This file is indexed.

/usr/include/gamera/plugins/image_utilities.hpp is in python-gamera-dev 3.3.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
/*
 *
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, Karl MacMillan
 *               2010      Christoph Dalitz, Hasan Yildiz, Tobias Bolten
 *               2011      Christian Brandt
 *               2012      Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef kwm12032001_image_utilities
#define kwm12032001_image_utilities

#include "gamera.hpp"
#include "gameramodule.hpp"
#include "gamera_limits.hpp"
#include "vigra/resizeimage.hxx"
#include "vigra/basicgeometry.hxx"
#include "plugins/logical.hpp"
#include <exception>
#include <math.h>
#include <algorithm>
#include <map>

// for compatibility: resize, scale, mirror, and shear
//  were formerly implemented in image_utilitis instead of transformation
#include "transformation.hpp"

namespace Gamera {
  
  /*
    This copies all of the misc attributes of an image (like
    label for Ccs or scaling).
  */
  template<class T, class U>
  void image_copy_attributes(const T& src, U& dest) {
    dest.scaling(src.scaling());
    dest.resolution(src.resolution());
  }

  /*
    These are full specializations for ConnectedComponents. This
    could be done with partial specialization, but that is broken
    on so many compilers it is easier just to do it manually :/
  */
  template<>
  void image_copy_attributes(const Cc& src, Cc& dest) {
    dest.scaling(src.scaling());
    dest.resolution(src.resolution());
    dest.label(src.label());
  }

  template<>
  void image_copy_attributes(const RleCc& src, Cc& dest) {
    dest.scaling(src.scaling());
    dest.resolution(src.resolution());
    dest.label(src.label());
  }

  template<>
  void image_copy_attributes(const Cc& src, RleCc& dest) {
    dest.scaling(src.scaling());
    dest.resolution(src.resolution());
    dest.label(src.label());
  }

  template<>
  void image_copy_attributes(const RleCc& src, RleCc& dest) {
    dest.scaling(src.scaling());
    dest.resolution(src.resolution());
    dest.label(src.label());
  }


  /*
    image_copy_fill

    This function copies the contents from one image to another of the same
    size. Presumably the pixel types of the two images are the same, but
    a cast is performed allowing any two pixels types with the approprate
    conversion functions defined (or built-in types) to be copied. The storage
    formats of the image do not need to match.
   */
  template<class T, class U>
  void image_copy_fill(const T& src, U& dest) {
    if ((src.nrows() != dest.nrows()) | (src.ncols() != dest.ncols()))
      throw std::range_error("image_copy_fill: src and dest image dimensions must match!");
    typename T::const_row_iterator src_row = src.row_begin();
    typename T::const_col_iterator src_col;
    typename U::row_iterator dest_row = dest.row_begin();
    typename U::col_iterator dest_col;
    ImageAccessor<typename T::value_type> src_acc;
    ImageAccessor<typename U::value_type> dest_acc;
    for (; src_row != src.row_end(); ++src_row, ++dest_row)
      for (src_col = src_row.begin(), dest_col = dest_row.begin(); src_col != src_row.end();
           ++src_col, ++dest_col)
        dest_acc.set((typename U::value_type)src_acc.get(src_col), dest_col);
    image_copy_attributes(src, dest);
  }

  /*
    simple_image_copy

    This functions creates a new image of the same pixel type and storage format
    as the source image. If the image is a ConnectedComponent a OneBitImageView is
    returned rather that a ConnectedComponent (which is why the ImageFactory is used).
  */
  template<class T>
  typename ImageFactory<T>::view_type* simple_image_copy(const T& src) {
    typename ImageFactory<T>::data_type* dest_data =
      new typename ImageFactory<T>::data_type(src.size(), src.origin());
    typename ImageFactory<T>::view_type* dest =
      new typename ImageFactory<T>::view_type(*dest_data, src.origin(), src.size());
    try {
      image_copy_fill(src, *dest);
    } catch (std::exception e) {
      delete dest;
      delete dest_data;
      throw;
    }
    return dest;
  }

  

