This file is indexed.

/usr/include/gamera/plugins/binarization.hpp is in python-gamera-dev 3.3.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/*
 *
 * Copyright (C) 2005 John Ashley Burgoyne and Ichiro Fujinaga
 *               2007 Uma Kompella and Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef jab18112005_binarization
#define jab18112005_binarization

#include "gamera.hpp"
#include "math.h"
#include <numeric>
#include <algorithm>

#include <iostream>

using namespace Gamera;

/* Adaptive function for summing to double. */
template<class T>
struct double_plus : public std::binary_function<double, double, T>
{
    double operator()(double x, T y) { return x + (double)y; }
};

/* Adaptive function for squaring to doubles. */
template<class T>
struct double_squared : public std::unary_function<double, T> 
{
    double operator()(T x) { return (double)x * (double)x; }
};

/* Adaptive function for adding pairs. */
template<class T>
struct pair_plus : public std::binary_function<T, T, T>
{
    T operator()(T p, T q) 
        {
            return std::make_pair(p.first + q.first, 
                                  p.second + q.second);
        }
};

/* Binary function for accumulating background pixels. */
template<class T, class U, class V>
struct gatos_accumulate 
    : public std::binary_function<T, U, V>
{
    typedef typename T::first_type type1;
    typedef typename T::second_type type2;
    T operator()(U mask, V pixel)
        {
            if (is_black(mask)) return std::make_pair((type1)0, (type2)0);
            else return std::make_pair((type1)1, (type2)pixel);
        }
};

/* Binary function for Gatos thresholding. */
template<class T, class U>
struct gatos_thresholder
    : public std::binary_function<U, T, T>
{
    const double q;
    const double delta;
    const double b;
    const double p1;
    const double p2;

    gatos_thresholder(double q, double delta, double b, double p1, double p2)
        : q(q), delta(delta), b(b), p1(p1), p2(p2) {} 
   
    U operator()(T src, T background)
        {
            return 
                ((double)(background - src) 
                 > (q 
                    * delta 
                    * (((1 - p2) 
                        / (1 
                           + std::exp(((-4 * background) / (b * (1 - p1))) 
                                      + ((2 * (1 + p1)) / (1 - p1))))) 
                       + p2)))
                ? pixel_traits<U>::black()
                : pixel_traits<U>::white();
        }
};

/* FloatPixel image_mean(Image src)
 *
 * Returns the mean value over all pixels of an image.
 */
template<class T>
FloatPixel image_mean(const T &src)
{
    FloatPixel sum 
        = std::accumulate(src.vec_begin(), 
                          src.vec_end(), 
                          (FloatPixel)0,
                          double_plus<typename T::value_type>());
    size_t area = src.nrows() * src.ncols();
    return sum / area;
}

/* FloatPixel image_variance(Image src)
 *
 * Returns the variance over all pixels of an image.
 */
template<class T>
FloatPixel image_variance(const T &src)
{
    FloatImageData* squaredData = new FloatImageData(src.size(), src.origin());
    FloatImageView* squares = new FloatImageView(*squaredData);

    transform(src.vec_begin(), 
              src.vec_end(), 
              squares->vec_begin(), 
              double_squared<typename T::value_type>());

    FloatPixel sum
        = std::accumulate(squares->vec_begin(), 
                          squares->vec_end(), 
                          (FloatPixel)0);
    size_t area = src.nrows() * src.ncols();
    FloatPixel mean = image_mean(src);
    
    delete squaredData;
    delete squares;
    return sum / area - mean * mean;
}

/* Float mean_filter(Image src, size_t region_size);
 *
 * The implementation of region size is not entirely correct because of
 * integer rounding but matches the implementation of the thresholding
 * algorithms.
 */
template<class T>
FloatImageView* mean_filter(const T &src, size_t region_size)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("mean_filter: region_size out of range");

    size_t half_region_size = region_size / 2;

    typename ImageFactory<T>::view_type* copy = ImageFactory<T>::new_view(src);
    FloatImageData* data = new FloatImageData(src.size(), src.origin());
    FloatImageView* view = new FloatImageView(*data);
  
