/usr/share/pyshared/gsw/gibbs/library.py is in python-gsw 3.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 | # -*- coding: utf-8 -*-
from __future__ import division
import numpy as np
from .constants import sfac, SSO, db2Pascal
from ..utilities import match_args_return, strip_mask, read_data
__all__ = [
'gibbs',
#'SAAR', TODO
#'Fdelta', TODO
#'delta_SA_ref', TODO: delta_SA ?
'SA_from_SP_Baltic',
'SP_from_SA_Baltic',
'infunnel',
'entropy_part',
'entropy_part_zerop',
'interp_ref_cast',
'interp_SA_CT',
'gibbs_pt0_pt0',
'specvol_SSO_0_p',
'enthalpy_SSO_0_p',
'Hill_ratio_at_SP2'
]
def gibbs(ns, nt, npr, SA, t, p):
r"""Calculates specific Gibbs energy and its derivatives up to order 2 for
seawater.
The Gibbs function approach allows the calculation of internal energy,
entropy, enthalpy, potential enthalpy and the chemical potentials of
seawater as well as the freezing temperature, and the latent heats of
freezing and of evaporation. These quantities were not available from
EOS-80 but are essential for the accurate accounting of heat in the ocean
and for the consistent and accurate treatment of air-sea and ice-sea heat
fluxes.
Parameters
----------
ns : int
order of SA derivative [0, 1 or 2 ]
nt : int
order of t derivative [0, 1 or 2 ]
npr : int
order of p derivative [0, 1 or 2 ]
SA : array_like
Absolute salinity [g kg :sup:`-1`]
t : array_like
in situ temperature [:math:`^\circ` C (ITS-90)]
p : array_like
pressure [dbar]
Returns
-------
gibbs : array_like
Specific Gibbs energy or its derivatives.
Gibbs energy (ns=nt=npr=0) has units of:
[J kg :sup:`-1`]
Absolute Salinity derivatives are output in units of:
[(J kg :sup:`-1`) (g kg :sup:`-1`) :sup:`-ns`]
Temperature derivatives are output in units of:
[(J kg :sup:`-1`) K :sup:`-nt`]
Pressure derivatives are output in units of:
[(J kg :sup:`-1`) Pa :sup:`-npr`]
The mixed derivatives are output in units of:
[(J kg :sup:`-1`) (g kg :sup:`-1`) :sup:`-ns` K :sup:`-nt`
Pa :sup:`-npr`]
Notes
-----
The Gibbs function for seawater is that of TEOS-10 (IOC et al., 2010),
being the sum of IAPWS-08 for the saline part and IAPWS-09 for the pure
water part. These IAPWS releases are the officially blessed IAPWS
descriptions of Feistel (2008) and the pure water part of Feistel (2003).
Absolute Salinity, SA, in all of the GSW routines is expressed on the
Reference-Composition Salinity Scale of 2008 (RCSS-08) of Millero et al.
(2008).
The derivatives are taken with respect to pressure in Pa, not withstanding
that the pressure input into this routine is in dbar.
References
----------
.. [1] Feistel, R., 2003: A new extended Gibbs thermodynamic potential of
seawater Progr. Oceanogr., 58, 43-114.
.. [2] Feistel, R., 2008: A Gibbs function for seawater thermodynamics
for -6 to 80 :math:`^\circ` C and salinity up to 120 g kg :sup:`-1`,
Deep-Sea Res. I, 55, 1639-1671.
.. [3] IAPWS, 2008: Release on the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater. The International Association for the
Properties of Water and Steam. Berlin, Germany, September 2008, available
from http://www.iapws.org. This Release is referred to as IAPWS-08.
.. [4] IAPWS, 2009: Supplementary Release on a Computationally Efficient
Thermodynamic Formulation for Liquid Water for Oceanographic Use. The
International Association for the Properties of Water and Steam. Doorwerth,
The Netherlands, September 2009, available from http://www.iapws.org.
This Release is referred to as IAPWS-09.
.. [5] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See section 2.6 and appendices A.6, G and H.
.. [6] Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall, 2008:
The composition of Standard Seawater and the definition of the
Reference-Composition Salinity Scale, Deep-Sea Res. I, 55, 50-72.
Modifications:
2010-09-24. David Jackett, Paul Barker and Trevor McDougall
"""
SA, t, p = np.asanyarray(SA), np.asanyarray(t), np.asanyarray(p)
SA = np.atleast_1d(SA)
nonzero_SA = np.any(SA > 0)
_SA = SA
_t = t
_p = p
SA = np.ma.filled(SA, 0)
t = np.ma.filled(t, 20)
p = np.ma.filled(p, 10)
SA, t, p = np.broadcast_arrays(SA, t, p)
gibbs = np.zeros(SA.shape, dtype=np.float) # Use if all_masked is True
all_masked = False
# Ensure a full mask, so we can set elements if necessary.
mask = np.ma.mask_or(np.ma.getmaskarray(_SA), np.ma.getmask(_t))
mask = np.ma.mask_or(mask, np.ma.getmask(_p))
mask = np.ma.mask_or(mask, SA < 0)
ipos = (SA > 0)
# inpos = ~ipos # FIXME: Assigned but never used.
if np.all(ipos):
ipos = slice(None) # More efficient for usual case.
x2 = sfac * SA
x = np.sqrt(x2)
y = t * 0.025
z = p * 1e-4 # The input pressure (p) is sea pressure in units of dbar.
if (ns == 0) & (nt == 0) & (npr == 0):
g03 = (101.342743139674 + z * (100015.695367145 +
z * (-2544.5765420363 + z * (284.517778446287 +
z * (-33.3146754253611 + (4.20263108803084 - 0.546428511471039 * z)
* z)))) +
y * (5.90578347909402 + z * (-270.983805184062 +
z * (776.153611613101 + z * (-196.51255088122 + (28.9796526294175 -
2.13290083518327 * z) * z))) +
y * (-12357.785933039 + z * (1455.0364540468 +
z * (-756.558385769359 + z * (273.479662323528 + z *
(-55.5604063817218 + 4.34420671917197 * z)))) +
y * (736.741204151612 + z * (-672.50778314507 +
z * (499.360390819152 + z * (-239.545330654412 + (48.8012518593872 -
1.66307106208905 * z) * z))) +
y * (-148.185936433658 + z * (397.968445406972 +
z * (-301.815380621876 + (152.196371733841 - 26.3748377232802 * z) *
z)) +
y * (58.0259125842571 + z * (-194.618310617595 +
z * (120.520654902025 + z * (-55.2723052340152 +
6.48190668077221 * z))) +
y * (-18.9843846514172 + y * (3.05081646487967 -
9.63108119393062 * z) +
z * (63.5113936641785 + z * (-22.2897317140459 +
8.17060541818112 * z)))))))))
if nonzero_SA:
g08 = x2 * (1416.27648484197 + z * (-3310.49154044839 +
z * (384.794152978599 + z * (-96.5324320107458 +
(15.8408172766824 - 2.62480156590992 * z) * z))) +
x * (-2432.14662381794 + x * (2025.80115603697 +
y * (543.835333000098 + y * (-68.5572509204491 +
y * (49.3667694856254 + y * (-17.1397577419788 +
2.49697009569508 * y))) - 22.6683558512829 * z) +
x * (-1091.66841042967 - 196.028306689776 * y +
x * (374.60123787784 - 48.5891069025409 * x +
36.7571622995805 * y) + 36.0284195611086 * z) +
z * (-54.7919133532887 + (-4.08193978912261 -
30.1755111971161 * z) * z)) +
z * (199.459603073901 + z * (-52.2940909281335 +
(68.0444942726459 - 3.41251932441282 * z) * z)) +
y * (-493.407510141682 + z * (-175.292041186547 +
(83.1923927801819 - 29.483064349429 * z) * z) +
y * (-43.0664675978042 + z * (383.058066002476 + z *
(-54.1917262517112 + 25.6398487389914 * z)) +
y * (-10.0227370861875 - 460.319931801257 * z + y *
(0.875600661808945 + 234.565187611355 * z))))) +
y * (168.072408311545 + z * (729.116529735046 +
z * (-343.956902961561 + z * (124.687671116248 + z *
(-31.656964386073 + 7.04658803315449 * z)))) +
y * (880.031352997204 + y * (-225.267649263401 +
y * (91.4260447751259 + y * (-21.6603240875311 +
2.13016970847183 * y) +
z * (-297.728741987187 + (74.726141138756 -
36.4872919001588 * z) * z)) +
z * (694.244814133268 + z * (-204.889641964903 +
(113.561697840594 - 11.1282734326413 * z) * z))) +
