations an exception
(ValueError) will be raised. The default is 100.

References

(1)
@book{walters91categories,
    title={Categories and Computer Science},
    author={R. F. C. Walters},
    publisher={Cambridge University Press},
    location={Cambridge},
    year=1991}


(2)
@book{grimaldi94discrete,
author="Ralph P. Grimaldi".
title="Discrete and Combinatorial Mathematics: An Applied Introduction",
publisher="Addison-Wesley",
location="Readin, Massachusetts",
year=1994
}


"""

class KnuthBendix:
    def __init__(self, E, delim = '', max_iterations = 100):
	self.reductions = []
	self.delim = delim
	for a, b in E:
	    if delim:
		a = self.wrap_delim(a)
		b = self.wrap_delim(b)
	    if self.gt(b, a):
		a, b = b, a
	    self.reductions.append((a, b))
	self.make_confluent(max_iterations)
	self.sort()

    def __call__(self, x, y):
	return self.reduce(x) == self.reduce(y)

    def gt(self, a, b):
	delim = self.delim
	if delim:
	    la = len(a)
	    lb = len(b)
	else:
	    la = a.count(delim)
	    lb = b.count(delim)
	if la > lb:
	    return 1
	if la < lb:
	    return 0
	return a > b

    def make_confluent(self, max_iterations):
	def add_reduction(p, q):
	    if p != q:
		#pdb.set_trace()
		if self.gt(p, q):
		    self.reductions.append((p, q))
		else:
		    self.reductions.append((q, p))
		self.confluent = 0
	    
	reds_tested = {}
	for i in range(max_iterations):
	    #print 'iter', i
	    self.confluent = 1
	    reds = list(self.reductions)
	    for u1, v1 in reds:
		for u2, v2 in reds:
		    red = (u1, u2, u2, v2)
		    if red in reds_tested:
			continue
		    reds_tested[red] = 1
		    if u2 in u1:
			p = self.freduce(v1)
			i = u1.index(u2)
			while i >= 0:
			    uuu = u1[:i]+v2+u1[i+len(u2):]
			    q = self.freduce(uuu)
			    add_reduction(p, q)
			    i = u1.find(u2, i+1)
			    
			if 0:
			    uuu = u1.replace(u2, v2)
			    q = self.freduce(uuu)
			    add_reduction(p, q)
		    lu1 = len(u1)
		    for i in range(1, lu1-len(self.delim)):
			if u2[:lu1-i] == u1[i:]:
			    p = self.freduce(v1 + u2[lu1-i:])
			    q = self.freduce(u1[:i] + v2)
			    add_reduction(p, q)

	    assert ('', '') not in reds
	    # Remove redundant reductions
	    newr = []
	    nullred = (self.delim, self.delim)
	    for i, uv in enumerate(self.reductions):
		u, v = uv
		self.reductions[i] = nullred
		ru = self.freduce(u)
		rv = self.freduce(v)
		if ru != v and ru != rv:
		    urv = (u, rv)
		    newr.append(urv)
		    self.reductions[i] = urv
		else:
		    pass
		    #pdb.set_trace()
	    if len(newr) != self.reductions:
		assert ('', '') not in newr
		self.reductions = newr
	    assert ('', '') not in self.reductions
	    #assert ('', '') not in reds
	    if self.confluent:
		break



	else:
	    raise ValueError, """\
KnuthBendix.make_confluent did not terminate in %d iterations.
Check your equations or specify an higher max_iterations value.'
"""		    
	#print len(reds_tested)
	
	
    def freduce(self, p):
	# This (internal) variant of reduce:
	# Uses the internal representaion:
	# Assumes p is .surrounded. by the delimiter
	# and returns the reduced value .surrounded. by it.
	# This is primarily for internal use by make_confluent

	while 1:
	    q = p
	    for uv in self.reductions:
		p = p.replace(*uv)
	    if q == p:
		break
	return p

    def reduce(self, p):
	# This (external) variant of reduce:
	# will add delim if not .surrounded. by delim
	# but the return value will not be surrounded by it.

