/usr/include/gamera/plugins/structural.hpp is in python-gamera-dev 3.3.3-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | /*
*
* Copyright (C) 2001-2009
* Ichiro Fujinaga, Michael Droettboom, Karl MacMillan,
* and Christoph Dalitz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef mgd11272002_relational
#define mgd11272002_relational
#include "gamera.hpp"
#include <math.h>
#include <algorithm>
namespace Gamera {
template<class T, class U>
bool bounding_box_grouping_function(T& a, U& b, double threshold) {
if (threshold < 0)
throw std::runtime_error("Threshold must be a positive number.");
size_t int_threshold = size_t(threshold + 0.5); // rounding
return b->intersects(a->expand(int_threshold));
}
template<class T, class U>
bool shaped_grouping_function(T& a, U& b, double threshold) {
if (threshold < 0)
throw std::runtime_error("Threshold must be a positive number.");
size_t int_threshold = size_t(threshold + 0.5);
Rect r = a.intersection(b.expand(int_threshold));
if (r.ul_x() > r.lr_x() || r.ul_y() > r.lr_y())
return false;
T a_roi(a, r);
r = b.intersection(a.expand(int_threshold));
if (r.ul_x() > r.lr_x() || r.ul_y() > r.lr_y())
return false;
U b_roi(b, r);
double threshold_2 = threshold * threshold;
long start_c, end_c, dir_c;
long start_r, end_r, dir_r;
if (b_roi.center_y() > a_roi.center_y()) {
start_r = a_roi.nrows() - 1;
end_r = -1;
dir_r = -1;
} else {
start_r = 0;
end_r = a_roi.nrows();
dir_r = 1;
}
if (b_roi.center_x() > a_roi.center_x()) {
start_c = a_roi.ncols() - 1;
end_c = -1;
dir_c = -1;
} else {
start_c = 0;
end_c = a_roi.ncols();
dir_c = 1;
}
// Yes, that's right: a goto statement.
// According to Stroustrup "C++ Programming Language, 3rd ed.":
// "One of the few sensible uses of goto in ordinary code is to
// break out from a nested loop or switch-statement."
for (long r = start_r; r != end_r; r += dir_r) {
for (long c = start_c; c != end_c; c += dir_c) {
if (is_black(a_roi.get(Point(c, r)))) {
bool is_edge = false;
if (r == 0l || (size_t)r == a_roi.nrows() - 1 ||
c == 0l || (size_t)c == a_roi.ncols() - 1) {
is_edge = true;
goto edge_found;
} else {
for (long ri = r - 1; ri < r + 2; ++ri) {
for (long ci = c - 1; ci < c + 2; ++ci) {
if (is_white(a_roi.get(Point(ci, ri)))) {
is_edge = true;
goto edge_found;
}
}
}
}
continue;
edge_found:
double a_y = double(r + a_roi.ul_y());
double a_x = double(c + a_roi.ul_x());
for (size_t r2 = 0; r2 < b_roi.nrows(); ++r2) {
for (size_t c2 = 0; c2 < b_roi.ncols(); ++c2) {
if (is_black(b_roi.get(Point(c2, r2)))) {
double distance_y = double(r2 + b_roi.ul_y()) - a_y;
double distance_x = double(c2 + b_roi.ul_x()) - a_x;
double distance = distance_x*distance_x + distance_y*distance_y;
if (distance <= threshold_2)
return true;
}
}
}
}
}
}
return false;
}
template<class T, class U>
FloatVector *polar_distance(T &a, U &b) {
double x = (double)a.center_x() - (double)b.center_x();
double y = (double)a.center_y() - (double)b.center_y();
double r = sqrt(pow(x, 2.0) + pow(y, 2.0));
double q;
if (x == 0)
q = M_PI / 2;
else
q = atan(y / x);
if (y > 0)
q += M_PI;
double avg_diag = ((sqrt(pow(a.nrows(), 2.0) + pow(a.ncols(), 2.0)) +
sqrt(pow(b.nrows(), 2.0) + pow(b.ncols(), 2.0))) / 2.0);
FloatVector *result = new FloatVector(3);
(*result)[0] = r / avg_diag;
(*result)[1] = q;
(*result)[2] = r;
return result;
}
int polar_match(double r1, double q1, double r2, double q2) {
static const double ANGULAR_THRESHOLD = M_PI / 6.0;
static const double DISTANCE_THRESHOLD = 1.6;
double distance1, distance2;
if (r1 > r2) {
distance1 = r1;
distance2 = r2;
} else {
distance1 = r2;
distance2 = r1;
}
double q = fabs(q1 - q2);
if (q1 > M_PI)
q = std::min(q, fabs((M_PI - q1) - q2));
if (q2 > M_PI)
q = std::min(q, fabs((M_PI - q2) - q1));
return (q < ANGULAR_THRESHOLD && (distance1 / distance2) < DISTANCE_THRESHOLD);
}
#define ITMAX 100
#define EPS 3.0e-7
#define FPMIN 1.0e-30
// From Numerical Recipes in C
double gammln(const double xx) {
static double cof[6] = {76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};
double x, y;
x = y = xx;
double tmp = x + 5.5;
tmp -= (x + 0.5) * log(tmp);
double ser = 1.000000000190015;
for (size_t i = 0; i < 6; ++i) {
y += 1.0;
ser += cof[i] / y;
}
return -tmp / log(2.5066282746310005 * ser / x);
}
// From Numerical Recipes in C