  /*
    image_copy

    This function creates a new image with the specified storage_format and
    copies the contents from the provided image. If the image is a ConnectedComponent a
    OneBit*ImageView is returned rather that a ConnectedComponent (which is why the
    ImageFactory is used).
  */
  template<class T>
  Image* image_copy(T &a, int storage_format) {
    if (a.ul_x() > a.lr_x() || a.ul_y() > a.lr_y())
      throw std::exception();
    if (storage_format == DENSE) {
      typename ImageFactory<T>::dense_data_type* data =
        new typename ImageFactory<T>::dense_data_type(a.size(), a.origin());
      typename ImageFactory<T>::dense_view_type* view =
        new typename ImageFactory<T>::dense_view_type(*data, a.origin(), a.size());
      try {
        image_copy_fill(a, *view);
      } catch (std::exception e) {
        delete view;
        delete data;
        throw;
      }
      return view;
    } else {
      typename ImageFactory<T>::rle_data_type* data =
        new typename ImageFactory<T>::rle_data_type(a.size(), a.origin());
      typename ImageFactory<T>::rle_view_type* view =
        new typename ImageFactory<T>::rle_view_type(*data, a.origin(), a.size());
      try {
        image_copy_fill(a, *view);
      } catch (std::exception e) {
        delete view;
        delete data;
        throw;
      }
      return view;
    }
  }


  /*
    union_images

    This function creates a new image that is the summation of all of the images
    in the passed-in list.
  */
  template<class T, class U>
  void _union_image(T& a, const U& b) {
    size_t ul_y = std::max(a.ul_y(), b.ul_y());
    size_t ul_x = std::max(a.ul_x(), b.ul_x());
    size_t lr_y = std::min(a.lr_y(), b.lr_y());
    size_t lr_x = std::min(a.lr_x(), b.lr_x());
    
    if (ul_y >= lr_y || ul_x >= lr_x)
      return;
    for (size_t y = ul_y, ya = y-a.ul_y(), yb=y-b.ul_y(); y <= lr_y; ++y, ++ya, ++yb)
      for (size_t x = ul_x, xa = x-a.ul_x(), xb=x-b.ul_x(); x <= lr_x; ++x, ++xa, ++xb) {
        if (is_black(a.get(Point(xa, ya))) || is_black(b.get(Point(xb, yb)))) {
          a.set(Point(xa, ya), black(a));
        } else
          a.set(Point(xa, ya), white(a));
      }
  }

  Image *union_images(ImageVector &list_of_images) {
    size_t min_x, min_y, max_x, max_y;
    min_x = min_y = std::numeric_limits<size_t>::max();
    max_x = max_y = 0;

    // Determine bounding box
    for (ImageVector::iterator i = list_of_images.begin();
         i != list_of_images.end(); ++i) {
      Image* image = (*i).first;
      min_x = std::min(min_x, image->ul_x());
      min_y = std::min(min_y, image->ul_y());
      max_x = std::max(max_x, image->lr_x());
      max_y = std::max(max_y, image->lr_y()); 
    }

    size_t ncols = max_x - min_x + 1; 
    size_t nrows = max_y - min_y + 1;
    OneBitImageData *dest_data = new OneBitImageData(Dim(ncols, nrows), Point(min_x, min_y));
    OneBitImageView *dest = new OneBitImageView(*dest_data);
    // std::fill(dest->vec_begin(), dest->vec_end(), white(*dest));
    
    try {
      for (ImageVector::iterator i = list_of_images.begin();
           i != list_of_images.end(); ++i) {
        Image* image = (*i).first;
        switch((*i).second) {
        case ONEBITIMAGEVIEW:
          _union_image(*dest, *((OneBitImageView*)image));
          break;
        case CC:
          _union_image(*dest, *((Cc*)image));
          break;
        case ONEBITRLEIMAGEVIEW:
          _union_image(*dest, *((OneBitRleImageView*)image));
          break;
        case RLECC:
          _union_image(*dest, *((RleCc*)image));
          break;
        default:
          throw std::runtime_error
            ("There is an Image in the list that is not a OneBit image.");
        }
      }
    } catch (std::exception e) {
      delete dest;
      delete dest_data;
      throw;
    }
    
    return dest;
  }


  /*
    FloatVector histogram(GreyScale|Grey16 image);

    Histogram returns a histogram of the values in an image. The
    values in the histogram are percentages.
  */
  template<class T>
  FloatVector* histogram(const T& image) {
    // The histogram is the size of all of the possible values of
    // the pixel type.
    size_t l = std::numeric_limits<typename T::value_type>::max() + 1;
    FloatVector* values = new FloatVector(l);

    try {
      // set the list to 0
      std::fill(values->begin(), values->end(), 0);
      
      typename T::const_row_iterator row = image.row_begin();
      typename T::const_col_iterator col;
      ImageAccessor<typename T::value_type> acc;

