This file is indexed.

/usr/share/pyshared/gsw/gibbs/earth.py is in python-gsw 3.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- coding: utf-8 -*-

from __future__ import division

import numpy as np

from .constants import gamma, earth_radius, OMEGA
from ..utilities import match_args_return
from .conversions import z_from_p


__all__ = ['f',
           'grav',
           'distance']

DEG2RAD = np.pi / 180


def f(lat):
    r"""Calculates the Coriolis parameter (f) defined by:
        f = 2*omega*sin(lat)
    where,
        omega = 7.292115e-5 (Groten, 2004) [radians s :sup:`-1`]

    Parameters
    ----------
    lat : array_like
          latitude [degrees north]

    Returns
    -------
    f : array_like
        Coriolis paramter  [s :sup:`-1`]

    References
    ----------
    .. [1] Groten, E., 2004: Fundamental Parameters and Current (2004) Best
    Estimates of the Parameters of Common Relevance to Astronomy, Geodesy, and
    Geodynamics. Journal of Geodesy, 77, pp. 724-797.

    .. [2] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
    of seawater -  2010: Calculation and use of thermodynamic properties.
    Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
    UNESCO (English), 196 pp.

    Modifications:
    1993-04-20. Phil Morgan
    2010-07-28. Paul Barker
    """

    lat = np.asanyarray(lat)
    return 2 * OMEGA * np.sin(lat * DEG2RAD)


@match_args_return
def grav(lat, p=0):
    r"""Calculates acceleration due to gravity as a function of latitude and as
    a function of pressure in the ocean.

    Parameters
    ----------
    lat : array_like
          latitude in decimal degrees north [-90...+90]
    p : number or array_like. Default p = 0
        pressure [dbar]

    Returns
    -------
    g : array_like
        gravity [m s :sup:`2`]

    See Also
    --------
    TODO

    Notes
    -----
    In the ocean z is negative.

    Examples
    --------
    >>> import gsw
    >>> lat = [-90, -60, -30, 0]
    >>> p = 0
    >>> gsw.grav(lat, p)
    array([ 9.83218621,  9.81917886,  9.79324926,  9.780327  ])
    >>> gsw.grav(45)
    9.8061998770458008

    References
    ----------
    .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
    of seawater -  2010: Calculation and use of thermodynamic properties.
    Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
    UNESCO (English), 196 pp.

    .. [2] Moritz (2000) Goedetic reference system 1980. J. Geodesy, 74,
    128-133.

    .. [3] Saunders, P.M., and N.P. Fofonoff (1976) Conversion of pressure to
    depth in the ocean. Deep-Sea Res.,pp. 109 - 111.

    Modifications:
    2011-03-29. Trevor McDougall & Paul Barker
    """

    X = np.sin(lat * DEG2RAD)
    sin2 = X ** 2
    gs = 9.780327 * (1.0 + (5.2792e-3 + (2.32e-5 * sin2)) * sin2)
    z = z_from_p(p, lat)
    # z is the height corresponding to p.
    grav = gs * (1 - gamma * z)

    return grav


@match_args_return
def distance(lon, lat, p=0):
    r"""Calculates the distance in met res between successive points in the
    vectors lon and lat, computed using the Haversine formula on a spherical
    earth of radius 6,371 km, being the radius of a sphere having the same
    volume as Earth.  For a spherical Earth of radius 6,371,000 m, one nautical
    mile is 1,853.2488 m, thus one degree of latitude is 111,194.93 m.

    Haversine formula:
        R = earth's radius (mean radius = 6,371 km)

    .. math::
        a = \sin^2(\delta \text{lat}/2) +
            \cos(\text{lat}_1) \cos(\text{lat}_2) \sin^2(\delta \text{lon}/2)

        c = 2 \times \text{atan2}(\sqrt{a}, \sqrt{(1-a)})

        d = R \times c

    Parameters
    ----------
    lon : array_like
          decimal degrees east [0..+360] or [-180 ... +180]
    lat : array_like
          latitude in decimal degrees north [-90..+90]
    p : number or array_like. Default p = 0
        pressure [dbar]

    Returns
    -------
    dist: array_like
          distance between points on a spherical Earth at pressure (p) [m]

    See Also
    --------
    TODO

    Notes
    -----
    z is height and is negative in the oceanographic.

    Distances are probably good to better than 1\% of the "true" distance on
    the ellipsoidal earth.

    Examples
    --------
    >>> import gsw
    >>> lon = [159, 220]
    >>> lat = [-35, 35]
    >>> gsw.distance(lon, lat)
    array([[ 10030974.652916]])
    >>> p = [200, 1000]
    >>> gsw.distance(lon, lat, p)
    array([[ 10030661.63878009]])
    >>> p = [[200], [1000]]
    >>> gsw.distance(lon, lat, p)
    array([[ 10030661.63878009],
           [ 10029412.58776001]])

    References
    ----------
    .. [1] http://www.eos.ubc.ca/~rich/map.html

    Modifications:
    2000-11-06. Rich Pawlowicz
    2011-04-04. Paul Barker and Trevor McDougall
    """
    # FIXME? The argument handling seems much too complicated.
    # Maybe we can come up with some simple specifications of
    # what argument combinations are permitted, and handle everything
    # with broadcasting. - EF

    # FIXME: Eric what do you think? This assume p(stations, depth)
    lon, lat, = np.atleast_2d(lon), np.atleast_2d(lat)

    if (lon.size == 1) & (lat.size == 1):
        raise ValueError('more than one point is needed to compute distance')
    elif lon.ndim != lat.ndim:
        raise ValueError('lon, lat must have the same dimension')

    lon, lat, p = np.broadcast_arrays(lon, lat, p)

    dlon = np.diff(lon * DEG2RAD)
    dlat = np.diff(lat * DEG2RAD)

    a = ((np.sin(dlat / 2)) ** 2 + np.cos(lat[:, :-1] * DEG2RAD) *
           np.cos(lat[:, 1:] * DEG2RAD) * (np.sin(dlon / 2)) ** 2)

    angles = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))

    p_mid = 0.5 * (p[:, 0:-1] + p[:, 0:-1])
    lat_mid = 0.5 * (lat[:, :-1] + lat[:, 1:])

    z = z_from_p(p_mid, lat_mid)

    distance = (earth_radius + z) * angles

    return distance


if __name__ == '__main__':
    import doctest
    doctest.testmod()