This file is indexed.

/usr/share/pyshared/gadfly/kjParser.py is in python-gadfly 1.0.0-15.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
"""Python for parser interpretation

:Author: Aaron Watters
:Maintainers: http://gadfly.sf.net/
:Copyright: Aaron Robert Watters, 1994
:Id: $Id: kjParser.py,v 1.5 2002/05/11 02:59:05 richard Exp $:
"""

# BUGS:
# Lexical error handling is not nice
# Parse error handling is not nice
#
# Lex analysis may be slow for big grammars
# Setting case sensitivity for keywords MUST happen BEFORE
#   declaration of keywords.

import kjSet
import string
import re
import string

# set this flag for regression testing at each load
RUNTESTS = 0

# set this flag to enable warning for default reductions
WARNONDEFAULTS = 0

# some local constants
TERMFLAG = -1 # FLAG FOR TERMINAL
NOMATCHFLAG = -2 # FLAG FOR NO MATCH IN FSM
MOVETOFLAG = -3 # FLAG FOR "SHIFT" IN SN FSM
REDUCEFLAG = -4 # FLAG FOR REDUCTION IN FSM
TRANSFLAG = -5 # FLAG FOR TRANSIENT STATE IN FSM
KEYFLAG = -6 # FLAG FOR KEYWORD
NONTERMFLAG = -7 # FLAG FOR NONTERMINAL
TERMFLAG = -8 # FLAG FOR TERMINAL
EOFFLAG = "*" # FLAG for End of file

# set this string to the Module name (filename)
# used for dumping reconstructable objects
THISMODULE = "gadfly.kjParser"

# regular expression for matching whitespace
WHITERE = "["+string.whitespace+"]+"
WHITEREGEX = re.compile(WHITERE)

# local errors
class LexTokenError(Exception):
    '''may happen on bad string'''
class UnkTermError(Exception):
    ''' ditto '''
class BadPunctError(Exception):
    ''' if try to make whitespace a punct '''
class ParseInitError(Exception):
    ''' shouldn't happen? '''
class FlowError(Exception):
    ''' shouldn't happen!!! (bug) '''
class ReductError(Exception):
    ''' shouldn't happen? '''
class NondetError(Exception):
    ''' shouldn't happen? '''

# the end of file is interpreted in the lexical stream as
# a terminal...
#  this should be appended to the lexical stream:
ENDOFFILETOKEN = (TERMFLAG, EOFFLAG)

# in FSM use the following terminal to indicate eof
ENDOFFILETERM = (ENDOFFILETOKEN, EOFFLAG)

# Utility function for match conversion from regex to re
def RMATCH(re, key, start=0):
    #print "RMATCH: %s -> %s <- start=%s" % (re.pattern, key, start)
    group = re.match(key, start)
    if group is None:
        #print "RMATCH: -1"
        return -1
    len = group.end() - group.start()
    #print "RMATCH: %s (%s)" % (len, group.group())
    return len

# utility function for error diagnostics
def DumpStringWindow(Str, Pos, Offset=15):
    L = []
    L.append("near ::")
    start = Pos-Offset
    end = Pos+Offset
    if start<0: start = 0
    if end>len(Str): end = len(Str)
    L.append(`Str[start:Pos]`+"*"+`Str[Pos:end]`)
    from string import join
    return join(L, "\n")
class LexDictionary:
    '''Lexical dictionary class
      this data structure is used by lexical parser below.

      basic operations:
         LD.punctuation(string)
            registers a string as a punctuation
              EG: LD.punctuation(":")
         Punctuations are treated as a special kind of keyword
         that is recognized even when not surrounded by whitespace.
         IE, "xend" will not be recognized as "x end", but "x;" will be
             recognized as "x ;" if "end" is a regular keyword but
             ";" is a punctuation.  Only single character punctuations
             are supported (now), ie, ":=" must be recognized as
             ":" "=" above the lexical level.

         LD.comment(compiled_reg_expression)
            registers a comment pattern
              EG LD.comment(regex.compile("--.*\n"))
                asks to recognize ansi/sql comments like "-- correct?\n"

         LD[compiled_reg_expression] = (TerminalFlag, Function) # assignment!
            specifies a regular expression that should be associated
            with the lexical terminal marker TerminalFlag
              EG: LD[regex.compile("[0-9]+")] = ("integer",string.atoi)
            the Function should be a function on one string argument
            that interprets the matching string as a value. if None is
            given, just the string itself will be used as the
            interpretation.  (a better choice above would be a function
            which "tries" atoi first and uses atol on overflow).
         NOTE: ambiguity among regular expressions will be decided
            arbitrarily (fix?).

         LD[string] # retrieval!
            returns ((KEYFLAG, Keywordstring), Keywordstring)
             if the (entire) string matches a keyword or a
             punctuation Keywordstring.
            otherwise returns ((TERMFLAG, Terminalname), value)
             if the (entire) string matches the regular expression for
             a terminal flaged by Terminalname; value is the interpreted
             value.  TerminalFlag better be something other than
             KEYFLAG!
            otherwise raises an error!
            comments not filtered here!