      // create the histogram
      for (; row != image.row_end(); ++row)
        for (col = row.begin(); col != row.end(); ++col)
          (*values)[acc.get(col)]++;

      // convert from absolute values to percentages
      double size = image.nrows() * image.ncols();
      for (size_t i = 0; i < l; i++) {
        (*values)[i] = (*values)[i] / size;
      }
    } catch (std::exception e) {
      delete values;
      throw;
    }
    return values;
  }

  /*
    Find the maximum and minimum pixel value for an image
  */

  // TODO: Test this

  template<class T>
  void _my_max(const T& a, T& b) {
    if (a > b)
      b = a;
  }

  template<>
  void _my_max(const ComplexPixel& a, ComplexPixel& b) {
    if (a.real() > b.real())
      b = a;
  }
  
  template<class T>
  typename T::value_type find_max(const T& image) {
    if (image.nrows() <= 1 || image.ncols() <= 1)
      throw std::range_error("Image must have nrows and ncols > 0.");
    typename T::const_vec_iterator max = image.vec_begin();
    typename T::value_type value = NumericTraits<typename T::value_type>::min();
    for (; max != image.vec_end(); ++max)
      _my_max(*max, value);
    return value;
  }
  
  template<class T>
  void _my_min(const T& a, T& b) {
    if (b > a)
      b = a;
  }

  template<>
  void _my_min(const ComplexPixel& a, ComplexPixel& b) {
    if (a.real() > b.real())
      b = a;
  }

  template<class T>
  typename T::value_type find_min(const T& image) {
    if (image.nrows() <= 1 || image.ncols() <= 1)
      throw std::range_error("Image must have nrows and ncols > 0.");
    typename T::const_vec_iterator min = image.vec_begin();
    typename T::value_type value = NumericTraits<typename T::value_type>::max();
    for (; min != image.vec_end(); ++min)
      _my_min(*min, value);
    return value;
  }
  

  /*
    Fill an image with white.
  */
  template<class T>
  void fill_white(T& image) {
    std::fill(image.vec_begin(), image.vec_end(), white(image));
  }

  /*
    Fill an image with any color
  */
  template <class T>
  void fill(T& m, typename T::value_type color) {
    typename T:: vec_iterator destcolor = m.vec_begin();
    for(; destcolor != m.vec_end(); destcolor++)
      *destcolor = color;
  }

  /*
    Pad an image with the default value
  */

  template <class T>
  typename ImageFactory<T>::view_type* pad_image_default(const T &src, size_t top, size_t right, size_t bottom, size_t left)
  {
    typedef typename ImageFactory<T>::data_type data_type;
    typedef typename ImageFactory<T>::view_type view_type;
    data_type* dest_data = new data_type
      (Dim(src.ncols() + right + left, src.nrows() + top + bottom),
       src.origin());
    view_type* dest_srcpart = new view_type
      (*dest_data, Point(src.ul_x() + left, src.ul_y() + top),
       src.dim());
    view_type* dest = new view_type(*dest_data);
    
    try {
      image_copy_fill(src, *dest_srcpart);
    } catch (std::exception e) {
      delete dest;
      delete dest_srcpart;
      delete dest_data;
      throw;
    }

    delete dest_srcpart;

    return(dest);
  }


  /*
    Pad an image with any color
  */

  template <class T>
  typename ImageFactory<T>::view_type* pad_image(const T &src, size_t top, size_t right, size_t bottom, size_t left, typename T::value_type value)
  {
    typedef typename ImageFactory<T>::data_type data_type;
    typedef typename ImageFactory<T>::view_type view_type;
    data_type* dest_data = new data_type
      (Dim(src.ncols()+right+left, src.nrows()+top+bottom), 
       src.origin());
    view_type* top_pad = NULL;
    if (top > 0)
      top_pad = new view_type
        (*dest_data, Point(src.ul_x() + left, src.ul_y()),
         Dim(src.ncols() + right, top));
    view_type* right_pad = NULL;
    if (right > 0)
      right_pad = new view_type
        (*dest_data, Point(src.ul_x()+src.ncols()+left, src.ul_y()+top),
         Dim(right, src.nrows()+bottom));
    view_type* bottom_pad = NULL;
    if (bottom > 0)
      bottom_pad = new view_type
        (*dest_data, Point(src.ul_x(), src.ul_y()+src.nrows()+top), 
         Dim(src.ncols()+left, bottom));
    view_type* left_pad = NULL;
    if (left > 0)
      left_pad = new view_type
        (*dest_data, src.origin(), 
         Dim(left, src.nrows()+top));
    view_type* dest_srcpart = new view_type
      (*dest_data, Point(src.offset_x()+left, src.offset_y()+top), 
       src.dim());
    view_type* dest = new view_type(*dest_data);
    