z * (-860.764303783977 + z * (337.409530269367 +
z * (-178.314556207638 + (44.2040358308 -
7.92001547211682 * z) * z))))))
g08[ipos] += x2[ipos] * (5812.81456626732 + 851.226734946706 *
y[ipos]) * np.log(x[ipos])
else:
g08 = 0
gibbs = g03 + g08
elif (ns == 1) & (nt == 0) & (npr == 0):
if nonzero_SA:
g08 = (8645.36753595126 + z * (-6620.98308089678 +
z * (769.588305957198 + z * (-193.0648640214916 +
(31.6816345533648 - 5.24960313181984 * z) * z))) +
x * (-7296.43987145382 + x * (8103.20462414788 +
y * (2175.341332000392 + y * (-274.2290036817964 +
y * (197.4670779425016 + y * (-68.5590309679152 +
9.98788038278032 * y))) - 90.6734234051316 * z) +
x * (-5458.34205214835 - 980.14153344888 * y +
x * (2247.60742726704 - 340.1237483177863 * x +
220.542973797483 * y) + 180.142097805543 * z) +
z * (-219.1676534131548 + (-16.32775915649044 -
120.7020447884644 * z) * z)) +
z * (598.378809221703 + z * (-156.8822727844005 +
(204.1334828179377 - 10.23755797323846 * z) * z)) +
y * (-1480.222530425046 + z * (-525.876123559641 +
(249.57717834054571 - 88.449193048287 * z) * z) +
y * (-129.1994027934126 + z * (1149.174198007428 +
z * (-162.5751787551336 + 76.9195462169742 * z)) +
y * (-30.0682112585625 - 1380.9597954037708 * z + y *
(2.626801985426835 + 703.695562834065 * z))))) +
y * (1187.3715515697959 + z * (1458.233059470092 +
z * (-687.913805923122 + z * (249.375342232496 + z *
(-63.313928772146 + 14.09317606630898 * z)))) +
y * (1760.062705994408 + y * (-450.535298526802 +
y * (182.8520895502518 + y * (-43.3206481750622 +
4.26033941694366 * y) +
z * (-595.457483974374 + (149.452282277512 -
72.9745838003176 * z) * z)) +
z * (1388.489628266536 + z * (-409.779283929806 +
(227.123395681188 - 22.2565468652826 * z) * z))) +
z * (-1721.528607567954 + z * (674.819060538734 +
z * (-356.629112415276 + (88.4080716616 -
15.84003094423364 * z) * z))))))
g08[ipos] = g08[ipos] + (11625.62913253464 + 1702.453469893412 *
y[ipos]) * np.log(x[ipos])
gibbs = 0.5 * sfac * g08
else:
all_masked = True
elif (ns == 0) & (nt == 1) & (npr == 0):
g03 = (5.90578347909402 + z * (-270.983805184062 +
z * (776.153611613101 + z * (-196.51255088122 +
(28.9796526294175 - 2.13290083518327 * z) * z))) +
y * (-24715.571866078 + z * (2910.0729080936 +
z * (-1513.116771538718 + z * (546.959324647056 + z *
(-111.1208127634436 + 8.68841343834394 * z)))) +
y * (2210.2236124548363 + z * (-2017.52334943521 +
z * (1498.081172457456 + z * (-718.6359919632359 +
(146.4037555781616 - 4.9892131862671505 * z) * z))) +
y * (-592.743745734632 + z * (1591.873781627888 +
z * (-1207.261522487504 + (608.785486935364 -
105.4993508931208 * z) * z)) +
y * (290.12956292128547 + z * (-973.091553087975 +
z * (602.603274510125 + z * (-276.361526170076 +
32.40953340386105 * z))) +
y * (-113.90630790850321 + y * (21.35571525415769 -
67.41756835751434 * z) +
z * (381.06836198507096 + z * (-133.7383902842754 +
49.023632509086724 * z))))))))
if nonzero_SA:
g08 = x2 * (168.072408311545 + z * (729.116529735046 +
z * (-343.956902961561 + z * (124.687671116248 + z *
(-31.656964386073 + 7.04658803315449 * z)))) +
x * (-493.407510141682 + x * (543.835333000098 + x *
(-196.028306689776 + 36.7571622995805 * x) +
y * (-137.1145018408982 + y * (148.10030845687618 + y *
(-68.5590309679152 + 12.4848504784754 * y))) -
22.6683558512829 * z) + z * (-175.292041186547 +
(83.1923927801819 - 29.483064349429 * z) * z) +
y * (-86.1329351956084 + z * (766.116132004952 + z *
(-108.3834525034224 + 51.2796974779828 * z)) +
y * (-30.0682112585625 - 1380.9597954037708 * z + y *
(3.50240264723578 + 938.26075044542 * z)))) +
y * (1760.062705994408 + y * (-675.802947790203 +
y * (365.7041791005036 + y * (-108.30162043765552 +
12.78101825083098 * y) +
z * (-1190.914967948748 + (298.904564555024 -
145.9491676006352 * z) * z)) +
z * (2082.7344423998043 + z * (-614.668925894709 +
(340.685093521782 - 33.3848202979239 * z) * z))) +
z * (-1721.528607567954 + z * (674.819060538734 +
z * (-356.629112415276 + (88.4080716616 -
15.84003094423364 * z) * z)))))
g08[ipos] += 851.226734946706 * x2[ipos] * np.log(x[ipos])
gibbs = (g03 + g08) * 0.025
else:
gibbs = g03
elif (ns == 0) & (nt == 0) & (npr == 1):
g03 = (100015.695367145 + z * (-5089.1530840726 +
z * (853.5533353388611 + z * (-133.2587017014444 +
(21.0131554401542 - 3.278571068826234 * z) * z))) +
y * (-270.983805184062 + z * (1552.307223226202 +
z * (-589.53765264366 + (115.91861051767 -
10.664504175916349 * z) * z)) +
y * (1455.0364540468 + z * (-1513.116771538718 +
z * (820.438986970584 + z * (-222.2416255268872 +
21.72103359585985 * z))) +
y * (-672.50778314507 + z * (998.720781638304 +
z * (-718.6359919632359 + (195.2050074375488 -
8.31535531044525 * z) * z)) +
y * (397.968445406972 + z * (-603.630761243752 +
(456.589115201523 - 105.4993508931208 * z) * z) +
y * (-194.618310617595 + y * (63.5113936641785 -
9.63108119393062 * y +
z * (-44.5794634280918 + 24.511816254543362 * z)) +
z * (241.04130980405 + z * (-165.8169157020456 +
25.92762672308884 * z))))))))
if nonzero_SA:
g08 = x2 * (-3310.49154044839 + z * (769.588305957198 +
z * (-289.5972960322374 + (63.3632691067296 -
13.1240078295496 * z) * z)) +
x * (199.459603073901 + x * (-54.7919133532887 +
36.0284195611086 * x - 22.6683558512829 * y +
(-8.16387957824522 - 90.52653359134831 * z) * z) +
z * (-104.588181856267 + (204.1334828179377 -
13.65007729765128 * z) * z) +
y * (-175.292041186547 + (166.3847855603638 -
88.449193048287 * z) * z +
y * (383.058066002476 + y * (-460.319931801257 +
234.565187611355 * y) +
z * (-108.3834525034224 + 76.9195462169742 * z)))) +
y * (729.116529735046 + z * (-687.913805923122 +
z * (374.063013348744 + z * (-126.627857544292 +
35.23294016577245 * z))) +
y * (-860.764303783977 + y * (694.244814133268 +
y * (-297.728741987187 + (149.452282277512 -
109.46187570047641 * z) * z) +
z * (-409.779283929806 + (340.685093521782 -
44.5130937305652 * z) * z)) +
z * (674.819060538734 + z * (-534.943668622914 +
(176.8161433232 - 39.600077360584095 * z) * z)))))
else:
g08 = 0
# Pressure derivative of the Gibbs function
# in units of (J kg :sup:`-1`) (Pa :sup:`-1`) = m :sup:`3` kg :sup:`-1`
gibbs = (g03 + g08) * 1e-8
elif (ns == 1) & (nt == 1) & (npr == 0):
if nonzero_SA:
g08 = (1187.3715515697959 + z * (1458.233059470092 +
z * (-687.913805923122 + z * (249.375342232496 + z *
(-63.313928772146 + 14.09317606630898 * z)))) +
x * (-1480.222530425046 + x * (2175.341332000392 + x *
(-980.14153344888 + 220.542973797483 * x) +
y * (-548.4580073635929 + y * (592.4012338275047 + y *
(-274.2361238716608 + 49.9394019139016 * y))) -
90.6734234051316 * z) + z * (-525.876123559641 +
(249.57717834054571 - 88.449193048287 * z) * z) +
y * (-258.3988055868252 + z * (2298.348396014856 +
z * (-325.1503575102672 + 153.8390924339484 * z)) +
y * (-90.2046337756875 - 4142.8793862113125 * z + y *
(10.50720794170734 + 2814.78225133626 * z)))) +
y * (3520.125411988816 + y * (-1351.605895580406 +
y * (731.4083582010072 + y * (-216.60324087531103 +
25.56203650166196 * y) +
z * (-2381.829935897496 + (597.809129110048 -
291.8983352012704 * z) * z)) +
z * (4165.4688847996085 + z * (-1229.337851789418 +
(681.370187043564 - 66.7696405958478 * z) * z))) +