    the following additional functions are used for autodocumentation
    in declaring rules, etcetera.
        begin = LD.keyword("begin")
           sets variable "begin" to (KEYFLAG, "BEGIN") if
           "begin" maps to keyword "BEGIN" in LD
        integer = LD.terminal("integer")
           sets variable integer to ("integer", Function)
           if  "integer" is a registered terminal Function is
           its associated interpretation function.
    '''

    def __init__(self):
        # commentpatterns is simply a list of compiled regular expressions
        # that represent comments
        self.commentpatterns = []
        # commentstrings is used for debugging/dumping/reconstruction etc.
        self.commentstrings = []
        # punctuationlist is a string of punctuations
        self.punctuationlist = ""
        # keywordmap is a dictionary mapping recognized keyword strings
        # and punctuations to their constant representations.
        self.keywordmap = KeywordDict()
        # regexprlist is a list of triples (regex,Flag,function) mapping
        # regular expressions to their flag and interpreter function.
        self.regexprlist = []

    def Dump(self):
        print "comments = ", self.commentstrings
        print "punctuations = ", self.punctuationlist
        print "keywordmap ="
        self.keywordmap.Dump()
        print "regexprlist =", self.regexprlist

    def __getitem__(self, key):
        # try to match string to a keyword
        if self.keywordmap.has_key(key):
            return self.keywordmap[key]

        # try to match a regular expression
        length = len(key)
        for regexpr, flag, function in self.regexprlist:
            index = RMATCH(regexpr, key)
            if index == length:
                break
        else:
            raise LexTokenError, "no match for string: " + `key`

        # use the function to interpret the string, if given
        if function != None:
            value = function(key)
        else:
            value = key
        return (flag, value)

    def keyword(self,str):
        ''' LD.keyword("this") will make a new keyword "this" if not found
        '''
        # upcase the string, if needed
        if self.keywordmap.caseInsensitive:
            str = string.upper(str)
        if not self.keywordmap.has_key(str):
            # redundancy for to avoid excess construction during parsing
            token = (KEYFLAG,str)
            self.keywordmap[str] = (token,str)
        else:
            (token, str2) = self.keywordmap[str]
        return token

    def terminal(self, string, RegExpr=None, Function=None):
        ''' LD.terminal("this") will just look for "this"
            LD.terminal("this", RE, F) will register a new terminal
            RE must be a compiled regular expression or string reg ex
            F must be an interpretation function
        '''
        if RegExpr != None and Function != None:
            if type(RegExpr) == type(""):
                RegExpr = re.compile(RegExpr)
            self[ RegExpr ] = ( string, Function)
        for regexpr, token, function in self.regexprlist:
            if token[1] == string:
                break
        else:
            raise UnkTermError, "no such terminal"
        return token

    def __setitem__(self,key,value):
        if type(key) == type(''):
            # if it's a string it must be a keyword
            if self.keywordmap.caseInsensitive:
                value = string.upper(value)
                key = string.upper(key)
            self.keywordmap[key] = ( (KEYFLAG, value), value)
        else:
            # otherwise it better be a compiled regular expression (not
            #verified)
            (Name, Function) = value
            Flag = (TERMFLAG, Name)
            regexpr = key
            self.regexprlist.append((regexpr, Flag, Function))

    def comment(self, string):
        ''' register a regular expression as a comment
        '''
        # regexpr better be a uncompiled string regular expression!
        # (not verified)
        regexpr = re.compile(string)
        self.commentpatterns = self.commentpatterns + [ regexpr ]
        self.commentstrings = self.commentstrings + [ string ]

    def punctuation(self,Instring):
        ''' register a string as a punctuation
        '''
        if type(Instring) != type("") or len(Instring)!=1:
            raise BadPunctError, "punctuation must be string of length 1"
        if Instring in string.whitespace:
            raise BadPunctError, "punctuation may not be whitespace"
        self.punctuationlist = self.punctuationlist + Instring
        return self.keyword(Instring)

    def isCaseSensitive(self):
        ''' testing and altering case sensitivity behavior
        '''
        return not self.keywordmap.caseInsensitive

    def SetCaseSensitivity(self, Boolean):
        ''' setting case sensitivity MUST happen before keyword
            declarations!
        '''
        self.keywordmap.caseInsensitive = not Boolean

    def Token(self, String, StartPosition):
        ''' function to do same as __getitem__ above but looking _inside_ a
            string instead of at the whole string

            returns (token,skip) where token is one of
             ((KEYFLAG,name),name) or ((TERMFLAG,termname),value)
            and skip is the length of substring of string that matches thetoken
        '''
        finished = 0 # dummy, exit should be nonlocal
        totalOffset = 0
        while not finished:
            # flag EOF if past end of string?
            if len(String) <= StartPosition:
                return (ENDOFFILETERM, 0)
            # skip whitespace
            whitespacefound = 0
            skip = RMATCH(WHITEREGEX,String, StartPosition)
            if skip > 0:
                StartPosition = StartPosition + skip
                totalOffset = totalOffset + skip
                whitespacefound = 1
            # try to find comment, keyword, term in that order:
            # looking for comment
            commentfound = 0
            for commentexpr in self.commentpatterns:
                offset = RMATCH(commentexpr,String,StartPosition)
                if offset != -1:
                    if offset<1:
                        info = DumpStringWindow(String,StartPosition)
                        raise LexTokenError, "zero length comment "+info
                    commentfound = 1
                    StartPosition = StartPosition + offset
                    totalOffset = totalOffset + offset
            # looking for a keyword
            keypair = self.keywordmap.hasPrefix(String,StartPosition,
                          self.punctuationlist)
            if keypair != 0:
                return ( keypair[0], keypair[1] + totalOffset)
            # looking for terminal
            for (regexpr, Flag, Function) in self.regexprlist:
                offset = RMATCH(regexpr,String,StartPosition)
                if offset != -1:
                    matchstring = String[StartPosition : offset+StartPosition]
                    if Function != None:
                        value = Function(matchstring)
                    else:
                        value = matchstring
                    return ((Flag, value) , offset + totalOffset)
            if not (commentfound or whitespacefound):
                info = DumpStringWindow(String,StartPosition)
                raise LexTokenError, "Lexical parse failure "+info