void gser(const double a, const double x, double& gamser, double& gln) {
gln = gammln(a);
if (x < 0.0)
throw std::range_error("x less than 0.0 in argument to gser");
else if (x == 0) {
gamser = 0.0;
return;
}
double ap = a;
double delta, sum;
delta = sum = 1.0 / a;
for (size_t i = 0; i < ITMAX; ++i) {
ap += 1;
delta *= x / ap;
sum += delta;
if (fabs(delta) < fabs(sum) * EPS) {
gamser = sum * exp(-x + a * log(x) - gln);
return;
}
}
throw std::range_error("a too large to compute in gser.");
}
// From Numerical Recipes in C
void gcf(const double a, const double x, double& gammcf, double& gln) {
gln = gammln(a);
double b, c, d, h;
b = x + 1.0 - a;
c = 1.0 / FPMIN;
h = d = 1.0 / b;
double i = 1;
for (; i <= ITMAX; ++i) {
double an = -i * (i - a);
b += 2.0;
d = an * d + b;
if (fabs(d) < FPMIN)
d = FPMIN;
c = b + an / c;
if (fabs(c) < FPMIN)
c = FPMIN;
d = 1.0 / d;
double delta = d * c;
h *= delta;
if (fabs(delta - 1.0) < EPS)
break;
}
if (i > ITMAX)
throw std::runtime_error("a too large in gcf.");
try {
gammcf = exp(-x + a * log(x) - gln) * h;
} catch (std::overflow_error) {
gammcf = std::numeric_limits<double>::max();
}
}
// From Numerical Recipes in C
double gammq(const double a, const double x) {
double gamser, gln;
if (x < 0.0 || a <= 0.0)
throw std::range_error("Invalid arguments to gammq.");
if (x < a + 1.0) {
gser(a, x, gamser, gln);
return 1.0 - gamser;
} else {
gcf(a, x, gamser, gln);
return gamser;
}
}
// From Numerical Recipes in C
void least_squares_fit(const PointVector& points, double& a, double& b, double& q) {
if (points.size() == 1) {
a = 0.0;
b = points[0].x();
q = 1.0;
return;
}
double sx, sy, st2, sxoss, chi2;
sx = sy = st2 = a = b = chi2 = 0.0;
for (PointVector::const_iterator i = points.begin(); i != points.end(); ++i) {
sx += double((*i).x());
sy += double((*i).y());
}
sxoss = sx / points.size();
for (PointVector::const_iterator i = points.begin(); i != points.end(); ++i) {
double t = double((*i).x()) - sxoss;
st2 += t * t;
b += t * double((*i).y());
}
b /= st2;
a = (sy - sx * b) / points.size();
for (PointVector::const_iterator i = points.begin(); i != points.end(); ++i) {
double tmp = (double((*i).y()) - a - b * double((*i).x()));
chi2 += tmp * tmp;
}
q = 1.0;
if (points.size() >= 3) {
try {
q = gammq(0.5 * (points.size() - 2), 0.5 * chi2);
} catch (std::exception) {
;
}
}
}
PyObject* least_squares_fit(const PointVector* points) {
double a, b, q;
least_squares_fit(*points, a, b, q);
return Py_BuildValue(CHAR_PTR_CAST "fff", b, a, q);
}
PyObject* least_squares_fit_xy(const PointVector* points) {
double a, b, q;
int x_of_y = 0;
size_t xmin, xmax, ymin, ymax;
PointVector::const_iterator p;
p = points->begin();
xmin = xmax = p->x(); ymin = ymax = p->y();
for (p = points->begin() + 1; p != points->end(); ++p) {
if (p->x() > xmax) xmax = p->x();
if (p->x() < xmin) xmin = p->x();
if (p->y() > ymax) ymax = p->y();
if (p->y() < ymin) ymin = p->y();
}
if ((xmax-xmin) > (ymax-ymin)) {
// line closer to horizontal
least_squares_fit(*points, a, b, q);
} else {
// line closer to vertical
PointVector transposed;
for (p=points->begin(); p!=points->end(); ++p) {
transposed.push_back(Point(p->y(),p->x()));
}
least_squares_fit(transposed, a, b, q);
x_of_y = 1;
}
return Py_BuildValue(CHAR_PTR_CAST "fffi", b, a, q, x_of_y);
}
// straightforward implementation of Wagner and Fischer's algorithm from 1974
int edit_distance(std::string s1, std::string s2)
{
size_t s1len, s2len; // length of the two strings
IntVector *prev, *curr; // previous and current matrix column
IntVector *tmp;
size_t result, add, del, sub;
size_t i,j;
s1len = s1.size(); s2len = s2.size();
if (s1len == 0) return s2len;
if (s2len == 0) return s1len;
prev = new IntVector(s1len+1);
curr = new IntVector(s1len+1);
for (i=0; i<s1len+1; i++) (*prev)[i] = i;
for (j=1; j<s2len+1; j++) {
if (j>1) {
// move one column further in evaluation matrix
tmp = prev;
prev = curr;
curr = tmp;
}
(*curr)[0] = j;
for (i=1; i<s1len+1; i++) {
// cost of different transformation operations
if (s1[i-1] == s2[j-1])
sub = (*prev)[i-1];
else
sub = (*prev)[i-1] + 1;
add = (*prev)[i] + 1;
del = (*curr)[i-1] + 1;
(*curr)[i] = std::min(sub, std::min(add,del));
}
}
result = (*curr)[s1len];
delete prev; delete curr;
return result;
}
}
#endif
|