    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Define the region.
            Point ul((coord_t)std::max(0, (int)x - (int)half_region_size),
                     (coord_t)std::max(0, (int)y - (int)half_region_size));
            Point lr((coord_t)std::min(x + half_region_size, src.ncols() - 1),
                     (coord_t)std::min(y + half_region_size, src.nrows() - 1));
            copy->rect_set(ul, lr);
            view->set(Point(x, y), image_mean(*copy));
        }
    }

    delete copy;
    return view;
}

/* Image variance_filter(Image src, Float means, size_t region_size);
 *
 * The implementation of region size is not entirely correct because of
 * integer rounding but matches the implementation of the thresholding
 * algorithms.
 */
template<class T>
FloatImageView* variance_filter(const T &src,
                                const FloatImageView &means,
                                size_t region_size) 
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("variance_filter: region_size out of range");
     if (src.size() != means.size())
        throw std::invalid_argument("variance_filter: sizes must match");
 
    size_t half_region_size = region_size / 2;

    // Compute squares of each element. This step avoid repeating the squaring
    // operation for overlapping regions.
    FloatImageData* squaredData = new FloatImageData(src.size(), src.origin());
    FloatImageView* squares = new FloatImageView(*squaredData);

    transform(src.vec_begin(), 
              src.vec_end(), 
              squares->vec_begin(), 
              double_squared<typename T::value_type>());
  
    FloatImageData* data = new FloatImageData(src.size(), src.origin());
    FloatImageView* view = new FloatImageView(*data);  

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Define the region.
            Point ul((coord_t)std::max(0, (int)x - (int)half_region_size),
                     (coord_t)std::max(0, (int)y - (int)half_region_size));
            Point lr((coord_t)std::min(x + half_region_size, src.ncols() - 1),
                     (coord_t)std::min(y + half_region_size, src.nrows() - 1));
            squares->rect_set(ul, lr);
            // Compute the variance.
            FloatPixel sum
                = std::accumulate(squares->vec_begin(), 
                                  squares->vec_end(), 
                                  (FloatPixel)0);
            size_t area = squares->nrows() * squares->ncols();
            FloatPixel mean = means.get(Point(x,y));
            view->set(Point(x, y), sum / area - mean * mean);
        }
    }
    
    delete squaredData;
    delete squares;
    return view;
}

/*
 * Image wiener_filter(Image src, size_t region_size, double noise_variance);
 * 
 */
template<class T>
T* wiener_filter(const T &src, size_t region_size, double noise_variance)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("niblack_threshold: region_size out of range");
    
    // Compute regional statistics.
    const FloatImageView* means = mean_filter(src, region_size);
    const FloatImageView* variances = variance_filter(src, *means, region_size);

    // Compute noise variance if needed.
    if (noise_variance < 0) {
        FloatImageData* orderedVariancesData 
            = new FloatImageData(variances->size(), variances->origin());
        FloatImageView* orderedVariances 
            = new FloatImageView(*orderedVariancesData);        
        std::copy(variances->vec_begin(),
                  variances->vec_end(),
                  orderedVariances->vec_begin());
        size_t area = orderedVariances->nrows() * orderedVariances->ncols();
        std::nth_element(orderedVariances->vec_begin(),
                         orderedVariances->vec_begin() + (area - 1) / 2,
                         orderedVariances->vec_end());
        noise_variance 
            = (double)*(orderedVariances->vec_begin() + (area - 1) / 2);
        delete orderedVariancesData;
        delete orderedVariances;
    }