# alternate, experimental implementation

class lexdictionary:

    def __init__(self):
        self.skip = ""
        self.commentstrings = []
        self.punctuationlist = ""
        self.keywordmap = KeywordDict()
        self.termlist = [] # list of (term, regex, flag, interpret_fn)
        self.uncompiled = 1 # only compile after full initialization.
        self.laststring= self.lastindex= self.lastresult = None

    def Dump(self, *k):
        raise NotImplementedError, "sorry, not implemented"
    __getitem__ = Dump

    def keyword(self, str):
        kwm = self.keywordmap
        if kwm.caseInsensitive:
            str = string.upper(str)
        try:
            (token, str2) = kwm[str]
        except:
            token = (KEYFLAG, str)
            self.keywordmap[str] = (token,str)
        return token

    def terminal(self, str, regexstr=None, Function=None):
        if regexstr is not None:
            flag = (TERMFLAG, str)
            self.termlist.append( (str, regexstr, flag, Function) )
            return flag
        else:
            for (s,fl,fn) in self.termlist:
                if fl[1]==str:
                    return fl
                else:
                    raise UnkTermError, "no such terminal"

    __setitem__ = Dump

    def comment(self, str):
        self.commentstrings.append(str)

    def punctuation(self, Instring):
        if type(Instring) != type("") or len(Instring)!=1:
            raise BadPunctError, "punctuation must be string of length 1"
        if Instring in string.whitespace:
            raise BadPunctError, "punctuation may not be whitespace"
        self.punctuationlist = self.punctuationlist + Instring
        return self.keyword(Instring)

    def SetCaseSensitivity(self, Boolean):
        self.keywordmap.caseInsensitive = not Boolean

    def Token(self, String, StartPosition):
        # shortcut for reductions.
        if self.laststring is String and self.lastindex == StartPosition:
            #print "lastresult", self.lastresult
            return self.lastresult
        self.lastindex = StartPosition
        self.laststring = String
        #print `String[StartPosition: StartPosition+60]`

        if self.uncompiled:
            self.compile()
            self.uncompiled = None
        finished = 0
        totalOffset = 0
        skipprog = self.skipprog
        keypairfn = self.keywordmap.hasPrefix
        punctlist = self.punctuationlist
        termregex = self.termregex
        while not finished:
            if len(String) <= StartPosition:
                result = self.lastresult = (ENDOFFILETERM, 0)
                return result
            # skip ws and comments
            #skip = skipprog.match(String, StartPosition)
            skip = RMATCH(skipprog, String, StartPosition)
            if skip>0:
                if skip==0:
                    info = DumpStringWindow(String, StartPosition)
                    raise LexTokenError, \
                        "zero length whitespace or comment "+info
                StartPosition = StartPosition + skip
                totalOffset = totalOffset + skip
                continue
            # look for keyword
            keypair = keypairfn(String, StartPosition, punctlist)
            if keypair!=0:
                #print "keyword", keypair
                result = self.lastresult = (keypair[0], keypair[1]+totalOffset)
                return result
            # look for terminal
            #print "Termregex: %s --> %s <-- start=%s" % (termregex.pattern, String, StartPosition)
            offset = termregex.match(String, StartPosition)
            if offset is not None:
                g = offset.group
                for (term, regex, flag, fn) in self.termlist:
                    test = g(term)
                    if test:
                        #print "terminal", test
                        if fn is not None:
                            value = fn(test)
                        else:
                            value = test
                        result = self.lastresult = (
                            (flag, value), offset.end() - offset.start() + totalOffset)
                        return result
            # error if we get here
            info = DumpStringWindow(String, StartPosition)
            raise LexTokenError, "Lexical token not found "+info

    def isCaseSensitive(self):
        return not self.keywordmap.caseInsensitive

    def compile(self):
        from string import joinfields, whitespace
        import re
        skipregexen = self.commentstrings + [WHITERE]
        skipregex = "(" + joinfields(skipregexen, ")|(") + ")"
        #print skipregex; import sys; sys.exit(1)
        self.skipprog = re.compile(skipregex)
        termregexen = []
        termnames = []
        for (term, rgex, flag, fn) in self.termlist:
            fragment = "(?P<%s>%s)" % (term, rgex)
            termregexen.append(fragment)
            termnames.append(term)
        termregex = joinfields(termregexen, "|")
        self.termregex = re.compile(termregex)
        self.termnames = termnames

LexDictionary = lexdictionary ##### test!
#XXX
# a utility class: dictionary of prefixes
#  should be generalized to allow upcasing of keyword matches
class KeywordDict:

    def __init__(self, caseInsensitive = 0):
        self.FirstcharDict = {}
        self.KeyDict = {}
        self.caseInsensitive = caseInsensitive

    def Dump(self):
        if self.caseInsensitive:
            print "  case insensitive"
        else:
            print "  case sensitive"
        keys = self.KeyDict.keys()
        print "  keyDict has ", len(keys), " elts"
        for key in keys:
            print "     ", key," maps to ",self.KeyDict[key]
        firstchars = self.FirstcharDict.keys()
        print "  firstcharDict has ", len(firstchars), " elts"
        for char in firstchars:
            print "     ", char," maps to ",self.FirstcharDict[char]

    # set item assumes value has correct case already, if case sensitive
    def __setitem__(self, key, value):
        if len(key)<1:
            raise LexTokenError, "Keyword of length 0"
        if self.caseInsensitive:
            KEY = string.upper(key)
        else:
            KEY = key
        firstchar = KEY[0:1]
        if self.FirstcharDict.has_key(firstchar):
            self.FirstcharDict[firstchar] = \
                self.FirstcharDict[firstchar] + [(KEY, value)]
        else:
            self.FirstcharDict[firstchar] = [(KEY, value)]
        self.KeyDict[KEY] = value