z * (-3443.057215135908 + z * (1349.638121077468 +
z * (-713.258224830552 + (176.8161433232 -
31.68006188846728 * z) * z)))))
g08[ipos] = g08[ipos] + 1702.453469893412 * np.log(x[ipos])
gibbs = 0.5 * sfac * 0.025 * g08
# FIXME: commented by FF, g110 without nan did not pass
#mask[inpos] = True
else:
all_masked = True
elif (ns == 1) & (nt == 0) & (npr == 1):
g08 = (-6620.98308089678 + z * (1539.176611914396 +
z * (-579.1945920644748 + (126.7265382134592 -
26.2480156590992 * z) * z)) +
x * (598.378809221703 + x * (-219.1676534131548 +
180.142097805543 * x - 90.6734234051316 * y +
(-32.65551831298088 - 362.10613436539325 * z) * z) +
z * (-313.764545568801 + (612.4004484538132 -
40.95023189295384 * z) * z) +
y * (-525.876123559641 + (499.15435668109143 -
265.347579144861 * z) * z +
y * (1149.174198007428 + y * (-1380.9597954037708 +
703.695562834065 * y) +
z * (-325.1503575102672 + 230.7586386509226 * z)))) +
y * (1458.233059470092 + z * (-1375.827611846244 +
z * (748.126026697488 + z * (-253.255715088584 +
70.4658803315449 * z))) +
y * (-1721.528607567954 + y * (1388.489628266536 +
y * (-595.457483974374 + (298.904564555024 -
218.92375140095282 * z) * z) +
z * (-819.558567859612 + (681.370187043564 -
89.0261874611304 * z) * z)) +
z * (1349.638121077468 + z * (-1069.887337245828 +
(353.6322866464 - 79.20015472116819 * z) * z)))))
# Derivative of the Gibbs function is in units of
# (m :sup:`3` kg :sup:`-1`) / (g kg :sup:`-1`) = m :sup:`3` g :sup:`-1`
# that is, it is the derivative of specific volume with respect to
# Absolute Salinity measured in g kg :sup:`-1`
gibbs = g08 * sfac * 0.5e-8
elif (ns == 0) & (nt == 1) & (npr == 1):
g03 = (-270.983805184062 + z * (1552.307223226202 + z *
(-589.53765264366 +
(115.91861051767 - 10.664504175916349 * z) * z)) +
y * (2910.0729080936 + z * (-3026.233543077436 +
z * (1640.877973941168 + z * (-444.4832510537744 +
43.4420671917197 * z))) +
y * (-2017.52334943521 + z * (2996.162344914912 +
z * (-2155.907975889708 + (585.6150223126464 -
24.946065931335752 * z) * z)) +
y * (1591.873781627888 + z * (-2414.523044975008 +
(1826.356460806092 - 421.9974035724832 * z) * z) +
y * (-973.091553087975 + z * (1205.20654902025 + z *
(-829.084578510228 + 129.6381336154442 * z)) +
y * (381.06836198507096 - 67.41756835751434 * y + z *
(-267.4767805685508 + 147.07089752726017 * z)))))))
if nonzero_SA:
g08 = x2 * (729.116529735046 + z * (-687.913805923122 +
z * (374.063013348744 + z * (-126.627857544292 +
35.23294016577245 * z))) +
x * (-175.292041186547 - 22.6683558512829 * x +
(166.3847855603638 - 88.449193048287 * z) * z +
y * (766.116132004952 + y * (-1380.9597954037708 +
938.26075044542 * y) +
z * (-216.7669050068448 + 153.8390924339484 * z))) +
y * (-1721.528607567954 + y * (2082.7344423998043 +
y * (-1190.914967948748 + (597.809129110048 -
437.84750280190565 * z) * z) +
z * (-1229.337851789418 + (1022.055280565346 -
133.5392811916956 * z) * z)) +
z * (1349.638121077468 + z * (-1069.887337245828 +
(353.6322866464 - 79.20015472116819 * z) * z))))
else:
g08 = 0
# Derivative of the Gibbs function is in units of (m :sup:`3` (K kg))
# that is, the pressure of the derivative in Pa.
gibbs = (g03 + g08) * 2.5e-10
elif (ns == 2) & (nt == 0) & (npr == 0):
g08 = 2.0 * (8103.20462414788 +
y * (2175.341332000392 + y * (-274.2290036817964 +
y * (197.4670779425016 + y * (-68.5590309679152 +
9.98788038278032 * y))) - 90.6734234051316 * z) +
1.5 * x * (-5458.34205214835 - 980.14153344888 * y +
(4.0 / 3.0) * x * (2247.60742726704 - 340.1237483177863 * 1.25 *
x + 220.542973797483 * y) +
180.142097805543 * z) +
z * (-219.1676534131548 + (-16.32775915649044 -
120.7020447884644 * z) * z))
if nonzero_SA:
tmp = ((-7296.43987145382 + z * (598.378809221703 +
z * (-156.8822727844005 + (204.1334828179377 -
10.23755797323846 * z) * z)) +
y * (-1480.222530425046 + z * (-525.876123559641 +
(249.57717834054571 - 88.449193048287 * z) * z) +
y * (-129.1994027934126 + z * (1149.174198007428 +
z * (-162.5751787551336 + 76.9195462169742 * z)) +
y * (-30.0682112585625 - 1380.9597954037708 * z +
y * (2.626801985426835 + 703.695562834065 * z))))) / x +
(11625.62913253464 + 1702.453469893412 * y) / x2)
g08[ipos] += tmp[ipos]
gibbs = 0.25 * sfac ** 2 * g08
elif (ns == 0) & (nt == 2) & (npr == 0):
g03 = (-24715.571866078 + z * (2910.0729080936 + z *
(-1513.116771538718 + z * (546.959324647056 + z *
(-111.1208127634436 + 8.68841343834394 * z)))) +
y * (4420.4472249096725 + z * (-4035.04669887042 +
z * (2996.162344914912 + z * (-1437.2719839264719 +
(292.8075111563232 - 9.978426372534301 * z) * z))) +
y * (-1778.231237203896 + z * (4775.621344883664 +
z * (-3621.784567462512 + (1826.356460806092 -
316.49805267936244 * z) * z)) +
y * (1160.5182516851419 + z * (-3892.3662123519 +
z * (2410.4130980405 + z * (-1105.446104680304 +
129.6381336154442 * z))) +
y * (-569.531539542516 + y * (128.13429152494615 -
404.50541014508605 * z) +
z * (1905.341809925355 + z * (-668.691951421377 +
245.11816254543362 * z)))))))
if nonzero_SA:
g08 = x2 * (1760.062705994408 + x * (-86.1329351956084 +
x * (-137.1145018408982 + y * (296.20061691375236 +
y * (-205.67709290374563 + 49.9394019139016 * y))) +
z * (766.116132004952 + z * (-108.3834525034224 +
51.2796974779828 * z)) +
y * (-60.136422517125 - 2761.9195908075417 * z +
y * (10.50720794170734 + 2814.78225133626 * z))) +
y * (-1351.605895580406 + y * (1097.1125373015109 +
y * (-433.20648175062206 + 63.905091254154904 * y) +
z * (-3572.7449038462437 + (896.713693665072 -
437.84750280190565 * z) * z)) +
z * (4165.4688847996085 + z * (-1229.337851789418 +
(681.370187043564 - 66.7696405958478 * z) * z))) +
z * (-1721.528607567954 + z * (674.819060538734 +
z * (-356.629112415276 + (88.4080716616 -
15.84003094423364 * z) * z))))
else:
g08 = 0
gibbs = (g03 + g08) * 0.000625
elif (ns == 0) & (nt == 0) & (npr == 2):
g03 = (-5089.1530840726 + z * (1707.1066706777221 +
z * (-399.7761051043332 + (84.0526217606168 -
16.39285534413117 * z) * z)) +
y * (1552.307223226202 + z * (-1179.07530528732 +
(347.75583155301 - 42.658016703665396 * z) * z) +
y * (-1513.116771538718 + z * (1640.877973941168 +
z * (-666.7248765806615 + 86.8841343834394 * z)) +
y * (998.720781638304 + z * (-1437.2719839264719 +
(585.6150223126464 - 33.261421241781 * z) * z) +
y * (-603.630761243752 + (913.178230403046 -
316.49805267936244 * z) * z +
y * (241.04130980405 + y * (-44.5794634280918 +
49.023632509086724 * z) +
z * (-331.6338314040912 + 77.78288016926652 * z)))))))
if nonzero_SA:
g08 = x2 * (769.588305957198 + z * (-579.1945920644748 +
(190.08980732018878 - 52.4960313181984 * z) * z) +
x * (-104.588181856267 + x * (-8.16387957824522 -
181.05306718269662 * z) +
(408.2669656358754 - 40.95023189295384 * z) * z +
y * (166.3847855603638 - 176.898386096574 * z + y *
(-108.3834525034224 + 153.8390924339484 * z))) +
y * (-687.913805923122 + z * (748.126026697488 +
z * (-379.883572632876 + 140.9317606630898 * z)) +
y * (674.819060538734 + z * (-1069.887337245828 +
(530.4484299696 - 158.40030944233638 * z) * z) +
y * (-409.779283929806 + y * (149.452282277512 -
218.92375140095282 * z) +
(681.370187043564 - 133.5392811916956 * z) * z))))
else:
g08 = 0
# Second derivative of the Gibbs function with respect to pressure,
# measured in Pa; units of (J kg :sup:`-1`) (Pa :sup:`-2`).
gibbs = (g03 + g08) * 1e-16
else:
raise ValueError('Illegal derivative of the Gibbs function')
gibbs = np.ma.array(gibbs, mask=mask, copy=False)
# BÅ: Code below is not needed?
#if all_masked:
# gibbs[:] = np.ma.masked
# Do not allow zero salinity with salinity derivatives
if ns > 0:
gibbs = np.ma.masked_where(SA == 0, gibbs)
return gibbs
def entropy_part(SA, t, p):
r"""Calculates entropy, except that it does not evaluate any terms that are
functions of Absolute Salinity alone.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
t : array_like
in situ temperature [:math:`^\circ` C (ITS-90)]
p : array_like
pressure [dbar]
Returns
-------
entropy_part : array_like
entropy minus the terms that due to SA alone
[J kg :sup:`-1` K :sup:`-1`]
Notes
-----
By not calculating these terms, which are a function only of Absolute
Salinity, several unnecessary computations are avoided (including saving
the computation of a natural logarithm). These terms are a necessary part
of entropy, but are not needed when calculating potential temperature from
in situ temperature.
Modifications:
"""
SA, t, p, mask = strip_mask(SA, t, p)
x2 = sfac * SA
x = np.sqrt(x2)
y = t * 0.025
z = p * 1e-4
g03 = (z * (-270.983805184062 +
z * (776.153611613101 + z * (-196.51255088122 + (28.9796526294175 -
2.13290083518327 * z) * z))) +
y * (-24715.571866078 + z * (2910.0729080936 +
z * (-1513.116771538718 + z * (546.959324647056 + z *
(-111.1208127634436 + 8.68841343834394 * z)))) +
y * (2210.2236124548363 + z * (-2017.52334943521 +
z * (1498.081172457456 + z * (-718.6359919632359 +
(146.4037555781616 - 4.9892131862671505 * z) * z))) +
y * (-592.743745734632 + z * (1591.873781627888 +
z * (-1207.261522487504 + (608.785486935364 -
105.4993508931208 * z) * z)) +
y * (290.12956292128547 + z * (-973.091553087975 +
z * (602.603274510125 + z * (-276.361526170076 +
32.40953340386105 * z))) +
y * (-113.90630790850321 + y *
(21.35571525415769 - 67.41756835751434 * z) +
z * (381.06836198507096 + z * (-133.7383902842754 +
49.023632509086724 * z))))))))
# TODO? short-circuit this if SA is zero
g08 = x2 * (z * (729.116529735046 +
z * (-343.956902961561 + z * (124.687671116248 + z * (-31.656964386073 +
7.04658803315449 * z)))) +
x * (x * (y * (-137.1145018408982 + y * (148.10030845687618 +
y * (-68.5590309679152 + 12.4848504784754 * y))) -
22.6683558512829 * z) + z * (-175.292041186547 +
(83.1923927801819 - 29.483064349429 * z) * z) +
y * (-86.1329351956084 + z * (766.116132004952 +
z * (-108.3834525034224 + 51.2796974779828 * z)) +
y * (-30.0682112585625 - 1380.9597954037708 * z +
y * (3.50240264723578 + 938.26075044542 * z)))) +
y * (1760.062705994408 + y * (-675.802947790203 +
y * (365.7041791005036 + y * (-108.30162043765552 +
12.78101825083098 * y) +
z * (-1190.914967948748 + (298.904564555024 -
145.9491676006352 * z) * z)) +
z * (2082.7344423998043 + z * (-614.668925894709 +
(340.685093521782 - 33.3848202979239 * z) * z))) +
z * (-1721.528607567954 + z * (674.819060538734 +
z * (-356.629112415276 + (88.4080716616 -
15.84003094423364 * z) * z)))))
entropy_part = -(g03 + g08) * 0.025
return np.ma.array(entropy_part, mask=mask, copy=False)
def gibbs_pt0_pt0(SA, pt0):
r"""Calculates the second derivative of the specific Gibbs function with
respect to temperature at zero sea pressure or _gibbs(0,2,0,SA,t,0).
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
pt0 : array_like
potential temperature relative to 0 dbar [:math:`^\circ` C (ITS-90)]
Returns
-------
gibbs_pt0_pt0 : array_like
TODO: write the eq. for the second derivative of the
specific Gibbs function. FIXME: [units]
Notes
-----
This library function is called by both "pt_from_CT(SA,CT)"
and "pt0_from_t(SA,t,p)".
Modifications:
"""
SA, pt0, mask = strip_mask(SA, pt0)
x2 = sfac * SA
x = np.sqrt(x2)
y = pt0 * 0.025
g03 = (-24715.571866078 +
y * (4420.4472249096725 +
y * (-1778.231237203896 +
y * (1160.5182516851419 +
y * (-569.531539542516 + y * 128.13429152494615)))))
g08 = x2 * (1760.062705994408 + x * (-86.1329351956084 +
x * (-137.1145018408982 + y * (296.20061691375236 +
y * (-205.67709290374563 + 49.9394019139016 * y))) +
y * (-60.136422517125 + y * 10.50720794170734)) +
y * (-1351.605895580406 + y * (1097.1125373015109 +
y * (-433.20648175062206 + 63.905091254154904 * y))))
gibbs_pt0_pt0 = (g03 + g08) * 0.000625
return np.ma.array(gibbs_pt0_pt0, mask=mask, copy=False)
def entropy_part_zerop(SA, pt0):
r"""Calculates entropy at a sea surface (p = 0 dbar), except that it does
not evaluate any terms that are functions of Absolute Salinity alone.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
pt0 : array_like
potential temperature relative to 0 dbar [:math:`^\circ` C (ITS-90)]
Returns
-------
entropy_part_zerop : array_like
[J kg :sup:`-1` K :sup:`-1`]
Notes
-----
By not calculating these terms, which are a function only of Absolute
Salinity, several unnecessary computations are avoided (including saving
the computation of a natural logarithm). These terms are a necessary part
of entropy, but are not needed when calculating potential temperature from
in situ temperature.
Modifications:
"""
SA, pt0, mask = strip_mask(SA, pt0)
x2 = sfac * SA
x = np.sqrt(x2)
y = pt0 * 0.025
g03 = y * (-24715.571866078 + y * (2210.2236124548363 +
y * (-592.743745734632 + y * (290.12956292128547 +
y * (-113.90630790850321 + y * 21.35571525415769)))))
g08 = x2 * (x * (x * (y * (-137.1145018408982 + y *
(148.10030845687618 +
y * (-68.5590309679152 + 12.4848504784754 * y)))) +
y * (-86.1329351956084 + y * (-30.0682112585625 + y *
3.50240264723578))) +
y * (1760.062705994408 + y * (-675.802947790203 +
y * (365.7041791005036 + y * (-108.30162043765552 +
12.78101825083098 * y)))))
entropy_part_zerop = -(g03 + g08) * 0.025
return np.ma.array(entropy_part_zerop, mask=mask, copy=False)
# FIXME: Check if this is still used and remove it.
def enthalpy_SSO_0_CT25(p):
r"""Calculates enthalpy at the Standard Ocean Salinity (SSO) and at a
Conservative Temperature of zero degrees C (CT=0), as a function of
pressure (p [dbar]) or enthalpy_CT25(35.16504,0,p).