    typedef typename T::value_type value_type;
    typedef typename ImageFactory<T>::data_type data_type;
    typedef typename ImageFactory<T>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            double mean = (double)means->get(Point(x, y));
            double variance = (double)variances->get(Point(x, y));
            // The estimate of noise variance will never be perfect, but in
            // theory, it would be impossible for any region to have a local
            // variance less than it. The following check eliminates that
            // theoretical impossibility and has a side benefit of preventing
            // division by zero.
            if (variance < noise_variance) {
                view->set(Point(x, y), (value_type)mean);
            } else {
                double multiplier = (variance - noise_variance) / variance;
                double value = (double)src.get(Point(x, y));
                view->set(Point(x, y),
                          (value_type)(mean + multiplier * (value - mean)));
            }
        }
    }

    delete means->data(); delete means;
    delete variances->data(); delete variances;
    return view;
}

/*
 * OneBit niblack_threshold(GreyScale src, 
 *                          size_t region_size, 
 *                          double sensitivity,
 *                          int lower_bound,
 *                          int upper_bound);
 */
template<class T>
OneBitImageView* niblack_threshold(const T &src, 
                                   size_t region_size, 
                                   double sensitivity,
                                   int lower_bound,
                                   int upper_bound)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("niblack_threshold: region_size out of range");

    // Compute regional statistics.
    const FloatImageView* means = mean_filter(src, region_size);
    const FloatImageView* variances = variance_filter(src, *means, region_size);

    typedef ImageFactory<OneBitImageView>::data_type data_type;
    typedef ImageFactory<OneBitImageView>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Check global thresholds and then threshold adaptively.
            FloatPixel pixel_value = (FloatPixel)src.get(Point(x, y));
            if (pixel_value < (FloatPixel)lower_bound) {
                view->set(Point(x, y), black(*view));
            } else if (pixel_value >= (FloatPixel)upper_bound) {
                view->set(Point(x, y), white(*view));
            } else {
                FloatPixel mean = means->get(Point(x, y));
                FloatPixel deviation = std::sqrt(variances->get(Point(x, y)));
                FloatPixel threshold = mean + sensitivity * deviation;
                view->set(Point(x, y), 
                          pixel_value > threshold ? white(*view) : black(*view));
            }
        }
    }

    delete means->data(); delete means;
    delete variances->data(); delete variances;
    return view;
}

/*
 * OneBit sauvola_threshold(GreyScale src, 
 *                          size_t region_size, 
 *                          double sensitivity,
 *                          int dynamic_range,
 *                          int lower_bound,
 *                          int upper_bound);
 */
template<class T>
OneBitImageView* sauvola_threshold(const T &src, 
                                   size_t region_size, 
                                   double sensitivity,
                                   int dynamic_range,
                                   int lower_bound,
                                   int upper_bound)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("niblack_threshold: region_size out of range");

    // Compute regional statistics.
    const FloatImageView* means = mean_filter(src, region_size);
    const FloatImageView* variances = variance_filter(src, *means, region_size);

    typedef ImageFactory<OneBitImageView>::data_type data_type;
    typedef ImageFactory<OneBitImageView>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Check global thresholds and then threshold adaptively.
            FloatPixel pixel_value = (FloatPixel)src.get(Point(x, y));
            if (pixel_value < (FloatPixel)lower_bound) {
                view->set(Point(x, y), black(*view));
            } else if (pixel_value >= (FloatPixel)upper_bound) {
                view->set(Point(x, y), white(*view));
            } else {
                FloatPixel mean = means->get(Point(x, y));
                FloatPixel deviation = std::sqrt(variances->get(Point(x, y)));
                FloatPixel adjusted_deviation 
                    = 1.0 - deviation / (FloatPixel)dynamic_range;
                FloatPixel threshold 
                    = mean + (1.0 - sensitivity * adjusted_deviation);
                view->set(Point(x, y), 
                          pixel_value > threshold ? white(*view) : black(*view));
            }
        }
    }

    delete means->data(); delete means;
    delete variances->data(); delete variances;
    return view;
}