    # if String has a registered keyword at start position
    #  return its canonical representation and offset, else 0
    # keywords that are not punctuations should be
    # recognized only if followed
    # by a punctuation or whitespace char
    #
    def hasPrefix(self,String,StartPosition,punctuationlist):
        First = String[StartPosition:StartPosition+1]
        fcd = self.FirstcharDict
        caseins = self.caseInsensitive
        if caseins:
            First = string.upper(First)
        if fcd.has_key(First):
            Keylist = fcd[First]
        else:
            return 0
        for (key,value) in Keylist:
            offset = len(key)
            EndPosition = StartPosition+offset
            match = String[StartPosition : EndPosition]
            if caseins:
                match = string.upper(match)
            if key == match:
                if len(key)==1 and key in punctuationlist:
                    # punctuations are recognized regardless of nextchar
                    return (value,offset)
                else:
                    # nonpuncts must have punct or whitespace following
                    #(uses punct as single char convention)
                    if EndPosition == len(String):
                        return (value, offset)
                    else:
                        nextchar = String[EndPosition]
                        if nextchar in string.whitespace\
                            or nextchar in punctuationlist:
                            return (value, offset)
        return 0 # if no exit inside for loop, fail

    def __getitem__(self,key):
        if self.caseInsensitive:
            key = string.upper(key)
        return self.KeyDict[key]

    def has_key(self,key):
        if self.caseInsensitive:
            key = string.upper(key)
        return self.KeyDict.has_key(key)

# LexStringWalker walks through a string looking for
# substrings recognized by a lexical dictionary
#
#  ERROR REPORTING NEEDS IMPROVEMENT
class LexStringWalker:

    def __init__(self, String, LexDict):
        self.Position = 0
        self.NextPosition = 0
        self.String = String
        self.LexDict = LexDict
        self.PastEOF = 0
        self.Done = 0

    def DUMP(self):
        return DumpStringWindow(self.String,self.Position)

    #reset not defined

    def more(self):
        return not self.PastEOF

    def getmember(self):
        (Token,skip) = self.LexDict.Token(self.String, self.Position)
        self.NextPosition = self.Position + skip
        if Token == ENDOFFILETERM:
            self.PastEOF = 1
        return Token

    def next(self):
        if self.Done:
            data = self.DUMP()
            raise LexTokenError, "no next past end of file "+data
        elif self.PastEOF:
            self.Done=1
        elif self.NextPosition > self.Position:
            self.Position = self.NextPosition
        else:
            dummy = self.getmember()
            if self.NextPosition <= self.Position:
                data = self.DUMP()
                raise LexTokenError, "Lexical walker not advancing "+data
            self.Position = self.NextPosition

class ParserObj:
    ''' the parse class:
          Based loosely on Aho+Ullman, Principles of Compiler Design, Ch.6.
           except that they don't describe how to handle boundary
           conditions, I made them up myself.

          Note: This could be implemented using just functions; it's implemented
           as a class to facilitate diagnostics and debugging in case of
           failures of various sorts.

        a parse accepts
          a rule list

          a lexically analysed stream with methods
            stream.getmember()  returns the current token on the stream
            stream.next()  moves on to next token
            stream.more()     returns false if current token is the last token

          and a FSM (finite state machine) with methods
            FSM.root_nonTerminal
              the nonterminal at which to start parsing
            FSM.initial_state
              the initial state to start at
            FSM.successful_final_state
              the final state to go to upon successful parse
            FSM.map(Current_State,Current_Token)
              returns either
                 (TERMFLAG, 0)
                    if Current_State is terminal (final or reduction).
                 (NOMATCHFLAG, 0)
                    if Current_State is nonterminal, but the Current_Token
                    and Next_Token do not lead to a valid state in the FSM
                 (MOVETOFLAG, Next_State)
                    if Current_State is nonterminal and Current_Token,
                    Next_token map to Next_State from Current_State.
                 (REDUCEFLAG, Rulenum)
                    if Current_State indicates a reduction at Current_Token
                    for rule Rule number Rule

           and a Stack with methods (replaced with dictionary)
                 (init: {-1:0} )
              Stack.Top() returns top of stack (no pop)
                 ( Stack[Stack[-1]] )
              Stack.Push(Object)
                 ( Stack[-1]=Stack[-1]+1; Stack[Stack[-1]]=Object )
              Stack.MakeEmpty()
                 ( Stack[-1]=0 )
              Stack.IsEmpty()
                 ( Stack[-1] == 0 )
              Stack.Pop()
                 ( Stack[-1] = Stack[-1]-1 )
              stack contents created by Parser will be of form (State,Value)
              where Value was inserted at FSM state State.
              Value of form either (KEYFLAG, Name)
                                   (NontermName, reductionvalue)
                                or (TerminalName, value)

           and an optional parameter Evaluate which if 0 indicates that
              rules should be evaluated, otherwise indicates that rules
              should just be reduced and the reduction structure should
              be used as the result of the rule

        rule objects must support methods
           Rule.reduce(Stack)
              pops off the elements corresponding to the body of the Rule
              from the stack and returns (NewStack,Red) where NewStack is
              the stack minus the body and Red is the result of evaluating the
              reduction function on this instance of the rule.
           Rule.Nonterm
              the nonterminal at the head of the rule
    '''

    # Evaluate determines whether rules should be evaluated
    # after reductions.  Context is an argument passed to the
    # list reduction function
    #
    def __init__(self, Rulelist, Stream, FSM, Stack, Evaluate=1, Context=None):
        self.Rules = Rulelist
        self.LexStream = Stream
        self.FSM = FSM
        self.Stack = Stack
        self.Context = Context

        # start with empty stack, initial_state, no nonterminal
        #self.Stack[-1] = 0#   self.Stack.MakeEmpty()
        self.Stack[:] = []
        self.State = FSM.initial_state
        self.currentNonterm = None
        self.Evaluate = Evaluate

    def DoOneReduction(self):
        ''' DoOneReduction accepts tokens from the stream and pushes
            them onto the stack until a reduction state is reached.