Parameters
----------
p : array_like
pressure [dbar]
Returns
-------
enthalpy_CT25 : array_like
enthalpy_CT25 at (SSO, CT = 0, p), 25-term equation.
[J kg :sup:`-1`]
Notes
-----
Uses a streamlined version of the 25-term CT version of the Gibbs function,
that is, a streamlined version of the code "enthalpy_CT25(SA,CT,p)"
Modifications:
"""
p = np.asanyarray(p)
mask = np.ma.getmask(p)
p = np.ma.filled(p, 0)
a0 = 1 + SSO * (2.0777716085618458e-3 + np.sqrt(SSO) *
3.4688210757917340e-6)
a1 = 6.8314629554123324e-6
b0 = 9.9984380290708214e2 + SSO * (2.8925731541277653e0 + SSO *
1.9457531751183059e-3)
b1 = 0.5 * (1.1930681818531748e-2 + SSO * 5.9355685925035653e-6)
b2 = -2.5943389807429039e-8
A = b1 - np.sqrt(b1 ** 2 - b0 * b2)
B = b1 + np.sqrt(b1 ** 2 - b0 * b2)
part = (a0 * b2 - a1 * b1) / (b2 * (B - A))
enthalpy_SSO_0_CT25 = db2Pascal * ((a1 / (2 * b2)) *
np.log(1 + p * (2 * b1 + b2 * p) / b0) + part *
np.log(1 + (b2 * p * (B - A)) / (A * (B + b2 * p))))
return np.ma.array(enthalpy_SSO_0_CT25, mask=mask, copy=False)
# FIXME: Check if this is still used and remove it.
def specvol_SSO_0_CT25(p):
r"""Calculates specific volume at the Standard Ocean Salinity (SSO) and
Conservative Temperature of zero degrees C (CT=0), as a function of
pressure (p [dbar]) or spec_vol_CT25(35.16504,0,p).
Parameters
----------
p : array_like
pressure [dbar]
Returns
-------
specvol_SSO_0_CT25 : array_like
Specific volume at (SSO, CT=0, p), 25-term equation.
[m :sup:`3` kg :sup:`-1`]
Notes
-----
It uses a streamlined version of the 25-term CT version of specific volume
that is, a streamlined version of the code "rho_alpha_beta_CT25(SA,CT,p)"
Modifications
"""
p = np.asanyarray(p)
# No need to strip mask and replace it here; the calculation is simple.
specvol_SSO_0_CT25 = ((1.00000000e+00 + SSO * (2.0777716085618458e-003 +
np.sqrt(SSO) * 3.4688210757917340e-006) + p * 6.8314629554123324e-006) /
(9.9984380290708214e+002 + SSO * (2.8925731541277653e+000 + SSO *
1.9457531751183059e-003) + p * (1.1930681818531748e-002 + SSO *
5.9355685925035653e-006 + p * -2.5943389807429039e-008)))
return specvol_SSO_0_CT25
# Salinity lib functions
def in_Baltic(lon, lat):
"""Check if positions are in the Baltic Sea
Parameters
----------
lon, lat : array_like or masked arrays
Returns
-------
in_Baltic : boolean array (at least 1D)
True for points in the Baltic Sea
False for points outside, masked or NaN
"""
lon, lat = np.atleast_1d(lon, lat)
# Polygon bounding the Baltic, (xb, yb)
# Effective boundary is the intersection of this polygon
# with rectangle defined by xmin, xmax, ymin, ymax
#
# start with southwestern point and go round cyclonically
xb = np.array([12.6, 45.0, 26.0, 7.0, 12.6])
yb = np.array([50.0, 50.0, 69.0, 59.0, 50.0])
# Enclosing rectangle
#xmin, xmax = xb.min(), xb.max()
#ymin, ymax = yb.min(), yb.max()
xmin, xmax = 7.0, 32.0
ymin, ymax = 52.0, 67.0
# First check if outside the rectangle
in_rectangle = ((xmin < lon) & (lon < xmax) &
(ymin < lat) & (lat < ymax))
# Masked values are also considered outside the rectangle
if np.ma.is_masked(in_rectangle):
in_rectangle = in_rectangle.data & ~in_rectangle.mask
# Closer check for points in the rectangle
if np.any(in_rectangle):
lon, lat = np.broadcast_arrays(lon, lat)
in_baltic = np.zeros(lon.shape, dtype='bool')
lon1 = lon[in_rectangle]
lat1 = lat[in_rectangle]
# There are general ways of testing for point in polygon
# This works for this special configuration of points
xx_right = np.interp(lat1, yb[1:3], xb[1:3])
xx_left = np.interp(lat1, yb[-1:1:-1], xb[-1:1:-1])
in_baltic[in_rectangle] = (xx_left <= lon1) & (lon1 <= xx_right)
return in_baltic
else: # Nothing inside the rectangle, return the False array.
return in_rectangle
def SP_from_SA_Baltic(SA, lon, lat):
r"""Calculates Practical Salinity (SP) for the Baltic Sea, from a value
computed analytically from Absolute Salinity.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
lon : array_like
decimal degrees east [0..+360]
lat : array_like
decimal degrees (+ve N, -ve S) [-90..+90]
Returns
-------
SP_baltic : array_like
salinity [psu (PSS-78)], unitless
See Also
--------
SP_from_SA, SP_from_Sstar
Notes
-----
This program will only produce Practical Salinity values for the Baltic
Sea.
Examples
--------
>>> import gsw.library as lib
>>> SA = [6.6699, 6.7738, 6.9130, 7.3661, 7.5862, 10.3895]
>>> lon, lat = 20, 59
>>> lat = 59
>>> lib.SP_from_SA_Baltic(SA, lon, lat)
masked_array(data = [6.56825466873 6.67192351682 6.8108138311 7.26290579519 7.4825161269
10.2795794748],
mask = [False False False False False False],
fill_value = 1e+20)
<BLANKLINE>
References
----------
.. [1] Feistel, R., S. Weinreben, H. Wolf, S. Seitz, P. Spitzer, B. Adel,
G. Nausch, B. Schneider and D. G. Wright, 2010c: Density and Absolute
Salinity of the Baltic Sea 2006-2009. Ocean Science, 6, 3-24.
http://www.ocean-sci.net/6/3/2010/os-6-3-2010.pdf
.. [2] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
.. [3] McDougall, T.J., D.R. Jackett and F.J. Millero, 2010: An algorithm
for estimating Absolute Salinity in the global ocean. Submitted to Ocean
Science. A preliminary version is available at Ocean Sci. Discuss.,
6, 215-242.
http://www.ocean-sci-discuss.net/6/215/2009/osd-6-215-2009-print.pdf
Modifications:
2010-07-23. David Jackett, Trevor McDougall & Paul Barker
"""
SA, lon, lat = list(map(np.ma.masked_invalid, (SA, lon, lat)))
lon, lat, SA = np.broadcast_arrays(lon, lat, SA)
inds_baltic = in_Baltic(lon, lat)
if not inds_baltic.sum():
return None
SP_baltic = np.ma.masked_all(SA.shape, dtype=np.float)
SP_baltic[inds_baltic] = ((35 / (SSO - 0.087)) *
(SA[inds_baltic] - 0.087))
return SP_baltic
# FIXME: Check if this is still used and remove it.
def SP_from_SA_Baltic_old(SA, lon, lat):
r"""Calculates Practical Salinity (SP) for the Baltic Sea, from a value
computed analytically from Absolute Salinity.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
lon : array_like
decimal degrees east [0..+360]
lat : array_like
decimal degrees (+ve N, -ve S) [-90..+90]
Returns
-------
SP_baltic : array_like
salinity [psu (PSS-78)], unitless
See Also
--------
SP_from_SA, SP_from_Sstar
Notes
-----
This program will only produce Practical Salinity values for the Baltic
Sea.