/* 
 * Image* gatos_background(Image src, size_t region_size);
 */
template<class T, class U>
T* gatos_background(const T &src, 
                    const U &binarization, 
                    size_t region_size)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("gatos_background: region_size out of range");
    if (src.size() != binarization.size())
        throw std::invalid_argument("gatos_background: sizes must match");
 
    size_t half_region_size = region_size / 2;

    typename ImageFactory<T>::view_type* scopy 
        = ImageFactory<T>::new_view(src);
    typename ImageFactory<U>::view_type* bcopy
        = ImageFactory<U>::new_view(binarization);

    typedef std::pair<unsigned int, FloatPixel> gatos_pair;
    typedef typename T::value_type src_value_type;
    typedef typename U::value_type binarization_value_type;

    typedef typename ImageFactory<T>::data_type data_type;
    typedef typename ImageFactory<T>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            if (is_white(binarization.get(Point(x, y)))) {
                view->set(Point(x, y), src.get(Point(x, y)));
            } else {
                // Define the region.
                Point ul((coord_t)std::max(0, (int)x - (int)half_region_size),
                         (coord_t)std::max(0, (int)y - (int)half_region_size));
                Point lr((coord_t)std::min(x + half_region_size, src.ncols() - 1),
                         (coord_t)std::min(y + half_region_size, src.nrows() - 1));
                scopy->rect_set(ul, lr);
                bcopy->rect_set(ul, lr);
                // Count and accumulate background pixels.
                gatos_pair sums =
                    std::inner_product(bcopy->vec_begin(),
                                       bcopy->vec_end(),
                                       scopy->vec_begin(),
                                       gatos_pair(0, 0.0),
                                       pair_plus<gatos_pair>(),
                                       gatos_accumulate
                                       <
                                       gatos_pair,
                                       binarization_value_type,
                                       src_value_type
                                       >());
                view->set(Point(x, y), 
                          sums.first > 0
                          ? (src_value_type)(sums.second / sums.first)
                          : white(src));
            }
        }
    }

    delete scopy;
    delete bcopy;
    return view;
}


/*
 * Image gatos_threshold(Image src, 
 *                       Image background, 
 *                       Image binarization,
 *                       double q,
 *                       double p1,
 *                       double p2);
 */
template<class T, class U>
OneBitImageView* gatos_threshold(const T &src, 
                                 const T &background, 
                                 const U &binarization,
                                 double q,
                                 double p1,
                                 double p2)
{
    if (src.size() != background.size())
        throw std::invalid_argument("gatos_threshold: sizes must match");
    if (background.size() != binarization.size())
        throw std::invalid_argument("gatos_threshold: sizes must match");

    typedef std::pair<unsigned int, FloatPixel> gatos_pair;
    typedef typename T::value_type base_value_type;
    typedef typename U::value_type binarization_value_type;

    double delta_numerator 
        = std::inner_product(src.vec_begin(),
                             src.vec_end(),
                             background.vec_begin(),
                             (double)0,
                             double_plus<base_value_type>(),
                             std::minus<base_value_type>());
    unsigned int delta_denominator
        = std::count_if(binarization.vec_begin(),
                        binarization.vec_end(),
                        is_black<binarization_value_type>);
    double delta = delta_numerator / (double)delta_denominator;
                             
    gatos_pair b_sums
        = std::inner_product(binarization.vec_begin(),
                             binarization.vec_end(),
                             background.vec_begin(),
                             gatos_pair(0, 0.0),
                             pair_plus<gatos_pair>(),
                             gatos_accumulate
                             <
                             gatos_pair,
                             binarization_value_type,
                             base_value_type
                             >());
    double b = (double)b_sums.second / (double)b_sums.first;

    typedef ImageFactory<OneBitImageView>::data_type data_type;
    typedef ImageFactory<OneBitImageView>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    std::transform(src.vec_begin(), 
                   src.vec_end(),
                   background.vec_begin(),
                   view->vec_begin(),
                   gatos_thresholder
                   <
                   typename T::value_type, 
                   typename U::value_type
                   >(q, delta, b, p1, p2));

    return view;
}


/*
 White Rohrer thresholding. This implementation uses code from
 the XITE library. According to its license, it may be freely included
 into Gamera (a GPL licensed software), provided the following
 notice is included into the code:

  Permission to use, copy, modify and distribute this software and its
  documentation for any purpose and without fee is hereby granted, 
  provided that this copyright notice appear in all copies and that 
  both that copyright notice and this permission notice appear in supporting
  documentation and that the name of B-lab, Department of Informatics or
  University of Oslo not be used in advertising or publicity pertaining 
  to distribution of the software without specific, written prior permission.

  B-LAB DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL B-LAB
  BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 
  CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 Important notice: this implementation only works with 8-bit greyscale
 images because the maximal value 255 for white is hard coded!!
*/

static struct {
  int WR1_F_OFFSET;
  int WR1_G_OFFSET;
  int BIN_ERROR;
  int BIN_FOREGROUND;
  int BIN_BACKGROUND;
  int BIN_OK;
  int WR1_BIAS_CROSSOVER;
  int WR1_BLACK_BIAS;
  int WR1_WHITE_BIAS;
  int WR1_BIAS;
  double WR1_BLACK_BIAS_FACTOR;
  double WR1_WHITE_BIAS_FACTOR;
  int wr1_f_tab[512];
  int wr1_g_tab[512];
} wr1_params = {
  /* WR1_F_OFFSET */  255,
  /* WR1_G_OFFSET */  255,
  /* BIN_ERROR */     -1,
  /* BIN_FOREGROUND */ 0,
  /* BIN_BACKGROUND */ 255,
  /* BIN_OK */         0,
  /* WR1_BIAS_CROSSOVER */ 93,
  /* WR1_BLACK_BIAS */ -40,
  /* WR1_WHITE_BIAS */ 40,
  /* WR1_BIAS */       20,
  /* WR1_BLACK_BIAS_FACTOR */ 0.0,
  /* WR1_WHITE_BIAS_FACTOR */ -0.25,
  /* wr1_f_tab */ {
    -62,  -62,  -61,  -61,  -60,  -60,  -59,  -59,
    -58,  -58,  -57,  -57,  -56,  -56,  -54,  -54,
    -53,  -53,  -52,  -52,  -51,  -51,  -50,  -50,
    -49,  -49,  -48,  -48,  -47,  -47,  -46,  -46,
    -45,  -45,  -44,  -44,  -43,  -43,  -42,  -42,
    -41,  -41,  -41,  -41,  -40,  -40,  -39,  -39,
    -38,  -38,  -37,  -37,  -36,  -36,  -36,  -36,
    -35,  -35,  -34,  -34,  -33,  -33,  -33,  -33,
    -32,  -32,  -31,  -31,  -31,  -31,  -30,  -30,
    -29,  -29,  -29,  -29,  -28,  -28,  -27,  -27,
    -27,  -27,  -26,  -26,  -25,  -25,  -25,  -25,
    -24,  -24,  -24,  -24,  -23,  -23,  -23,  -23,
    -22,  -22,  -22,  -22,  -21,  -21,  -21,  -21,
    -20,  -20,  -20,  -20,  -19,  -19,  -19,  -19,
    -18,  -18,  -18,  -18,  -17,  -17,  -17,  -17,
    -16,  -16,  -16,  -16,  -16,  -16,  -15,  -15,
    -15,  -15,  -14,  -14,  -14,  -14,  -14,  -14,
    -13,  -13,  -13,  -13,  -13,  -13,  -12,  -12,
    -12,  -12,  -12,  -12,  -11,  -11,  -11,  -11,
    -11,  -11,  -10,  -10,  -10,  -10,  -10,  -10,
    -9,   -9,   -9,   -9,   -9,   -9,   -8,   -8,
    -8,   -8,   -8,   -8,   -8,   -8,   -7,   -7,
    -7,   -7,   -7,   -7,   -7,   -7,   -6,   -6,
    -6,   -6,   -6,   -6,   -6,   -6,   -5,   -5,
    -5,   -5,   -5,   -5,   -5,   -5,   -4,   -4,
    -3,   -3,   -2,   -2,   -2,   -2,   -2,   -2,
    -2,   -2,   -2,   -2,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,    0,    0,
    1,    1,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    3,    3,    3,    3,    3,    3,    3,    3,
    3,    3,    3,    3,    3,    3,    3,    3,
    3,    3,    3,    3,    3,    3,    4,    4,
    4,    4,    4,    4,    4,    4,    4,    4,
    4,    4,    4,    4,    4,    4,    4,    4,
    4,    4,    4,    4,    4,    4,    4,    4,
    4,    4,    5,    5,    5,    5,    5,    5,
    5,    5,    5,    5,    5,    5,    5,    5,
    5,    5,    6,    6,    6,    6,    6,    6,
    6,    6,    6,    6,    6,    6,    6,    6,
    6,    6,    6,    6,    6,    6,    6,    6,
    6,    6,    6,    6,    6,    6,    6,    6,
    6,    6,    7,    7,    7,    7,    7,    7,
    7,    7,    7,    7,    7,    7,    7,    7,