            Resolve the reduction
        '''
        current=self.State
        FSM=self.FSM
        Stack = self.Stack
        Context = self.Context
        Stream = self.LexStream
        # the internal FSM.StateTokenMap dictionary is used directly here.
        STMap = FSM.StateTokenMap
        #if FSM.final_state(current):
        #   raise ParseInitError, 'trying to reduce starting at final state'

        tokenVal = Stream.getmember()
        #print "tokenVal", tokenVal
        token = tokenVal[0]

        # push the token and traverse FSM until terminal state is reached
        #(flag, nextThing) = FSM.map(current, token)
        key = (current, token)
        try:
            (flag, nextThing) = STMap[key][0]
        except KeyError:
            flag = NOMATCHFLAG

        while flag == MOVETOFLAG:
            nextState = nextThing
            #print current, " shift ", token,
            # no sanity check, possible infinite loop

            # push current token and next state
            ThingToPush = (nextState, tokenVal)
            #print "pushing ", ThingToPush
            #Stack[-1]=Stack[-1]+1; Stack[Stack[-1]]=ThingToPush
            Stack.append(ThingToPush)
            #Stack.Push( ThingToPush )

            # move to next token, next state
            Stream.next()
            # error if end of stream
            if not Stream.more(): # optimized Stream.PastEOF (?)
                data = Stream.DUMP()
                raise EOFError, 'end of stream during parse '+data

            current = nextState
            tokenVal = Stream.getmember()
            token = tokenVal[0]

            #MAP = FSM.map(current,token)
            key = (current, token)
            try:
                (flag, nextThing) = STMap[key][0]
            except KeyError:
                flag = NOMATCHFLAG

        # at end of while loop we should be at a reduction state

        if flag == REDUCEFLAG:
            rulenum = nextThing
            #print current, " reduce ", token, self.Rules[rulenum]
            # normal case
            # perform reduction
            rule = self.Rules[rulenum]
            Nonterm = rule.Nonterm
            self.currentNonterm = Nonterm
            (Stack, reduct) = rule.reduce( Stack , Context )
            GotoState = self.GotoState(rule)
            # push the Gotostate and result of rule reduction on stack
            ThingToPush = (GotoState, (Nonterm, reduct) )
            # push the result of the reduction and exit normally
            #print "pushing ", ThingToPush
            #Stack[-1]=Stack[-1]+1; Stack[Stack[-1]]=ThingToPush
            Stack.append(ThingToPush)
            #Stack.Push(ThingToPush)
            self.State=GotoState
            return 1  # normal successful completion

        # some error cases
        elif flag == NOMATCHFLAG:
            self.ParseError(current,tokenVal, "nomatch1")
        else:
            data = Stream.DUMP()
            s = """
               flag = %s
               map = %s """ % (flag, FSM.map(current,token))
            data = data + s
            raise FlowError, 'unexpected else '+data
    def GotoState(self, rule):
        ''' compute the state to goto after a reduction is performed on a rule.
            Algorithm: determine the state at beginning of reduction
             and the next state indicated by the head nonterminal of the rule.
             special case: empty stack and root nonterminal > success.
        '''
        FSM = self.FSM
        Stack = self.Stack
        Head = rule.Nonterm
        if len(Stack)==0: #Stack[-1]==0: #Stack.IsEmpty():
            BeforeState = FSM.initial_state
        else:
            BeforeState = Stack[-1][0] #Stack[Stack[-1]][0] #Stack.Top()[0]
         # is this right? if the stack is empty and the Head
         # is the root nonterm, then goto is final state
        if len(Stack)==0 and Head == FSM.root_nonTerminal:#Stack.isEmpty()
            Result = FSM.successful_final_state
        else:
            # consider eliminating the call to .map here? (efficiency)
            (flag, Result) = FSM.map(BeforeState, Head)
            if flag != MOVETOFLAG:
                #FSM.DUMP()
                self.ParseError(BeforeState, Head, "notmoveto")
        return Result

    def ParseError( self, State, Token, *rest):
        # make this parse error nicer (add diagnostic methods?)
        L = [""]
        L.append("*******************************")
        L.append("current state = "+`State`)
        L.append("expects: ")
        expects = ""
        for (flag,name) in self.FSM.Expects(State):
            if flag in (TERMFLAG, KEYFLAG):
                expects = expects + `name`+ ", "
        L.append(expects)
        L.append(`rest`)
        L.append("current token = " + `Token`)
        #print "Stack =",
        #self.StackDump(5)
        #print
        from string import join
        data = self.LexStream.DUMP() + join(L, "\n")
        raise SyntaxError, 'unexpected token sequence.' + data

    def StackDump(self, N):
        Stack = self.Stack
        Topkey = len(Stack)
        if Topkey>N:
            Start = Topkey - N
        else:
            Start = 1
        for i in range(Start,Topkey+1):
            print " :: ", Stack[i],

    def GO(self):
        '''execute parsing until done
        '''
        while self.State != self.FSM.successful_final_state:
            self.DoOneReduction()
        # should I check that stack has only one elt here?
        # return result of last reduction
        return self.Stack[-1][1] #self.Stack.Top()[1]

