This file is indexed.

/usr/include/gamera/plugins/projections.hpp is in python-gamera-dev 3.3.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 *
 * Copyright (C) 2001-2005
 * Ichiro Fujinaga, Michael Droettboom, and Karl MacMillan
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef kwm02212003_projections
#define kwm02212003_projections

#include "gamera.hpp"

namespace Gamera {

  #ifndef round
  template<class T>
  inline T round(T p){return T(floor(p + (T)0.5));}
  #endif
  
  /*
    Generic projection routine - x and y projections
    are acheived by passing in either row or col
    iterators.
  */
  template<class T>
  inline IntVector* projection(T i, const T end) {
    IntVector* proj = new IntVector(end - i, 0);
    try {
      typename T::iterator j;
      typename IntVector::iterator p = proj->begin();
      for (; i != end; ++i, ++p) {
	for (j = i.begin(); j != i.end(); ++j) {
	  if (is_black(*j))
	    *p += 1;
	}
      }
    } catch (std::exception e) {
      delete proj;
      throw;
    }
    return proj;
  }

  /*
    Projection along the y axis (rows) of an image.
  */
  template<class T>
  IntVector* projection_rows(const T& image) {
    return projection(image.row_begin(), image.row_end());
  }

  /*
    Projection along the y axis (rows) of a portion
    on an image.
    NOTE: 'rect' must be absolute with respect to the underlying image data,
          *not* relative to the offset of the view 'image'
  */
  template<class T>
  IntVector* projection_rows(const T& image, const Rect& rect) {
    T proj_image(image, rect);
    return projection_rows(proj_image);
  }

  /*
    Projection along the x axis (rows) of an image.
    
    MGD: Should be faster now because it accesses the image data in
    row-major order.
  */
  template<class T>
  IntVector* projection_cols(const T& image) {
    IntVector* proj = new IntVector(image.ncols(), 0);
    try {
      for (size_t r = 0; r != image.nrows(); ++r) {
	for (size_t c = 0; c != image.ncols(); ++c) {
	  if (is_black(image.get(Point(c, r)))) {
	    (*proj)[c] += 1;
	  }
	}
      }
    } catch (std::exception e) {
      delete proj;
      throw;
    }
    return proj;
  }

  /*
    Projection along the y axis (rows) of a portion
    on an image.    
    NOTE: 'rect' must be absolute with respect to the underlying image data,
          *not* relative to the offset of the view 'image'
  */
  template<class T>
  IntVector* projection_cols(const T& image, const Rect& rect) {
    T proj_image(image, rect);
    return projection_cols(proj_image);
  }

  /*
    Projections of strips of a image -
    the coordinates are relative to the view.
  */
  template<class T>
  IntVector* yproj_vertical_strip(T& image, size_t offset_x,
				  size_t width) {
    Rect r(Point(image.offset_x() + offset_x, image.offset_y()),
	   Dim(width, image.nrows()));
    return projection_rows(image, r);
  }
  
  template<class T>
  IntVector* yproj_horizontal_strip(T& image, size_t offset_y,
				    size_t height) {
    Rect r(Point(image.offset_x(), image.offset_y() + offset_y), 
	   Dim(image.ncols(), height));
    return projection_rows(image, r);
  }

  template<class T>
  IntVector* xproj_vertical_strip(T& image, size_t offset_x,
				  size_t width) {
    Rect r(Point(image.offset_x() + offset_x, image.offset_y()),
	   Dim(width, image.nrows()));
    return projection_cols(image, r);
  }

  template<class T>
  IntVector* xproj_horizontal_strip(T& image, size_t offset_y,
				    size_t height) {
    Rect r(Point(image.offset_x(), image.offset_y() + offset_y),
	   Dim(image.ncols(), height));
    return projection_cols(image, r);
  }

  /*
    returns y-projections of a rotated image
  */
  template<class T>
  void projection_skewed_cols(const T& image, FloatVector* angles, std::vector<IntVector*>& proj) {
    int x;
    size_t i;
    size_t n = angles->size();

    FloatVector sina(n);
    FloatVector cosa(n);
    for (i = 0; i < n; i++) {
      sina[i] = sin((*angles)[i] * M_PI / 180.0);
      cosa[i] = cos((*angles)[i] * M_PI / 180.0);
    }

    for (i = 0; i < n; i++)
      proj[i] = new IntVector(image.ncols(), 0);

    // compute skewed projections simultanously
    for (size_t r = 0; r < image.nrows(); ++r) {
      for (size_t c = 0; c < image.ncols(); ++c) {
        if (is_black(image.get(Point(c, r)))) {
          for (i = 0; i < n; i++) {
            x = (int) round(c*cosa[i] - r*sina[i]);
            if ((x > 0) && (x < (int)image.ncols()))
              ++(*(proj[i]))[x];
          }
        }
      }
    }
  }

  // The Python part
  template<class T>
  PyObject* projection_skewed_cols(const T& image, FloatVector* angles) {
    size_t n = angles->size();
    std::vector<IntVector*> proj(n);
    projection_skewed_cols(image, angles, proj);

    PyObject* projlist = PyList_New(n);  
    // move projections to return list
    for (size_t i = 0; i < n; i++) {
      PyList_SET_ITEM(projlist, i, IntVector_to_python(proj[i]));
      delete proj[i];
    }
    return projlist;
  }

  /*
    returns x-projections of a rotated image
  */
  template<class T>
  void projection_skewed_rows(const T& image, FloatVector* angles, 
			      std::vector<IntVector*>& proj) {
    int y;
    size_t i;
    size_t n = angles->size();

    FloatVector sina(n);
    FloatVector cosa(n);
    for (i = 0; i < n; i++) {
      sina[i] = sin((*angles)[i] * M_PI / 180.0);
      cosa[i] = cos((*angles)[i] * M_PI / 180.0);
    }

    for (i = 0; i < n; i++)
      proj[i] = new IntVector(image.nrows(), 0);

    // compute skewed projections simultanously
    for (size_t r = 0; r < image.nrows(); ++r) {
      for (size_t c = 0; c < image.ncols(); ++c) {
        if (is_black(image.get(Point(c, r)))) {
          for (i = 0; i < n; i++) {
            y = (int) round(c*sina[i] + r*cosa[i]);
            if ((y > 0) && (y < (int)image.nrows()))
              ++(*(proj[i]))[y];
          }
        }
      }
    }
  }

  // The Python part
  template<class T>
  PyObject* projection_skewed_rows(const T& image, FloatVector* angles) {
    size_t n = angles->size();
    std::vector<IntVector*> proj(n);
    projection_skewed_rows(image, angles, proj);

    PyObject* projlist = PyList_New(n);  
    // move projections to return list
    for (size_t i = 0; i < n; i++) {
      PyList_SET_ITEM(projlist, i, IntVector_to_python(proj[i]));
      delete proj[i];
    }
    return projlist;
  }
}

#endif