    try {
      if (top_pad)
        fill(*top_pad, value);
      if (right_pad)
        fill(*right_pad, value);
      if (bottom_pad)
        fill(*bottom_pad, value);
      if (left_pad)
        fill(*left_pad, value);
      image_copy_fill(src, *dest_srcpart);
    } catch (std::exception e) {
      if (top_pad) delete top_pad;
      if (right_pad) delete right_pad;
      if (bottom_pad) delete bottom_pad;
      if (left_pad) delete left_pad;
      delete dest_srcpart;
      delete dest;
      delete dest_data;
    }

    if (top_pad) delete top_pad;
    if (right_pad) delete right_pad;
    if (bottom_pad) delete bottom_pad;
    if (left_pad) delete left_pad;
    delete dest_srcpart;

    return(dest);
  }


  /*
    Trim white (or other) borders
  */
  template<class T>
  Image * trim_image(const T &image, const typename T::value_type pixelValue) {
    typedef typename T::value_type value_type;
    typedef typename ImageFactory<T>::view_type view_type;
    view_type *res;

    unsigned int min_x, max_x;
    unsigned int min_y, max_y;

    min_x = image.ncols() - 1;
    min_y = image.nrows() - 1;

    max_x = max_y = 0;

    // Search upper left and lower right coordinates for the bounding box
    // of the view
    for(size_t y = 0; y < image.nrows(); ++y) {
      for(size_t x = 0; x < image.ncols(); ++x) {
        if( image.get(Point(x,y)) != pixelValue ) {
          if( x < min_x )
            min_x = x;
          if( x > max_x )
            max_x = x;
          if( y < min_y )
            min_y = y;
          if( y > max_y )
            max_y = y;                                
        }
      }
    }

    // When no points found, set the view to the complete image
    if( min_x > max_x ) {
      min_x = 0;
      max_x = image.ncols() - 1;
    }
    if( min_y > max_y ) {
      min_y = 0;
      max_y = image.nrows() - 1;
    }

    // Creates points for the new view
    // Don't forget the offset of the image (this can be already a view)
    // --> Offsets have to be added
    Point ul(min_x + image.offset_x(), min_y + image.offset_y());
    Point lr(max_x + image.offset_x(), max_y + image.offset_y());

    // Create the view and return it
    res = new view_type(*image.data(), ul, lr);
    return res;
  }


  template<class T>
  void invert(T& image) {
    ImageAccessor<typename T::value_type> acc;
    typename T::vec_iterator in = image.vec_begin();
    for (; in != image.vec_end(); ++in)
      acc.set(invert(acc(in)), in);
  }


  template<class T>
  Image *clip_image(T& m, const Rect* rect) {
    if (m.intersects(*rect)) {
      size_t ul_y = std::max(m.ul_y(), rect->ul_y());
      size_t ul_x = std::max(m.ul_x(), rect->ul_x());
      size_t lr_y = std::min(m.lr_y(), rect->lr_y());
      size_t lr_x = std::min(m.lr_x(), rect->lr_x());
      return new T(m, Point(ul_x, ul_y), 
                   Dim(lr_x - ul_x + 1, lr_y - ul_y + 1));
    } else {
      return new T(m, Point(m.ul_x(), m.ul_y()), Dim(1, 1));
    };
  }

  template<class T, class U>
  typename ImageFactory<T>::view_type* mask(const T& a, U &b) {
    if (a.nrows() != b.nrows() || a.ncols() != b.ncols())
      throw std::runtime_error("The image and the mask image must be the same size.");

    typename ImageFactory<T>::data_type* dest_data =
      new typename ImageFactory<T>::data_type(b.size(), b.origin());
    typename ImageFactory<T>::view_type* dest =
      new typename ImageFactory<T>::view_type(*dest_data);

    typename ImageFactory<T>::view_type a_view = 
      typename ImageFactory<T>::view_type(a, b.ul(), b.size());