def nonterminal(string):
    ''' function for declaring a variable to represent a nonterminal:
         eg Program = nonterminal("program")
          included for convenient autodocumentation
    '''
    return (NONTERMFLAG, string)

def termrep(string):
    ''' declaring a terminal WITHOUT INSTALLING IT IN A LexDict
    '''
    return (TERMFLAG, string)

def DefaultReductFun( RuleResultsList, Context ):
    ''' used as a default reduction function for rules
    '''
    if WARNONDEFAULTS:
        print "warn: default reduction."
        print "   ", RuleResultsList
    return RuleResultsList

class ParseRule:
    ''' the rule class
          a rule is defined by a goal nonterminal marker of form
            (NONTERMFLAG, Name)
          and a list defining the body which must contain elts of form
            (KEYFLAG, Name) or (NONTERMFLAG, Name) of (TERMFLAG, Name)
          and a reduction function which takes a list of the same size
          as the BodyList (consisting of the results of the evaluations of
          the previous reductions)
          and returns an interpretation for the body
    '''
    def __init__(self, goalNonTerm, BodyList, \
         ReductFunction = DefaultReductFun):
        #print BodyList
        # check some of the arguments (very limited!)
        if len(goalNonTerm) != 2 or goalNonTerm[0] != NONTERMFLAG:
            raise TypeError, "goal of rule must be nonterminal"
        for m in BodyList:
            #print m
            if len(m) != 2:
                raise TypeError, "invalid body form for rule"
        self.Nonterm = goalNonTerm
        self.Body = BodyList
        self.ReductFun = ReductFunction

    def __repr__(self):
        return THISMODULE + ".ParseRule" + `self.components()`

    def components(self):
        ''' marshal-able components of a rule
        '''
        return (self.Nonterm, self.Body)

    def reduce(self, Stack, Context=None):
        ''' rule.reduce(Stack) pops of the stack elements corresponding
            to the body of the rule and prepares the appropriate reduction
            object for evaluation (or not) at higher levels
        '''
        #print "reducing", Stack
        Blength = len(self.Body)
        #print Blength, len(self.Body)
        # pop off previous results from stack corresponding to body
        BodyResults = [None] * Blength
        #BodyNames = [None] * Blength # for debug
        #print "popping: "
        for i in range(1,Blength+1):
            Bindex = Blength - i  # stack contents pop off in reverse order

            # get and destructure the rule body entry
            RuleEntry = self.Body[Bindex]
            ( REkind , REname ) = RuleEntry

            # get and destructure the stack entry
            PoppedValue = Stack[-i] #Stack.Top()
            #print PoppedValue,
            #del Stack[-1]# = Stack[-1]-1 #Stack.Pop()
            SETokVal = PoppedValue[1]
            SEvalue = SETokVal[1]
            SEname = SETokVal[0][1]

            # the names from rule and stack must match (?)
            if SEname != REname:
                print SEname, REname
                print self
                raise ReductError, " token names don't match"

            # store the values for the reduction
            BodyResults[Bindex] = SEvalue
            #BodyNames[Bindex] = SEname # debug

        del Stack[len(Stack)-Blength:]
        #print "reduced", Stack
        #print
        # evaluate the reduction, in context
        reduct = self.ReductFun(BodyResults, Context)
        if WARNONDEFAULTS and self.ReductFun is DefaultReductFun:
            # should check whether name is defined before this...
            print "  default used on ", self.Name
        #Reduction( self.ReductFun, BodyResults, BodyNames )
        return (Stack, reduct)


def PrintDefaultBindings(rulelist):
    ''' for debugging: look through a rule list and print names of rules
        that have default binding
    '''
    for r in rulelist:
        if r.ReductFun is DefaultReductFun:
            print r.Name

class FSMachine:
    def __init__(self, rootNonTerm):
        # start and success state conventions
        startState=1
        successState=0

        self.root_nonTerminal = rootNonTerm
        self.initial_state = startState
        self.successful_final_state = successState

        # the list of states of the FSM, implemented as a dictionary
        #  entries are identified by their index
        #  content is
        #  a list whose first elt is either TRANSFLAG, or TERMFLAG
        #  other list elts may be added by other layers (parse generator)
        #  indicating the kind of the state.
        self.States = {}

        # allocate start and success states
        self.States[startState]=[TRANSFLAG]
        self.States[successState]=[TERMFLAG]

        # the most recently allocated state
        self.maxState= startState

        # the map of current token+state number to next state
        #with entries of form (tokenname,state):nextstate_sequence
        #
        self.StateTokenMap = {}

    def DUMP(self, DumpMapData=1, DumpStateData=1, ForbiddenMark={}):
        ''' ForbiddenMark is for filtering out maps to an error state
        '''
        print "root nonterminal is ", self.root_nonTerminal
        print "start at ", self.initial_state
        print "end at ", self.successful_final_state
        print "number of states: ", self.maxState
        if DumpStateData:
            print
            for State in range(0,self.maxState+1):
                Data = self.States[State]
                print State, ": ", Data
        if DumpMapData:
            print
            for key in self.StateTokenMap.keys():
                map = self.StateTokenMap[key]
                if map[0][0] == MOVETOFLAG:
                    ToStateData = self.States[map[0][1]]
                    if len(ToStateData) < 2:
                        Mark = None
                    else:
                        Mark = ToStateData[1]
                    if Mark != ForbiddenMark:
                        print key, " > ", map, " = ", ToStateData
                else:
                    print key, " > reduction to rule number ", map[0][1]