Examples
--------
>>> import gsw.library as lib
>>> SA = [6.6699, 6.7738, 6.9130, 7.3661, 7.5862, 10.3895]
>>> lon, lat = 20, 59
>>> lat = 59
>>> lib.SP_from_SA_Baltic(SA, lon, lat)
masked_array(data = [6.56825466873 6.67192351682 6.8108138311 7.26290579519 7.4825161269
10.2795794748],
mask = [False False False False False False],
fill_value = 1e+20)
<BLANKLINE>
References
----------
.. [1] Feistel, R., S. Weinreben, H. Wolf, S. Seitz, P. Spitzer, B. Adel,
G. Nausch, B. Schneider and D. G. Wright, 2010c: Density and Absolute
Salinity of the Baltic Sea 2006-2009. Ocean Science, 6, 3-24.
http://www.ocean-sci.net/6/3/2010/os-6-3-2010.pdf
.. [2] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
.. [3] McDougall, T.J., D.R. Jackett and F.J. Millero, 2010: An algorithm
for estimating Absolute Salinity in the global ocean. Submitted to Ocean
Science. A preliminary version is available at Ocean Sci. Discuss.,
6, 215-242.
http://www.ocean-sci-discuss.net/6/215/2009/osd-6-215-2009-print.pdf
Modifications:
2010-07-23. David Jackett, Trevor McDougall & Paul Barker
"""
SA, lon, lat = list(map(np.ma.masked_invalid, (SA, lon, lat)))
lon, lat, SA = np.broadcast_arrays(lon, lat, SA)
xb1, xb2, xb3 = 12.6, 7., 26.
xb1a, xb3a = 45., 26.
yb1, yb2, yb3 = 50., 59., 69.
inds_baltic = (xb2 < lon) & (lon < xb1a) & (yb1 < lat) & (lat < yb3)
if not inds_baltic.sum():
return None
SP_baltic = np.ma.masked_all(SA.shape, dtype=np.float)
xx_left = np.interp(lat[inds_baltic], [yb1, yb2, yb3], [xb1, xb2, xb3])
xx_right = np.interp(lat[inds_baltic], [yb1, yb3], [xb1a, xb3a])
inds_baltic1 = ((xx_left <= lon[inds_baltic])
& (lon[inds_baltic] <= xx_right))
if not inds_baltic1.sum():
return None
SP_baltic[inds_baltic[inds_baltic1]] = ((35 / (SSO - 0.087))
* (SA[inds_baltic[inds_baltic1]] - 0.087))
return SP_baltic
def SA_from_SP_Baltic(SP, lon, lat):
r"""Computes absolute salinity from practical in the Baltic Sea.
Parameters
----------
SP : array_like or masked array
Practical salinity (PSS-78)
lon, lat : array_like or masked arrays
geographical position
Returns
-------
SA : masked array, at least 1D
Absolute salinity [g/kg]
masked where inputs are masked or position outside the Baltic
"""
# Handle masked array input
input_mask = False
if np.ma.is_masked(SP):
input_mask = input_mask | SP.mask
if np.ma.is_masked(lon):
input_mask = input_mask | lon.mask
if np.ma.is_masked(lat):
input_mask = input_mask | lat.mask
SP, lon, lat = list(map(np.atleast_1d, (SP, lon, lat)))
SP, lon, lat = np.broadcast_arrays(SP, lon, lat)
inds_baltic = in_Baltic(lon, lat)
#SA_baltic = np.ma.masked_all(SP.shape, dtype=np.float)
all_nans = np.nan + np.zeros_like(SP)
SA_baltic = np.ma.MaskedArray(all_nans, mask=~inds_baltic)
if np.any(inds_baltic):
SA_baltic[inds_baltic] = (((SSO - 0.087) / 35) *
SP[inds_baltic] + 0.087)
SA_baltic.mask = SA_baltic.mask | input_mask | np.isnan(SP)
return SA_baltic
class SA_table(object):
"""
TODO: Write docstring.
"""
# Central America barrier
x_ca = np.array([260.0, 272.59, 276.5, 278.65, 280.73, 295.217])
y_ca = np.array([19.55, 13.97, 9.6, 8.1, 9.33, 0.0])
def __init__(self, fname="gsw_data_v3_0.npz",
max_p_fudge=10000,
min_frac=0):
self.fname = fname
self.max_p_fudge = max_p_fudge
self.min_frac = min_frac
data = read_data(fname)
# Make the order x, y, z:
temp = data.delta_SA_ref.transpose((2, 1, 0)).copy()
self.dsa = np.ma.masked_invalid(temp)
self.dsa.data[self.dsa.mask] = 0
self.lon = data.longs_ref.astype(np.float)
self.lat = data.lats_ref.astype(np.float)
self.p = data.p_ref # Depth levels
# ndepth from the file disagrees with the unmasked count from
# delta_SA_ref in a few places; this should be fixed in the
# file, but for now we will simply calculate ndepth directly from
# delta_SA_ref.
#self.ndepth = np.ma.masked_invalid(data.ndepth_ref.T).astype(np.int8)
ndepth = self.dsa.count(axis=-1)
self.ndepth = np.ma.masked_equal(ndepth, 0)
self.dlon = self.lon[1] - self.lon[0]
self.dlat = self.lat[1] - self.lat[0]
self.i_ca, self.j_ca = self.xy_to_ij(self.x_ca, self.y_ca)
def xy_to_ij(self, x, y):
"""
Convert from lat/lon to grid index coordinates,
without truncation or rounding.
"""
i = (x - self.lon[0]) / self.dlon
j = (y - self.lat[0]) / self.dlat
return i, j
def _central_america(self, di, dj, ii, jj, gm):
"""
Use a line running through Central America to zero
the goodmask for grid points in the Pacific forming
the grid box around input locations in the Atlantic,
and vice-versa.
"""
ix, jy = ii[0] + di, jj[0] + dj # Reconstruction: minor inefficiency.
inear = ((ix >= self.i_ca[0]) & (ix <= self.i_ca[-1])
& (jy >= self.j_ca[-1]) & (jy <= self.j_ca[0]))
if not inear.any():
return gm
inear_ind = inear.nonzero()[0]
ix = ix[inear]
jy = jy[inear]
ii = ii[:, inear]
jj = jj[:, inear]
jy_ca = np.interp(ix, self.i_ca, self.j_ca)
above = jy - jy_ca # > 0 if input point is above dividing line
# Intersections of left and right grid lines with dividing line
jleft_ca = np.interp(ii[0], self.i_ca, self.j_ca)
jright_ca = np.interp(ii[1], self.i_ca, self.j_ca)
jgrid_ca = [jleft_ca, jright_ca, jright_ca, jleft_ca]
# Zero the goodmask for grid points on opposite side of divider
for i in range(4):
opposite = (above * (jj[i] - jgrid_ca[i])) < 0
gm[i, inear_ind[opposite]] = 0
return gm
def xy_interp(self, di, dj, ii, jj, k):
"""
2-D interpolation, bilinear if all 4 surrounding
grid points are present, but treating missing points
as having the average value of the remaining grid
points. This matches the matlab V2 behavior.
"""
# Array of weights, CCW around the grid box
w = np.vstack(((1 - di) * (1 - dj), # lower left
di * (1 - dj), # lower right
di * dj, # upper right
(1 - di) * dj)) # upper left
gm = ~self.dsa.mask[ii, jj, k] # gm is "goodmask"
gm = self._central_america(di, dj, ii, jj, gm)
# Save a measure of real interpolation quality.
frac = (w * gm).sum(axis=0)
# Now loosen the interpolation, allowing a value to
# be calculated on a grid point that is masked.
# This matches the matlab gsw version 2 behavior.
jm_partial = gm.any(axis=0) & (~(gm.all(axis=0)))
# The weights of the unmasked points will be increased
# by the sum of the weights of the masked points divided
# by the number of unmasked points in the grid square.
# This is equivalent to setting the masked data values
# to the average of the unmasked values, and then
# unmasking, which is the matlab v2 implementation.
if jm_partial.any():
w_bad = w * (~gm)
w[:, jm_partial] += (w_bad[:, jm_partial].sum(axis=0) /
gm[:, jm_partial].sum(axis=0))
w *= gm
wsum = w.sum(axis=0)
valid = wsum > 0 # Only need to prevent division by zero here.
w[:, valid] /= wsum[:, valid]
w[:, ~valid] = 0
vv = self.dsa.data[ii, jj, k]
vv *= w
dsa = vv.sum(axis=0)
return dsa, frac
def delta_SA(self, p, lon, lat):
r"""Table lookup of salinity anomaly, given pressure, lon, and lat."""
p = np.ma.masked_less(p, 0)
mask_in = np.ma.mask_or(np.ma.getmask(p), np.ma.getmask(lon))
mask_in = np.ma.mask_or(mask_in, np.ma.getmask(lat))
p, lon, lat = [np.ma.filled(a, 0).astype(float) for a in (p, lon, lat)]
p, lon, lat = np.broadcast_arrays(p, lon, lat)
if p.ndim > 1:
shape_in = p.shape
p, lon, lat = list(map(np.ravel, (p, lon, lat)))
reshaped = True
else:
reshaped = False
p_orig = p.copy() # Save for comparison to clipped p.