    7,    7,    7,    7,    7,    7,    7,    7,
    7,    7,    7,    7,    8,    8,    8,    8,
    8,    8,    8,    8,    8,    8,    8,    8,
    8,    8,    8,    8,    8,    8,    8,    8,
    8,    8,    9,    9,    9,    9,    9,    9,
    9,    9,    9,    9,    9,    9,    9,    9,
    9,    9,    9,    9,    9,    9,    9,    9,
    9,    9,    9,    9,    9,    9,    9,    9,
    9,    9,   10,   10,   10,   10,   10,   10,
    10,   10,   10,   10,   10,   10,   10,   10,
    10,   10,   10,   10,   10,   10,   10,    0
  },
  /* wr1_g_tab */ {
    -126, -126, -125, -125, -124, -124, -123, -123,
    -122, -122, -121, -121, -120, -120, -119, -119,
    -118, -118, -117, -117, -116, -116, -115, -115,
    -114, -114, -113, -113, -112, -112, -111, -111,
    -110, -110, -109, -109, -108, -108, -107, -107,
    -106, -106, -105, -105, -104, -104, -103, -103,
    -102, -102, -101, -101, -100, -100,  -99,  -99,
    -98,  -98,  -97,  -97,  -96,  -96,  -95,  -95,
    -94,  -94,  -93,  -93,  -92,  -92,  -91,  -91,
    -90,  -90,  -89,  -89,  -88,  -88,  -87,  -87,
    -86,  -86,  -85,  -85,  -84,  -84,  -83,  -83,
    -82,  -82,  -81,  -81,  -80,  -80,  -79,  -79,
    -78,  -78,  -77,  -77,  -76,  -76,  -75,  -75,
    -74,  -74,  -73,  -73,  -72,  -72,  -71,  -71,
    -70,  -70,  -69,  -69,  -68,  -68,  -67,  -67,
    -66,  -66,  -65,  -65,  -64,  -64,  -63,  -63,
    -61,  -61,  -59,  -59,  -57,  -57,  -54,  -54,
    -52,  -52,  -50,  -50,  -48,  -48,  -46,  -46,
    -44,  -44,  -42,  -42,  -41,  -41,  -39,  -39,
    -37,  -37,  -36,  -36,  -34,  -34,  -33,  -33,
    -31,  -31,  -30,  -30,  -29,  -29,  -27,  -27,
    -26,  -26,  -25,  -25,  -24,  -24,  -23,  -23,
    -22,  -22,  -21,  -21,  -20,  -20,  -19,  -19,
    -18,  -18,  -17,  -17,  -16,  -16,  -15,  -15,
    -14,  -14,  -14,  -14,  -13,  -13,  -12,  -12,
    -12,  -12,  -11,  -11,  -10,  -10,  -10,  -10,
    -9,   -9,   -8,   -8,   -8,   -8,   -7,   -7,
    -7,   -7,   -6,   -6,   -6,   -6,   -5,   -5,
    -5,   -5,   -4,   -4,   -2,   -2,   -2,   -2,
    -2,   -2,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,    0,    0,
    1,    1,    1,    1,    1,    1,    1,    1,
    1,    1,    1,    1,    1,    1,    1,    1,
    1,    1,    2,    2,    2,    2,    2,    2,
    4,    4,    5,    5,    5,    5,    6,    6,
    6,    6,    7,    7,    7,    7,    8,    8,
    8,    8,    9,    9,   10,   10,   10,   10,
    11,   11,   12,   12,   12,   12,   13,   13,
    14,   14,   14,   14,   15,   15,   16,   16,
    17,   17,   18,   18,   19,   19,   20,   20,
    21,   21,   22,   22,   23,   23,   24,   24,
    25,   25,   26,   26,   27,   27,   29,   29,
    30,   30,   31,   31,   33,   33,   34,   34,
    36,   36,   37,   37,   39,   39,   41,   41,
    42,   42,   44,   44,   46,   46,   48,   48,
    50,   50,   52,   52,   54,   54,   57,   57,
    59,   59,   61,   61,   63,   63,   64,   64,
    65,   65,   66,   66,   67,   67,   68,   68,
    69,   69,   70,   70,   71,   71,   72,   72,
    73,   73,   74,   74,   75,   75,   76,   76,
    77,   77,   78,   78,   79,   79,   80,   80,
    81,   81,   82,   82,   83,   83,   84,   84,
    85,   85,   86,   86,   87,   87,   88,   88,
    89,   89,   90,   90,   91,   91,   92,   92,
    93,   93,   94,   94,   95,   95,   96,   96,
    97,   97,   98,   98,   99,   99,  100,  100,
    101,  101,  102,  102,  103,  103,  104,  104,
    105,  105,  106,  106,  107,  107,  108,  108,
    109,  109,  110,  110,  111,  111,  112,  112,
    113,  113,  114,  114,  115,  115,  116,  116,
    117,  117,  118,  118,  119,  119,  120,  120,
    121,  121,  122,  122,  123,  123,  124,  124,
    125,  125,  126,  126,  127,  127,  127,    0
  }
};