    def Expects(self, State):
        ''' what tokens does a state expect?
        '''
        keys = self.StateTokenMap.keys()
        Tokens = kjSet.NewSet( [] )
        for (state1,token) in keys:
            if State == state1:
                kjSet.addMember(token,Tokens)
        return kjSet.get_elts(Tokens)

    def NewState(self, kind, AdditionalInfo = []):
        ''' "allocate" a new state of specified kind
              kind must either be TRANSFLAG, TERMFLAG or a rule object
            returns the number of the new state
        '''
        if not kind in (TRANSFLAG,TERMFLAG,REDUCEFLAG):
            raise TypeError, "unknown state kind"
        available = self.maxState+1

        self.States[available] = [kind] + AdditionalInfo
        self.maxState = available
        return available

    def SetReduction(self, fromState, TokenRep, Rulenum):
        ''' Install a reduction transition in the FSM:
            a reduction is represented by mapping to a rule index
            no nondeterminism is allowed.
        '''
        key = (fromState, TokenRep)
        if not self.StateTokenMap.has_key(key):
            self.StateTokenMap[ key ] = ((REDUCEFLAG, Rulenum),)
        else:
            raise ReductError, "attempt to set ambiguous reduction"

    def SetMap(self, fromState, TokenRep, toState):
        ''' Install a "shift" or "goto transition in the FSM:
            supports nondeterminism by storing a sequence of possible
            transitions
        '''
        key = (fromState, TokenRep)
        if self.StateTokenMap.has_key(key):
            Old = self.StateTokenMap[key]
            if Old[0][0] != MOVETOFLAG:
                # if the old value was not an integer, not a "normal state":
                # complain:
                raise NondetError, \
                    "attempt to make inappropriate transition ambiguous"
            self.StateTokenMap[key] = Old + ((MOVETOFLAG,toState),)
        else:
            self.StateTokenMap[key] = ((MOVETOFLAG,toState),)

    def map(self, current_state, current_token):
        ''' Find the action indicated by fsm on
             (current_state, current_token) input.

            note: in the event of nondeterministic choice this chooses
              the first possibility listed.
            ParseObj.DoOneReduction() currently uses the internal structure
             of StateTokenMap directly, rather than using this function.
        '''
        StateEntry = self.States[current_state][0]
        if StateEntry == TERMFLAG:
            return (TERMFLAG, 0)
        elif StateEntry == TRANSFLAG:
            # try to find a transition for this token and state
            key = (current_state, current_token)
            try:
                TMap = self.StateTokenMap[key]
                return TMap[0]
            except KeyError:
                return (NOMATCHFLAG, 0)
        else:
            raise FlowError, "unexpected else (2)"

class Grammar:
    ''' the grammar class:
          a grammar consists of
            - a LexDict lexical dictionary;
            - a deterministic FSMachine;
            - a Rulelist
          and optionally a dictionary that maps Rulenames
          to Rulelist indices (used for dumping and externally)
    '''
    def __init__(self, LexD, DFA, RuleL, RuleNameDict = None):
        # for auto initialization set LexD,DFA,RuleL to None
        if LexD == None and DFA == None and RuleL == None:
            self.LexD = LexDictionary()
            # use a dummy root nonterminal -- must fix elsewhere!
            self.DFA = FSMachine("ERROR")
            self.RuleL = []
        else:
            self.LexD = LexD
            self.DFA = DFA
            self.RuleL = RuleL
        if RuleNameDict != None:
            self.AddNameDict(RuleNameDict)
        self.CleanUp()

    def PrintDefaults(self):
        ''' look for default bindings
        '''
        print "Default bindings on:"
        PrintDefaultBindings(self.RuleL)

    def SetCaseSensitivity( self, Boolean ):
        ''' setting case sensitivity: must happen before keyword installation
            in LexD.
        '''
        self.LexD.SetCaseSensitivity( Boolean )

    def CleanUp(self):
        ''' this may be silly, but to save some space in construction
            a token dictionary may be used that facilitates sharing of
            token representations.  This method either initializes
            the dictionary or disposes of it if it exists
        '''
        self.IndexToToken = {}
        # this dictionary is used by automatically
        # generated grammars to determine whether
        # a string represents a nonterminal
        self.NonTermDict = {}
        # similarly for terminals
        self.TermDict = {}
        # this string may be used to keep a printable
        # representation of the rules of the grammar
        # (usually in automatic grammar generation
        self.RuleString = ""

    # to associate a token to an integer use
    # self.IndexToToken[int] = tokenrep
    def AddNameDict(self, RuleNameDict):
        ''' this method associates rules to names using a
            RuleNameDict dictionary which maps names to rule indices.
            after invocation
              self.RuleNameToIndex[ name ] gives the index
                in self.RuleL for the rule associated with name, and
              self.RuleL[index].Name gives the name associated
                with the rule self.RuleL[index]
        '''
        self.RuleNameToIndex = RuleNameDict
        # add a Name attribute to the rules of the rule list
        for ruleName in RuleNameDict.keys():
            index = RuleNameDict[ ruleName ]
            self.RuleL[ index ].Name = ruleName

    def DoParse( self, String, Context = None, DoReductions = 1 ):
        ''' parse a string using the grammar, return result and context
        '''
        # construct the ParserObj
        Stream = LexStringWalker( String, self.LexD )
        Stack = [] # {-1:0} #Walkers.SimpleStack()
        ParseOb = ParserObj( self.RuleL, Stream, self.DFA, Stack, \
                         DoReductions, Context )
        # do the parse
        ParseResult = ParseOb.GO()
        # return final result of reduction and the context
        return (ParseResult[1], Context)