	if self.delim:
	    p = self.wrap_delim(p)
	p = self.freduce(p)
	if self.delim:
	    p = p.strip(self.delim)
	return p
    
    def sort(self, reds = None):
	if reds is None:
	    reds = self.reductions
	def cmp((x, _), (y, __)):
	    if self.gt(x, y):
		return 1
	    if x == y:
		return 0
	    return -1
	reds.sort(cmp)

    def pp(self):
	printreds(self.reductions)

    def wrap_delim(self, p):
	if not p.startswith(self.delim):
	    p = self.delim + p
	if not p.endswith(self.delim):
	    p = p + self.delim
	return p
	
def printreds(reds):
    for i, uv in enumerate(reds):
	print '%s\t'%(uv,),
	if (i + 1) % 4 == 0:
	    print
    if (i + 1) % 4 != 0:
	print
	

def kb(E, *a, **k):
    return KnuthBendix(E, *a, **k)



class _GLUECLAMP_:
    pass





def test2():
    #
    # The group of complex numbers {1, -1, i, -i} under multiplication;
    # generators and table from Example 16.13 in (2).

    G = ['1', '-1', 'i', '-i']
    E = [('1.i',	 'i'),
	 ('i.i',	 '-1'),
	 ('i.i.i',	 '-i'),
	 ('i.i.i.i',	 '1'),
	 ]
    R = kb(E, delim='.')
    T = [['.']+G] + [[y]+[R.reduce('%s.%s'%(y, x)) for x in G] for y in G]

    assert T == [
	['.', '1', '-1', 'i', '-i'],
	['1', '1', '-1', 'i', '-i'],
	['-1', '-1', '1', '-i', 'i'],
	['i', 'i', '-i', '-1', '1'],
	['-i', '-i', 'i', '1', '-1']]

    return R

def test():
    E = [('.a.', '.b.')]
    a = kb(E,delim='.')
    assert a('.a.', '.b.')
    E = [('fhk', 'gh'), ('m', 'kkm')]
    a = kb(E)
    p = a.reduce('fffghkkkm')
    q = a.reduce('ffghkm')
    assert p == 'ffffhm'
    assert q == 'fffhm'
    assert not a(p, q)

    E = [('.a.', '.b.')]
    a = kb(E, delim='.')
    p = a.reduce('aa')
    assert p == 'aa'
    p = a.reduce('.bb.')
    assert p == 'bb'
    p = a.reduce('b')
    assert p == 'a'

    E = [('.f.h.k.', '.g.h.'), ('.m.', '.k.k.m.')]
    a = kb(E, delim='.')
    p = a.reduce('.f.f.f.g.h.k.k.k.m.')
    q = a.reduce('.f.f.g.h.k.m.')
    assert p, q == ('.f.f.f.f.h.m.', '.f.f.f.h.m.')
    assert p == 'f.f.f.f.h.m'
    assert q == 'f.f.f.h.m'

    E = [('.f.ff.fff.', '.ffff.ff.'), ('.fffff.', '.fff.fff.fffff.')]

    a = kb(E, delim='.')

    p = a.reduce('.f.f.f.ffff.ff.fff.fff.fff.fffff.')
    q = a.reduce('.f.f.ffff.ff.fff.fffff.')

    #print p, q
    assert p == 'f.f.f.f.ff.fffff'
    assert q == 'f.f.f.ff.fffff'


def test3():
    # From 9.3 in 251
    E = [('Hcc', 'H'),
	 ('aab','ba'),
	 ('aac','ca'),
	 ('cccb','abc'),
	 ('caca','b')]

    a = kb(E)

    canon = [
	('Hb','Ha'),	('Haa','Ha'),	('Hab','Ha'),	('Hca','Hac'),
	('Hcb','Hac'),	('Hcc','H'),	('aab','ba'),	('aac','ca'),
	('abb','bb'),	('abc','cb'),	('acb','cb'),	('baa','ba'),
	('bab','bb'),	('bac','cb'),	('bba','bb'),	('bca','cb'),
	('bcb','bbc'),	('cab','cb'),	('cba','cb'),	('cbb','bbc'),
	('cbc','bb'),	('ccb','bb'),	('Haca','Hac'),	('Hacc','Ha'),
	('bbbb','bb'),	('bbbc','cb'),	('bbcc','bbb'),	('bcca','bb'),
	('caca','b'),	('ccaa','ba'),	('ccca','cb'),	('cacca','cb')
	]

    a.canon = canon

    if 0:
	for uv in canon:
	    if not uv in a.reductions:
		print uv

    return a