ix0, iy0 = self.xy_to_ij(lon, lat)
i0raw = np.floor(ix0).astype(int)
i0 = np.clip(i0raw, 0, len(self.lon) - 2)
di = ix0 - i0
j0raw = np.floor(iy0).astype(int)
j0 = np.clip(j0raw, 0, len(self.lat) - 2)
dj = iy0 - j0
# Start at lower left and go CCW; match order in _xy_interp.
ii = np.vstack((i0, i0 + 1, i0 + 1, i0))
jj = np.vstack((j0, j0, j0 + 1, j0 + 1))
k1 = np.searchsorted(self.p, p, side='right')
# Clip p and k1 at max p of grid cell.
kmax = (self.ndepth[ii, jj].max(axis=0) - 1)
mask_out = kmax.mask
kmax = kmax.filled(1)
clip_p = (p >= self.p[kmax])
p[clip_p] = self.p[kmax[clip_p]]
k1[clip_p] = kmax[clip_p]
k0 = k1 - 1
dsa0, frac0 = self.xy_interp(di, dj, ii, jj, k0)
dsa1, frac1 = self.xy_interp(di, dj, ii, jj, k1)
dp = np.diff(self.p)
pfrac = (p - self.p[k0]) / dp[k0]
delta_SA = dsa0 * (1 - pfrac) + dsa1 * pfrac
# Save intermediate results in case we are curious about
# them; the frac values are most likely to be useful.
# We won't bother to reshape them, though, and we may
# delete them later.
self.dsa0 = dsa0
self.frac0 = frac0
self.dsa1 = dsa1
self.frac1 = frac1
self.pfrac = pfrac
self.p_fudge = p_orig - p
# Editing options, in case we don't want to use
# values calculated from the wrong pressure, or from
# an incomplete SA table grid square.
mask_out |= self.p_fudge > self.max_p_fudge
mask_out |= self.frac1 < self.min_frac
delta_SA = np.ma.array(delta_SA, mask=mask_out, copy=False)
if reshaped:
delta_SA.shape = shape_in
self.p_fudge.shape = shape_in
if mask_in is not np.ma.nomask:
delta_SA = np.ma.array(delta_SA, mask=mask_in, copy=False)
return delta_SA
@match_args_return
def SAAR(p, lon, lat):
r"""Absolute Salinity Anomaly Ratio (excluding the Baltic Sea).
Calculates the Absolute Salinity Anomaly Ratio, SAAR, in the open ocean
by spatially interpolating the global reference data set of SAAR to the
location of the seawater sample.
This function uses version 3.0 of the SAAR look up table.
Parameters
----------
p : array_like
pressure [dbar]
lon : array_like
decimal degrees east (will be treated modulo 360)
lat : array_like
decimal degrees (+ve N, -ve S) [-90..+90]
Returns
-------
SAAR : masked array; masked where no nearby ocean is found in data
Absolute Salinity Anomaly Ratio [unitless] FIXME: [g kg :sup:`-1`]?
Notes
-----
The Absolute Salinity Anomaly Ratio in the Baltic Sea is evaluated
separately, since it is a function of Practical Salinity, not of space.
The present function returns a SAAR of zero for data in the Baltic Sea.
The correct way of calculating Absolute Salinity in the Baltic Sea is by
calling SA_from_SP.
The mask is only set when the observation is well and truly on dry
land; often the warning flag is not set until one is several hundred
kilometers inland from the coast.
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
.. [2] McDougall, T.J., D.R. Jackett and F.J. Millero, 2010: An algorithm
for estimating Absolute Salinity in the global ocean. Submitted to Ocean
Science. A preliminary version is available at Ocean Sci. Discuss.,
6, 215-242.
http://www.ocean-sci-discuss.net/6/215/2009/osd-6-215-2009-print.pdf
The algorithm is taken from the matlab implementation of the references,
but the numpy implementation here differs substantially from the
matlab implementation.
Modifications:
"""
#FIXME: Compare old delta_SA with new SAAR.
return SA_table().delta_SA(p, lon, lat)
def infunnel(SA, CT, p):
r"""Oceanographic funnel check for the 25-term equation
Parameters
----------
SA : array_like
Absolute Salinity [g/kg]
CT : array_like
Conservative Temperature [°C]
p : array_like
sea pressure [dbar]
(ie. absolute pressure - 10.1325 dbar)
Returns
-------
in_funnel : boolean ndarray or scalar
True, if SA, CT and p are inside the "funnel"
False, if SA, CT and p are outside the "funnel",
or one of the values are NaN or masked
Note. The term "funnel" describes the range of SA, CT and p over which
the error in the fit of the computationally-efficient 25-term
expression for density in terms of SA, CT and p was calculated
(McDougall et al., 2010).
author:
Trevor McDougall and Paul Barker
2011-02-27: Bjørn Ådlandsvik, python version
"""
# Check variables and resize if necessary
scalar = np.isscalar(SA) and np.isscalar(CT) and np.isscalar(p)
SA, CT, p = np.broadcast_arrays(SA, CT, p)
input_nan = np.isnan(SA) | np.isnan(CT) | np.isnan(p)
infunnel = ((p <= 8000) &
(SA >= 0) &
(SA <= 42.2) &
(CT >= (-0.3595467 - 0.0553734 * SA)) &
((p >= 5500) | (SA >= 0.006028 * (p - 500))) &
((p >= 5500) | (CT <= (33.0 - 0.003818181818182 * p))) &
((p <= 5500) | (SA >= 30.14)) &
((p <= 5500) | (CT <= 12.0)))
infunnel = infunnel & np.logical_not(input_nan)
if scalar:
infunnel = bool(infunnel)
return infunnel
@match_args_return
def Hill_ratio_at_SP2(t):
r"""TODO: Write docstring
Hill ratio at SP = 2
"""
# USAGE:
# Hill_ratio = Hill_ratio_at_SP2(t)
#
# DESCRIPTION:
# Calculates the Hill ratio, which is the adjustment needed to apply for
# Practical Salinities smaller than 2. This ratio is defined at a
# Practical Salinity = 2 and in-situ temperature, t using PSS-78. The Hill
# ratio is the ratio of 2 to the output of the Hill et al. (1986) formula
# for Practical Salinity at the conductivity ratio, Rt, at which Practical
# Salinity on the PSS-78 scale is exactly 2.
#
# INPUT:
# t = in-situ temperature (ITS-90) [ deg C ]
#
# OUTPUT:
# Hill_ratio = Hill ratio at SP of 2 [ unitless ]
#
# AUTHOR:
# Trevor McDougall and Paul Barker
#
# VERSION NUMBER: 3.0 (26th March, 2011)
SP2 = 2 * np.ones_like(t)
#------------------------------
# Start of the calculation
#------------------------------
a0 = 0.0080
a1 = -0.1692
a2 = 25.3851
a3 = 14.0941
a4 = -7.0261
a5 = 2.7081
b0 = 0.0005
b1 = -0.0056
b2 = -0.0066
b3 = -0.0375
b4 = 0.0636
b5 = -0.0144
g0 = 2.641463563366498e-1
g1 = 2.007883247811176e-4
g2 = -4.107694432853053e-6
g3 = 8.401670882091225e-8
g4 = -1.711392021989210e-9
g5 = 3.374193893377380e-11
g6 = -5.923731174730784e-13
g7 = 8.057771569962299e-15
g8 = -7.054313817447962e-17
g9 = 2.859992717347235e-19
k = 0.0162
t68 = t * 1.00024
ft68 = (t68 - 15) / (1 + k * (t68 - 15))
#--------------------------------------------------------------------------
# Find the initial estimates of Rtx (Rtx0) and of the derivative dSP_dRtx
# at SP = 2.
#--------------------------------------------------------------------------
Rtx0 = g0 + t68 * (g1 + t68 * (g2 + t68 * (g3 + t68 * (g4 + t68 * (g5
+ t68 * (g6 + t68 * (g7 + t68 * (g8 + t68 * g9))))))))
dSP_dRtx = (a1 + (2 * a2 + (3 * a3 + (4 * a4 + 5 * a5 * Rtx0) * Rtx0) *
Rtx0) * Rtx0 + ft68 * (b1 + (2 * b2 + (3 * b3 + (4 * b4 + 5 * b5 * Rtx0) *
Rtx0) * Rtx0) * Rtx0))
#--------------------------------------------------------------------------
# Begin a single modified Newton-Raphson iteration to find Rt at SP = 2.
#--------------------------------------------------------------------------
SP_est = (a0 + (a1 + (a2 + (a3 + (a4 + a5 * Rtx0) * Rtx0) * Rtx0) * Rtx0) *
Rtx0 + ft68 * (b0 + (b1 + (b2 + (b3 + (b4 + b5 * Rtx0) * Rtx0) * Rtx0) *
Rtx0) * Rtx0))
Rtx = Rtx0 - (SP_est - SP2) / dSP_dRtx
Rtxm = 0.5 * (Rtx + Rtx0)
dSP_dRtx = (a1 + (2 * a2 + (3 * a3 + (4 * a4 + 5 * a5 * Rtxm) * Rtxm) *
Rtxm) * Rtxm + ft68 * (b1 + (2 * b2 + (3 * b3 + (4 * b4 + 5 * b5 * Rtxm) *
Rtxm) * Rtxm) * Rtxm))
Rtx = Rtx0 - (SP_est - SP2) / dSP_dRtx
# This is the end of one full iteration of the modified Newton-Raphson
# iterative equation solver. The error in Rtx at this point is equivalent
# to an error in SP of 9e-16 psu.
x = 400 * Rtx * Rtx
sqrty = 10 * Rtx
part1 = 1 + x * (1.5 + x)
part2 = 1 + sqrty * (1 + sqrty * (1 + sqrty))
SP_Hill_raw_at_SP2 = SP2 - a0 / part1 - b0 * ft68 / part2
return 2. / SP_Hill_raw_at_SP2
def interp_S_T(S, T, z, znew, P=None):
r"""Linear interpolation of ndarrays *S* and *T* from *z* to *znew*.