    def DoParse1( self, String, Context=None, DoReductions=1 ):
        ''' parse a string using the grammar, but only return
            the result of the last reduction, without the context
        '''
        return self.DoParse(String, Context, DoReductions)[0]

    def Bind( self, Rulename, NewFunction ):
        ''' if the Name dictionary has been initialized
            this method will (re)bind a reduction function to
            a rule associated with Rulename
        '''
        ruleindex = self.RuleNameToIndex[ Rulename ]
        rule = self.RuleL[ ruleindex ]
        rule.ReductFun = NewFunction

    def Addterm( self, termname, regexpstr, funct ):
        ''' bind a terminal to a regular expression and interp function
            in the lexical dictionary (convenience)
        '''
        self.TermDict[termname] =self.LexD.terminal(termname, regexpstr, funct)

def NullGrammar():
    ''' function to create a "null grammar"
    '''
    return Grammar(None,None,None,{})

def UnMarshalGram(file):
    ''' unmarshalling a marshalled grammar created by
          buildmodule.CGrammar.MarshalDump(Tofile)
          tightly coupled with buildmodule code...
        file should be open and "pointing to" the marshalled rep.

        warning: doesn't bind semantics!
    '''
    Grammar = NullGrammar()
    UnMarshal = UnMarshaller(file, Grammar)
    UnMarshal.MakeLex()
    UnMarshal.MakeRules()
    UnMarshal.MakeTransitions()
    UnMarshal.Cleanup()
    return UnMarshal.Gram

class UnMarshaller:
    ''' unmarshalling object for unmarshalling grammar from a python module
    '''
    def __init__(self, modulename, Grammar):
        import marshal
        self.Gram = Grammar
        marfile = __import__(modulename)
        for entry in modulename.split('.')[1:]:
            marfile = getattr(marfile, entry)
        self.tokens = marfile.tokens
        self.punct = marfile.punct
        self.comments = marfile.comments
        self.RuleTups = marfile.RuleTups
        self.MaxStates = marfile.MaxStates
        self.reducts = marfile.reducts
        self.moveTos = marfile.moveTos
        self.Root = marfile.Root
        self.CaseSensitivity = marfile.CaseSensitivity

        Grammar.SetCaseSensitivity(self.CaseSensitivity)

    def MakeLex(self):
        Grammar=self.Gram
        LexD = Grammar.LexD
        # punctuations
        LexD.punctuationlist = self.punct
        # comments
        for commentregex in self.comments:
            LexD.comment(commentregex)
        #LexD.commentstring = self.comments
        # keywords, terminals, nonterms
        #   rewrite the tokens list for sharing and extra safety
        LexTokens = {}
        tokens = self.tokens
        for tokenindex in range(len(tokens)):
            (kind,name) = tokens[tokenindex]
            if kind == KEYFLAG:
                tokens[tokenindex] = LexD.keyword(name)
            elif not kind in [TERMFLAG, NONTERMFLAG]:
                raise FlowError, "unknown token type"
        # not needed
        self.tokens = tokens

    def MakeRules(self):
        Grammar = self.Gram
        Grammar.DFA.root_nonTerminal = self.Root
        NameIndex = Grammar.RuleNameToIndex
        RuleTuples = self.RuleTups
        nRules = len(RuleTuples)
        RuleList = [None] * nRules
        for index in range(nRules):
            (Name, Components) = RuleTuples[index]
            rule = apply(ParseRule, Components)
            rule.Name = Name
            RuleList[index] = rule
            NameIndex[Name] = index
        Grammar.RuleL = RuleList

    def MakeTransitions(self):
        Grammar = self.Gram
        DFA = Grammar.DFA
        StateTokenMap = DFA.StateTokenMap
        tokens = self.tokens
        # record the state number
        DFA.maxState = self.MaxStates
        # this is historical, unfortunately...  CLEAN IT UP SOMEDAY!
        # THE DFA.States DICT IS NOT NEEDED (?) (here)
        for state in range(1, self.MaxStates+1):
            DFA.States[state] = [TRANSFLAG]
        # record the reductions
        for (fromState, TokenIndex, rulenum) in self.reducts:
            DFA.SetReduction(fromState, tokens[TokenIndex], rulenum)
        # record the transitions
        for (fromState, TokenIndex, ToState) in self.moveTos:
            DFA.SetMap(fromState, tokens[TokenIndex], ToState)

    def Cleanup(self):
        Grammar = self.Gram
        Grammar.CleanUp()

#
# $Log: kjParser.py,v $
# Revision 1.5  2002/05/11 02:59:05  richard
# Added info into module docstrings.
# Fixed docco of kwParsing to reflect new grammar "marshalling".
# Fixed bug in gadfly.open - most likely introduced during sql loading
# re-work (though looking back at the diff from back then, I can't see how it
# wasn't different before, but it musta been ;)
# A buncha new unit test stuff.
#
# Revision 1.4  2002/05/08 00:49:00  anthonybaxter
# El Grande Grande reindente! Ran reindent.py over the whole thing.
# Gosh, what a lot of checkins. Tests still pass with 2.1 and 2.2.
#
# Revision 1.3  2002/05/07 07:06:11  richard
# Cleaned up sql grammar compilation some more.
# Split up the BigList into its components too.
#
# Revision 1.2  2002/05/06 23:27:10  richard
# . made the installation docco easier to find
# . fixed a "select *" test - column ordering is different for py 2.2
# . some cleanup in gadfly/kjParseBuild.py
# . made the test modules runnable (remembering that run_tests can take a
#   name argument to run a single module)
# . fixed the module name in gadfly/kjParser.py
#
# Revision 1.1.1.1  2002/05/06 07:31:09  richard
#
#
#