    ImageAccessor<typename T::value_type> a_accessor;
    ImageAccessor<typename U::value_type> b_accessor;

    typename T::vec_iterator it_a, end;
    typename U::vec_iterator it_b;
    typename T::vec_iterator it_dest;
    
    try { 
      for (it_a = a_view.vec_begin(), end = a_view.vec_end(), 
             it_b = b.vec_begin(), it_dest = dest->vec_begin();
           it_a != end; ++it_a, ++it_b, ++it_dest) {
        if (is_black(b_accessor.get(it_b)))
          a_accessor.set(a_accessor.get(it_a), it_dest);
        else
          a_accessor.set(white(*dest), it_dest);
      }
    } catch (std::exception e) {
      delete dest;
      delete dest_data;
      throw;
    }

    return dest;
  }
  
  template<class T>
  struct _nested_list_to_image {
    ImageView<ImageData<T> >* operator()(PyObject* obj) {
      ImageData<T>* data = NULL;
      ImageView<ImageData<T> >* image = NULL;
      
      PyObject* seq = PySequence_Fast(obj, "Argument must be a nested Python iterable of pixels.");
      if (seq == NULL)
        throw std::runtime_error("Argument must be a nested Python iterable of pixels.");
      int nrows = PySequence_Fast_GET_SIZE(seq);
      if (nrows == 0) {
        Py_DECREF(seq);
        throw std::runtime_error("Nested list must have at least one row.");
      }
      int ncols = -1;
      
      try {
        for (size_t r = 0; r < (size_t)nrows; ++r) {
          PyObject* row = PyList_GET_ITEM(obj, r);
          PyObject* row_seq = PySequence_Fast(row, "");
          if (row_seq == NULL) {
            pixel_from_python<T>::convert(row);
            row_seq = seq;
            Py_INCREF(row_seq);
            nrows = 1;
          }
          int this_ncols = PySequence_Fast_GET_SIZE(row_seq);
          if (ncols == -1) {
            ncols = this_ncols;
            if (ncols == 0) {
              Py_DECREF(seq);
              Py_DECREF(row_seq);
              throw std::runtime_error
                ("The rows must be at least one column wide.");
            }
            data = new ImageData<T>(Dim(ncols, nrows));
            image = new ImageView<ImageData<T> >(*data);
          } else {
            if (ncols != this_ncols) {
              delete image;
              delete data;
              Py_DECREF(row_seq);
              Py_DECREF(seq);
              throw std::runtime_error
                ("Each row of the nested list must be the same length.");
            }
          }
          for (size_t c = 0; c < (size_t)ncols; ++c) {
            PyObject* item = PySequence_Fast_GET_ITEM(row_seq, c);
            T px = pixel_from_python<T>::convert(item);
            image->set(Point(c, r), px);
          }
          Py_DECREF(row_seq);
        }
        Py_DECREF(seq);
      } catch (std::exception e) {
        if (image)
          delete image;
        if (data)
          delete data;
        throw;
      }
      return image;
    }
  };
    
  Image* nested_list_to_image(PyObject* obj, int pixel_type) {
    // If pixel_type == -1, attempt to do an auto-detect.
    if (pixel_type < 0) {
      PyObject* seq = PySequence_Fast(obj, "Must be a nested Python iterable of pixels.");
      if (seq == NULL)
        throw std::runtime_error("Must be a nested Python list of pixels.");
      if (PySequence_Fast_GET_SIZE(seq) == 0) {
        Py_DECREF(seq);
        throw std::runtime_error("Nested list must have at least one row.");
      }
      PyObject* row = PySequence_Fast_GET_ITEM(seq, 0);
      PyObject* pixel;
      PyObject* row_seq = PySequence_Fast(row, "");
      if (row_seq == NULL) {
        pixel = row;
      } else {
        if (PySequence_Fast_GET_SIZE(row_seq) == 0) {
          Py_DECREF(seq);
          Py_DECREF(row_seq);
          throw std::runtime_error("The rows must be at least one column wide.");
        }
        pixel = PySequence_Fast_GET_ITEM(row_seq, 0);
      }
      Py_DECREF(seq);
      Py_DECREF(row_seq);
      if (PyInt_Check(pixel))
        pixel_type = GREYSCALE;
      else if (PyFloat_Check(pixel))
        pixel_type = FLOAT;
      else if (is_RGBPixelObject(pixel))
        pixel_type = RGB;
      if (pixel_type < 0)
        throw std::runtime_error
          ("The image type could not automatically be determined from the list.  Please specify an image type using the second argument.");
    }
      
