This file is indexed.

/usr/include/gamera/plugins/contour.hpp is in python-gamera-dev 3.3.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/*
 *
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, Karl MacMillan
 *               2010      Oliver Christen, Christoph Dalitz
 *               2011      Andreas Leuschner, Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef mgd10222004_contours
#define mgd10222004_contours

#include "gamera.hpp"

namespace Gamera {
  template<class T>
  FloatVector* contour_top(const T& m) {
    FloatVector* output = new FloatVector(m.ncols());
    try {
      for (size_t c = 0; c != m.ncols(); ++c) {
        size_t r = 0;
        for (; r != m.nrows(); ++r)
          if (is_black(m.get(Point(c, r))))
            break;
        double result;
        if (r >= m.nrows())
          result = std::numeric_limits<double>::infinity();
        else
          result = (double)r;
        (*output)[c] = result;
      }
    } catch (std::exception e) {
      delete output;
      throw;
    }
    return output;
  }

  template<class T>
  FloatVector* contour_bottom(const T& m) {
    FloatVector* output = new FloatVector(m.ncols());
    try {
      for (size_t c = 0; c != m.ncols(); ++c) {
        long r = m.nrows() - 1;
        for (; r >= 0; --r)
          if (is_black(m.get(Point(c, r))))
            break;
        double result;
        if (r < 0)
          result = std::numeric_limits<double>::infinity();
        else
          result = (double)(m.nrows() - r);
        (*output)[c] = result;
      }
    } catch (std::exception e) {
      delete output;
      throw;
    }
    return output;
  }

  template<class T>
  FloatVector* contour_left(const T& m) {
    FloatVector* output = new FloatVector(m.nrows());
    try {
      for (size_t r = 0; r != m.nrows(); ++r) {
        size_t c = 0;
        for (; c != m.ncols(); ++c)
          if (is_black(m.get(Point(c, r))))
            break;
        double result;
        if (c >= m.ncols())
          result = std::numeric_limits<double>::infinity();
        else
          result = (double)c;
        (*output)[r] = result;
      }
    } catch (std::exception e) {
      delete output;
      throw;
    }
    return output;
  }

  template<class T>
  FloatVector* contour_right(const T& m) {
    FloatVector* output = new FloatVector(m.nrows());
    try {
      for (size_t r = 0; r != m.nrows(); ++r) {
        long c = m.ncols() - 1;
        for (; c >= 0; --c)
          if (is_black(m.get(Point(c, r))))
            break;
        double result;
        if (c < 0)
          result = std::numeric_limits<double>::infinity();
        else
          result = (double)(m.ncols() - c);
        (*output)[r] = result;
      }
    } catch (std::exception e) {
      delete output;
      throw;
    }
    return output;
  }

  // etxraction of sample points from the contour
  // author: Oliver Christen
  template<class T>
  PointVector * contour_samplepoints(const T& cc, int percentage) {
    PointVector *output = new PointVector();
    PointVector *contour_points = new PointVector();
    PointVector::iterator found;

    FloatVector *top = contour_top(cc);
    FloatVector *right = contour_right(cc);
    FloatVector *bottom = contour_bottom(cc);
    FloatVector *left = contour_left(cc);
    FloatVector::iterator it;

    int x, y, i;
    float d;

    unsigned int top_d = std::numeric_limits<unsigned int>::max() ;
    unsigned int top_max_x = 0;
    unsigned int top_max_y = 0;

    unsigned int right_d = std::numeric_limits<unsigned int>::max();
    unsigned int right_max_x = 0;
    unsigned int right_max_y = 0;

    unsigned int bottom_d = std::numeric_limits<unsigned int>::max();
    unsigned int bottom_max_x = 0;
    unsigned int bottom_max_y = 0;

    unsigned int left_d = std::numeric_limits<unsigned int>::max();
    unsigned int left_max_x = 0; 
    unsigned int left_max_y = 0;