inline int wr1_bias (int x, int offset)
{
   int result;
   int bias;
   
   x = 256 - x;

   bias = -offset;
   
   if (x < wr1_params.WR1_BIAS_CROSSOVER)
   {
      result = x - bias
	 - (int)(wr1_params.WR1_BLACK_BIAS_FACTOR*(wr1_params.WR1_BIAS_CROSSOVER-x));
   }
   else if (x >= wr1_params.WR1_BIAS_CROSSOVER)
   {
      result = x + bias
	 + (int)(wr1_params.WR1_WHITE_BIAS_FACTOR*(x-wr1_params.WR1_BIAS_CROSSOVER));
   }
   else
      result = x;

/*
   result = x-bias;
*/
   if (result < wr1_params.BIN_FOREGROUND)
      result = wr1_params.BIN_FOREGROUND;
   if (result > wr1_params.BIN_BACKGROUND)
      result = wr1_params.BIN_BACKGROUND;
   
   return  256 - result; 
}


inline int wr1_f (int diff, int *f)
{
  /* if (abs(diff)>wr1_params.WR1_F_OFFSET)
   {
      Warning(2, "wr1_f: Error: diff = %i\n", diff);
      return wr1_params.BIN_ERROR;
      }*/
   f[0] = -wr1_params.wr1_f_tab[wr1_params.WR1_F_OFFSET - diff];
   return wr1_params.BIN_OK;
}

inline int wr1_g (int diff, int *g)
{
  /*   if (abs(diff)>wr1_params.WR1_G_OFFSET)
   {
      Warning(2, "wr1_g: Error: diff = %i\n", diff);   
      return wr1_params.BIN_ERROR;
      }*/
   g[0] = -wr1_params.wr1_g_tab[wr1_params.WR1_G_OFFSET - diff];
   return wr1_params.BIN_OK;
}