    switch (pixel_type) {
    case ONEBIT:
      _nested_list_to_image<OneBitPixel> func1;
      return (Image*)func1(obj);
    case GREYSCALE:
      _nested_list_to_image<GreyScalePixel> func2;
      return (Image*)func2(obj);
    case GREY16:
      _nested_list_to_image<Grey16Pixel> func3;
      return (Image*)func3(obj);
    case RGB:
      _nested_list_to_image<RGBPixel> func4;
      return (Image*)func4(obj);
    case Gamera::FLOAT:
      _nested_list_to_image<FloatPixel> func5;
      return (Image*)func5(obj);
    default:
      throw std::runtime_error("Second argument is not a valid image type number.");
    }
  }
 
  template<class T>
  PyObject* to_nested_list(T& m) {
    PyObject* rows = PyList_New(m.nrows());
    for (size_t r = 0; r < m.nrows(); ++r) {
      PyObject* row = PyList_New(m.ncols());
      for (size_t c = 0; c < m.ncols(); ++c) {
        PyObject* px = pixel_to_python(m.get(Point(c, r)));
        PyList_SET_ITEM(row, c, px);
      }
      PyList_SET_ITEM(rows, r, row);
    }
    return rows;
  }


  template<class T>
  double mse(T& a, T& b) {
    if (a.size() != b.size())
      throw std::runtime_error("Both images must be the same size.");
    typename T::vec_iterator it_a, it_b;
    double error = 0;
    for (it_a = a.vec_begin(), it_b = b.vec_begin();
         it_a != a.vec_end(); ++it_a, ++it_b) {
      double rdiff = (double)it_a->red() - it_b->red();
      double bdiff = (double)it_a->blue() - it_b->blue();
      double gdiff = (double)it_a->green() - it_b->green();
      error += rdiff*rdiff + bdiff*bdiff + gdiff*gdiff;
    }
    return (error / (a.nrows() * a.ncols())) / 3.0;
  }

  template<class T>
  void reset_onebit_image(T &image) {
    typename T::vec_iterator i;
    for (i = image.vec_begin(); i != image.vec_end(); ++i) {
      if (i.get() > 0) i.set(1);
    }
  }

  /*
   * compute Cc's from an already labeled image
   * Christoph Dalitz and Hasan Yildiz
   */
  template<class T>
  ImageList* ccs_from_labeled_image(T &src) {
    typedef typename T::value_type value_type;
    value_type value;

    ImageList* return_ccs = new ImageList();

    std::map<unsigned int, Rect*> pixel;
    std::map<unsigned int, Rect*>::iterator iter;

    for (size_t y=0; y < src.nrows(); ++y) {
      for (size_t x=0; x < src.ncols(); ++x) {
        if (!is_white(src.get(Point(x,y)))) {
          value = src.get(Point(x,y));

          // when new label: create Rect for new Cc
          if (pixel.find(value) == pixel.end()) {
            pixel[value] = new Rect(Point(x, y), Point(x, y));
          }
          // update Rect bounding box when known label
          else {
            iter = pixel.find(value);

            if (y < (*iter).second->ul_y())
              (*iter).second->ul_y(y);
            if (x < (*iter).second->ul_x())
              (*iter).second->ul_x(x);
            if (y > (*iter).second->lr_y())
              (*iter).second->lr_y(y);
            if (x > (*iter).second->lr_x())
              (*iter).second->lr_x(x);
          }
        }
      }
    }

    // create Cc's for all labels
    for (iter = pixel.begin(); iter != pixel.end(); iter++) {
      return_ccs->push_back(new ConnectedComponent<typename T::data_type>(
                    *src.data(),    // data
                    (*iter).first,  // label
                    Point((*iter).second->ul_x(), (*iter).second->ul_y()), // upper left
                    Point((*iter).second->lr_x(), (*iter).second->lr_y())  // lower right
                  ));

      delete iter->second;
      iter->second = 0;
    }

    return return_ccs;
  }

  /*
   * find minimum and maximum location and value of maximum within mask
   * Only black points in the mask are evaluated in image
   */
  template<class T, class U>
  PyObject* min_max_location(const T& image, const U& mask){

    typedef typename T::value_type value_type;
    int max_x, max_y, min_x, min_y;
    size_t x,y;
    value_type max_val, min_val, test_val;