    // top
    i = 0;for(it = top->begin() ; it != top->end() ; it++, i++) {
      if( *it == std::numeric_limits<double>::infinity() ) {
        continue;
      }
      d = *it;
      x = cc.offset_x() + i;
      y = cc.offset_y() + d;
      if( d < top_d) {
        top_d = d;
        top_max_x = x;
        top_max_y = y;	
      }
      found = find(contour_points->begin(), contour_points->end(), Point(x,y));
      if(found == contour_points->end()) {
        contour_points->push_back( Point(x,y) );
      }
    }
    // right
    i = 0;for(it = right->begin() ; it != right->end() ; it++, i++) {
      if( *it == std::numeric_limits<double>::infinity() ) {
        continue;
      }
      d = *it;
      x = cc.offset_x() + cc.ncols() - d;
      y = cc.offset_y() + i;
      if( d < right_d) {
        right_d = d;
        right_max_x = x;
        right_max_y = y;
      }
      found = find(contour_points->begin(), contour_points->end(), Point(x,y));
      if(found == contour_points->end()) {
        contour_points->push_back( Point(x,y) );
      }
    }
    // bottom
    i = 0;for(it = bottom->begin() ; it != bottom->end() ; it++, i++) {
      if( *it == std::numeric_limits<double>::infinity() ) {
        continue;
      }
      d = *it;
      x = cc.offset_x() + i;
      y = cc.offset_y() + cc.nrows() - d;
      if( d <= bottom_d) {
        bottom_d = d;
        bottom_max_x = x;
        bottom_max_y = y;
      }
      found = find(contour_points->begin(), contour_points->end(), Point(x,y));
      if(found == contour_points->end()) {
        contour_points->push_back( Point(x,y) );
      }
    }
    // left
    i = 0;for(it = left->begin() ; it != left->end() ; it++, i++) {
      if( *it == std::numeric_limits<double>::infinity() ) {
        continue;
      }
      d = *it;
      x = cc.offset_x() + d;
      y = cc.offset_y() + i;
      if( d <= left_d) {
        left_d = d;
        left_max_x = x;
        left_max_y = y;
      }
      found = find(contour_points->begin(), contour_points->end(), Point(x,y));
      if(found == contour_points->end()) {
        contour_points->push_back( Point(x,y) );
      }
    }

    // add only every 100/percentage-th point
    double delta = 100.0/percentage;
    double step = 0.0;
    unsigned int offset = 0; // to avoid overflow and rounding errors
    unsigned int ii = 0;
    while (ii < contour_points->size()) {
      output->push_back( (*contour_points)[ii] );
      step += delta;
      if (step > 100.0) {
        step -= 100.0;
        offset += 100;
      }
      ii = offset + (unsigned int)step;
    }

    // add the four outer extreme points ...
    // ... top
    if (top_d != std::numeric_limits<unsigned int>::max()) {
      found = find(output->begin(), output->end(), Point(top_max_x, top_max_y));
      if(found == output->end()) {
        output->push_back( Point(top_max_x, top_max_y) );
      }
    }
    // ... right
    if (right_d != std::numeric_limits<unsigned int>::max()) {
      found = find(output->begin(), output->end(), Point(right_max_x, right_max_y));
      if(found == output->end()) {
        output->push_back( Point(right_max_x, right_max_y) );
      }
    }
    // ... bottom
    if (bottom_d != std::numeric_limits<unsigned int>::max()) {
      found = find(output->begin(), output->end(), Point(bottom_max_x, bottom_max_y));
      if(found == output->end()) {
        output->push_back( Point(bottom_max_x, bottom_max_y) );
      }
    }
    // ... left
    if (left_d != std::numeric_limits<unsigned int>::max()) {
      found = find(output->begin(), output->end(), Point(left_max_x, left_max_y));
      if(found == output->end()) {
        output->push_back( Point(left_max_x, left_max_y) );
      }
    }

    delete top;
    delete right;
    delete bottom;
    delete left;
    delete contour_points;

    return output;
  }

  // contour extraction with Pavlidis' algorithm
  // author: Andreas Leuschner
  template<class T>
  PointVector* contour_pavlidis(T &m) {