/*
 * OneBit white_rohrer_threshold(GreyScale src, 
 *                          int x_lookahead,
 *                          int y_lookahead, 
 *                          int bias_mode,
 *                          int bias_factor,
 *                          int f_factor
 *                          int g_factor);
 */

template<class T>
OneBitImageView* white_rohrer_threshold (const T& in, int x_lookahead, int y_lookahead,
	     int bias_mode, int bias_factor, int f_factor, int g_factor)
{
  int xsize, ysize;
  int x, y;
  int u;
  int prevY;
  int Y = 0;
  int f, g;
  int x_ahead, y_ahead;
  int t;
  int offset = wr1_params.WR1_BIAS;
  //double mu, s_dev;
  FloatPixel mu = 0.0;
  FloatPixel  s_dev = 0.0; 
  int *Z;
  int n;

  typedef ImageFactory<OneBitImageView>::data_type data_type;
  typedef ImageFactory<OneBitImageView>::view_type view_type;
  data_type* bin_data = new data_type(in.size(), in.origin());
  view_type* bin_view = new view_type(*bin_data);  
  

  xsize = in.ncols();
  ysize = in.nrows();
  //  std::cout<<"sizes are "<<ysize<<","<<xsize<<std::endl;
  x_lookahead = x_lookahead % xsize;

  if (bias_mode == 0) 
  {
    mu = image_mean(in);
    s_dev = sqrt(image_variance(in));
    offset = (int)(s_dev - 40) ;
  } 
  else 
    offset = bias_mode;

  Z = new int[2*xsize+1];
  for(n = 0; n< 2*xsize+1; ++n)
    Z[n] = 0;
   
  //Z[1] = prevY = (int)mu;
  Z[0] = prevY = (int)mu;

   for (y=0; y< 1+y_lookahead; y++)
   {
      if (y < y_lookahead)
	 t = xsize;
      else
	 t = x_lookahead;
      for (x=0; x< t; x++)
      {
	 u = in.get(Point(x,y));
	 wr1_f (u-prevY, &f);
	 Y = prevY + f;
	 if (y == 1)
	    Z[x] = (int)mu;
	 else
	 {
	    wr1_g(Y-Z[x], &g);
	    Z[x] = Z[x] + g; 
	 }
      }
      
   }
   x_ahead = 1 + x_lookahead;
   y_ahead = 1 + y_lookahead;
 
   for (y = 0; y < ysize; y++)
   {
      for (x = 0; x < xsize; x++)
      {
	 if (in.get(Point(x,y)) < (bias_factor  
			     * wr1_bias(Z[x_ahead],offset) / 100))
	 {
	    bin_view->set(Point(x,y),black(*bin_view));
	 }
	 
	 else	
	 {
	    bin_view->set(Point(x,y),white(*bin_view));
	 }

	 x_ahead++;
	 if (x_ahead > xsize)
	 {
	    x_ahead = 1;
	    y_ahead++;
	 }
	 if (y_ahead <= ysize)
	 {
	    prevY = Y;
	    wr1_f(in.get(Point(x_ahead,y_ahead))-prevY, &f);    
	    Y = prevY + f_factor * f / 100;
	    wr1_g(Y-Z[x_ahead], &g);
	    Z[x_ahead] = Z[x_ahead] + g_factor * g / 100;
	 }
	 else
	    Z[x_ahead] = Z[x_ahead-1];
      }
   }
 
 delete [] Z;
 Z = NULL;
  
 return bin_view;

}

#endif