    // find maximum
    max_x = max_y = min_x = min_y = -1;
    max_val = black(image);  // lowest possible value
    min_val = white(image);  // highest possible value
    for (y = 0; y < mask.nrows(); y++) {
      for (x = 0; x < mask.ncols(); x++) {
        if (is_black(mask.get(Point(x,y)))) {
          test_val = image.get(Point(mask.offset_x()+x,mask.offset_y()+y));
          if (test_val >= max_val) {
            max_val = test_val;
            max_x = mask.offset_x()+x; max_y = mask.offset_y()+y;
          }
          if (test_val <= min_val) {
            min_val = test_val;
            min_x = mask.offset_x()+x; min_y = mask.offset_y()+y;
          }
        }
      }
    }

    if (max_x < 0)
      throw std::runtime_error("min_max_location: mask has no black pixel");

    return Py_BuildValue("NiNi", 
                         create_PointObject(Point(min_x,min_y)), min_val,
                         create_PointObject(Point(max_x,max_y)), max_val);
  }
  // specialization for FloatImage
  template<class U>
  PyObject* min_max_location(const FloatImageView& image, const U& mask){

    int max_x, max_y, min_x, min_y;
    size_t x,y;
    FloatPixel max_val, min_val, test_val;

    // find maximum
    max_x = max_y = min_x = min_y = -1;
    max_val = std::numeric_limits<FloatPixel>::min();
    min_val = std::numeric_limits<FloatPixel>::max();
    for (y = 0; y < mask.nrows(); y++) {
      for (x = 0; x < mask.ncols(); x++) {
        if (is_black(mask.get(Point(x,y)))) {
          test_val = image.get(Point(mask.offset_x()+x,mask.offset_y()+y));
          if (test_val >= max_val) {
            max_val = test_val;
            max_x = mask.offset_x()+x; max_y = mask.offset_y()+y;
          }
          if (test_val <= min_val) {
            min_val = test_val;
            min_x = mask.offset_x()+x; min_y = mask.offset_y()+y;
          }
        }
      }
    }

    if (max_x < 0)
      throw std::runtime_error("min_max_location: mask has no black pixel");

    return Py_BuildValue("NfNf", 
                         create_PointObject(Point(min_x,min_y)), min_val,
                         create_PointObject(Point(max_x,max_y)), max_val);
  }

  template<class T>
  PyObject* min_max_location_nomask(const T& image) {

    typedef typename T::value_type value_type;
    int max_x, max_y, min_x, min_y;
    size_t x,y;
    value_type max_val, min_val, test_val;

    // find maximum
    max_x = max_y = min_x = min_y = 0;
    max_val = black(image);  // lowest possible value
    min_val = white(image);  // highest possible value
    for (y = 0; y < image.nrows(); y++) {
      for (x = 0; x < image.ncols(); x++) {
        test_val = image.get(Point(x,y));
        if (test_val >= max_val) {
          max_val = test_val;
          max_x = x; max_y = y;
        }
        if (test_val <= min_val) {
          min_val = test_val;
          min_x = x; min_y = y;
        }
      }
    }

    return Py_BuildValue("NiNi",
                         create_PointObject(Point(min_x,min_y)), min_val,
                         create_PointObject(Point(max_x,max_y)), max_val);
  }
  // specialization for FloatImage
  template<class U>
  PyObject* min_max_location_nomask(const FloatImageView& image, const U& mask){

    int max_x, max_y, min_x, min_y;
    size_t x,y;
    FloatPixel max_val, min_val, test_val;

    // find maximum
    max_x = max_y = min_x = min_y = 0;
    max_val = std::numeric_limits<FloatPixel>::min();
    min_val = std::numeric_limits<FloatPixel>::max();
    for (y = 0; y < image.nrows(); y++) {
      for (x = 0; x < image.ncols(); x++) {
        test_val = image.get(Point(x,y));
        if (test_val >= max_val) {
          max_val = test_val;
          max_x = x; max_y = y;
        }
        if (test_val <= min_val) {
          min_val = test_val;
          min_x = x; min_y = y;
        }
      }
    }

    return Py_BuildValue("NfNf",
                         create_PointObject(Point(min_x,min_y)), min_val,
                         create_PointObject(Point(max_x,max_y)), max_val);
  }


}
#endif