    PointVector* v_contour = new PointVector();

    // neighbor mask:
    //   5  6  7
    //   4  P  0
    //   3  2  1
    int mask[8][2];
    //	 X            Y
    mask[0][0] = 1;  mask[0][1] = 0;
    mask[1][0] = 1;  mask[1][1] = -1;
    mask[2][0] = 0;  mask[2][1] = -1;
    mask[3][0] = -1; mask[3][1] = -1;
    mask[4][0] = -1; mask[4][1] = 0;
    mask[5][0] = -1; mask[5][1] = 1;
    mask[6][0] = 0;  mask[6][1] = 1;
    mask[7][0] = 1;  mask[7][1] = 1;

    // find startpixel
    unsigned int x = 0;
    unsigned int y = 0;
    while(m.get(Point(x, y)) == 0 && x < m.ncols() && y < m.nrows()){
      if (x == m.ncols() - 1){
        y++;
        x = 0;
      } 
      x++;
    }
    v_contour->push_back( Point(x, y) );
  
    // extract contour
    Point p_Right;
    Point p_Middle;
    Point p_Left;
    unsigned int newX_R;
    unsigned int newY_R;
    unsigned int newX_M;
    unsigned int newY_M;
    unsigned int newX_L;
    unsigned int newY_L;
    bool found = false;
    bool first = true;
    bool border = true;
    int n = 0;
    int s = 6;
    int third = 0;
  
    int run = 1;
    while ( (*v_contour)[n].x() != (*v_contour)[0].x() || 
            (*v_contour)[n].y() != (*v_contour)[0].y() || 
            first == true
            ){
      found = false; 
      while(found == false && third < 3){
        third++;

        newX_R = (*v_contour)[n].x() + mask[ (s-1)%8 ][0];
        newY_R = (*v_contour)[n].y() + mask[ (s-1)%8 ][1];
      
        newX_M = (*v_contour)[n].x() + mask[ (s)%8 ][0];
        newY_M = (*v_contour)[n].y() + mask[ (s)%8 ][1];
      
        newX_L = (*v_contour)[n].x() + mask[ (s+1)%8 ][0];
        newY_L = (*v_contour)[n].y() + mask[ (s+1)%8 ][1];
      
        if(newX_R < m.ncols() && newY_R < m.nrows()){
          p_Right.x( newX_R );
          p_Right.y( newY_R );
          border = false;
        }   
        if(newX_M < m.ncols() && newY_M < m.nrows()){
          p_Middle.x( newX_M );	
          p_Middle.y( newY_M );
          border = false;
        }
        if(newX_L < m.ncols() && newY_L < m.nrows()){
          p_Left.x( newX_L );	
          p_Left.y( newY_L );
          border = false;
        }
      
        if(border == false){
          border = true;
          if ( is_black(m.get( p_Right)) && newX_R < m.ncols() && newY_R < m.nrows() )
            {
              v_contour->push_back(p_Right);
              found = true;
              n++;	
              s = s - 2;
            }
          else{
            if(is_black(m.get(p_Middle)) && newX_M < m.ncols() && newY_M < m.nrows()){
              v_contour->push_back(p_Middle);
              found = true;
              n++;
            }
            else {
              if(is_black(m.get(p_Left) ) && newX_L < m.ncols() && newY_L < m.nrows() ){
                v_contour->push_back(p_Left);
                found = true;
                n++;
              }
              else {
                s = s + 2;
              }
            }
          }
          first = false;
        }
        else {
          s = s + 2;
        }
      
      }
      third = 0;
      run++;
    }
    if (v_contour->size() > 1)
      v_contour->pop_back(); // start pixel is doublette
  
    return v_contour;
  }  

}
#endif