Optionally interpolate a third ndarray, *P*.
*z* must be strictly increasing or strictly decreasing. It must
be a 1-D array, and its length must match the last dimension
of *S* and *T*.
*znew* may be a scalar or a sequence.
It is assumed, but not checked, that *S*, *T*, and *z* are
all plain ndarrays, not masked arrays or other sequences.
Out-of-range values of *znew*, and *nan* in *S* and *T*,
yield corresponding *nan* in the output.
The basic algorithm is from scipy.interpolate.
"""
isscalar = False
if not np.iterable(znew):
isscalar = True
znew = [znew]
znew = np.asarray(znew)
inverted = False
if z[1] - z[0] < 0:
inverted = True
z = z[::-1]
S = S[..., ::-1]
T = T[..., ::-1]
if P is not None:
P = P[..., ::-1]
if (np.diff(z) <= 0).any():
raise ValueError("z must be strictly increasing or decreasing")
hi = np.searchsorted(z, znew)
hi = hi.clip(1, len(z) - 1).astype(int)
lo = hi - 1
z_lo = z[lo]
z_hi = z[hi]
S_lo = S[lo]
S_hi = S[hi]
T_lo = T[lo]
T_hi = T[hi]
zratio = (znew - z_lo) / (z_hi - z_lo)
Si = S_lo + (S_hi - S_lo) * zratio
Ti = T_lo + (T_hi - T_lo) * zratio
if P is not None:
Pi = P[lo] + (P[hi] - P[lo]) * zratio
if inverted:
Si = Si[..., ::-1]
Ti = Ti[..., ::-1]
if P is not None:
Pi = Pi[..., ::-1]
outside = (znew < z.min()) | (znew > z.max())
if np.any(outside):
Si[..., outside] = np.nan
Ti[..., outside] = np.nan
if P is not None:
Pi[..., outside] = np.nan
if isscalar:
Si = Si[0]
Ti = Ti[0]
if P is not None:
Pi = Pi[0]
if P is None:
return Si, Ti
return Si, Ti, Pi
def interp_SA_CT(SA, CT, p, p_i):
r"""TODO: Write docstring.
function [SA_i, CT_i] = interp_SA_CT(SA,CT,p,p_i)
interp_SA_CT linear interpolation to p_i on a cast
==========================================================================
This function interpolates the cast with respect to the interpolating
variable p. This function finds the values of SA, CT at p_i on this cast.
"""
return interp_S_T(SA, CT, p, p_i)
def interp_ref_cast(spycnl, A="gn"):
r"""Translation of:
[SA_iref_cast, CT_iref_cast, p_iref_cast] = interp_ref_cast(spycnl, A)
interp_ref_cast linear interpolation of the reference cast
==========================================================================
This function interpolates the reference cast with respect to the
interpolating variable "spycnl". This reference cast is at the location
188E,4N from the reference data set which underlies the Jackett &
McDougall (1997) Neutral Density computer code. This function finds the
values of SA, CT and p on this reference cast which correspond to the
value of isopycnal which is passed to this function from the function
"geo_strf_isopycnal_CT". The isopycnal could be either gamma_n or
sigma_2. If A is set to any of the following 's2','S2','sigma2','sigma_2'
the interpolation will take place in sigma 2 space, any other input
will result in the programme working in gamma_n space.
VERSION NUMBER: 3.0 (14th April, 2011)
REFERENCE:
Jackett, D. R. and T. J. McDougall, 1997: A neutral density variable
for the world<92>s oceans. Journal of Physical Oceanography, 27, 237-263.
FIXME? Do we need argument checking here to handle masked arrays,
etc.? I suspect not, since I don't think this is intended to be
user-callable, but is instead used internally by user-callable
functions.
"""
if A.lower() in ["s2", "sigma2", "sigma_2"]:
A = "s2"
gsw_data = read_data("gsw_data_v3_0.npz")
SA_ref = gsw_data.SA_ref_cast
CT_ref = gsw_data.CT_ref_cast
p_ref = gsw_data.p_ref_cast
if A == "s2":
zvar_ref = gsw_data.sigma_2_ref_cast
else:
zvar_ref = gsw_data.gamma_n_ref_cast
# Not sure why this is needed, but it is in the Matlab version,
# and presumably can't hurt.
cond = (spycnl >= 21.805) & (spycnl <= 28.3614)
zvar_new = spycnl[cond]
Si, Ci, Pi = interp_S_T(SA_ref, CT_ref, zvar_ref, zvar_new, P=p_ref)
return Si, Ci, Pi
def enthalpy_SSO_0_p(p):
r"""This function calculates enthalpy at the Standard Ocean Salinty, SSO,
and at a Conservative Temperature of zero degrees C, as a function of
pressure, p, in dbar, using a streamlined version of the 48-term CT
version of the Gibbs function, that is, a streamlined version of the
code "enthalpy(SA,CT,p).
Modifications:
"""
v01 = 9.998420897506056e+2
v05 = -6.698001071123802
v08 = -3.988822378968490e-2
v12 = -2.233269627352527e-2
v15 = -1.806789763745328e-4
v17 = -3.087032500374211e-7
v20 = 1.550932729220080e-10
v21 = 1.0
v26 = -7.521448093615448e-3
v31 = -3.303308871386421e-5
v36 = 5.419326551148740e-6
v37 = -2.742185394906099e-5
v41 = -1.105097577149576e-7
v43 = -1.119011592875110e-10
v47 = -1.200507748551599e-15
a0 = v21 + SSO * (v26 + v36 * SSO + v31 * np.sqrt(SSO))
a1 = v37 + v41 * SSO
a2 = v43
a3 = v47
b0 = v01 + SSO * (v05 + v08 * np.sqrt(SSO))
b1 = 0.5 * (v12 + v15 * SSO)
b2 = v17 + v20 * SSO
b1sq = b1 ** 2
sqrt_disc = np.sqrt(b1sq - b0 * b2)
N = a0 + (2 * a3 * b0 * b1 / b2 - a2 * b0) / b2
M = a1 + (4 * a3 * b1sq / b2 - a3 * b0 - 2 * a2 * b1) / b2
A = b1 - sqrt_disc
B = b1 + sqrt_disc
part = (N * b2 - M * b1) / (b2 * (B - A))
return db2Pascal * (p * (a2 - 2 * a3 * b1 / b2 + 0.5 * a3 * p) /
b2 + (M / (2 * b2)) * np.log(1 + p *
(2 * b1 + b2 * p) / b0) + part *
np.log(1 + (b2 * p * (B - A)) / (A * (B + b2 * p))))
def specvol_SSO_0_p(p):
r"""This function calculates specific volume at the Standard Ocean
Salinity, SSO, and at a Conservative Temperature of zero degrees C, as a
function of pressure, p, in dbar, using a streamlined version of the
48-term CT version of specific volume, that is, a streamlined version of
the code "specvol(SA, CT, p)".
Modifications:
"""
v01 = 9.998420897506056e+2
v05 = -6.698001071123802
v08 = -3.988822378968490e-2
v12 = -2.233269627352527e-2
v15 = -1.806789763745328e-4
v17 = -3.087032500374211e-7
v20 = 1.550932729220080e-10
v21 = 1.0
v26 = -7.521448093615448e-3
v31 = -3.303308871386421e-5
v36 = 5.419326551148740e-6
v37 = -2.742185394906099e-5
v41 = -1.105097577149576e-7
v43 = -1.119011592875110e-10
v47 = -1.200507748551599e-15
return ((v21 + SSO * (v26 + v36 * SSO + v31 * np.sqrt(SSO)) + p *
(v37 + v41 * SSO + p * (v43 + v47 * p))) / (v01 + SSO * (v05 + v08 *
np.sqrt(SSO)) + p * (v12 + v15 * SSO + p * (v17 + v20 * SSO))))
|