/usr/share/pyshared/funcparserlib/parser.py is in python-funcparserlib 0.3.6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | # -*- coding: utf-8 -*-
# Copyright (c) 2008/2013 Andrey Vlasovskikh
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""A recurisve descent parser library based on functional combinators.
Basic combinators are taken from Harrison's book ["Introduction to Functional
Programming"][1] and translated from ML into Python. See also [a Russian
translation of the book][2].
[1]: http://www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/
[2]: http://code.google.com/p/funprog-ru/
A parser `p` is represented by a function of type:
p :: Sequence(a), State -> (b, State)
that takes as its input a sequence of tokens of arbitrary type `a` and a
current parsing state and return a pair of a parsed token of arbitrary type
`b` and the new parsing state.
The parsing state includes the current position in the sequence being parsed and
the position of the rightmost token that has been consumed while parsing.
Parser functions are wrapped into an object of the class `Parser`. This class
implements custom operators `+` for sequential composition of parsers, `|` for
choice composition, `>>` for transforming the result of parsing. The method
`Parser.parse` provides an easier way for invoking a parser hiding details
related to a parser state:
Parser.parse :: Parser(a, b), Sequence(a) -> b
Altough this module is able to deal with a sequences of any kind of objects, the
recommended way of using it is applying a parser to a `Sequence(Token)`.
`Token` objects are produced by a regexp-based tokenizer defined in
`funcparserlib.lexer`. By using it this way you get more readable parsing error
messages (as `Token` objects contain their position in the source file) and good
separation of lexical and syntactic levels of the grammar. See examples for more
info.
Debug messages are emitted via a `logging.Logger` object named
`"funcparserlib"`.
"""
__all__ = [
'some', 'a', 'many', 'pure', 'finished', 'maybe', 'skip', 'oneplus',
'forward_decl', 'NoParseError',
]
import logging
log = logging.getLogger('funcparserlib')
debug = False
class Parser(object):
"""A wrapper around a parser function that defines some operators for parser
composition.
"""
def __init__(self, p):
"""Wraps a parser function p into an object."""
self.define(p)
def named(self, name):
"""Specifies the name of the parser for more readable parsing log."""
self.name = name
return self
def define(self, p):
"""Defines a parser wrapped into this object."""
f = getattr(p, 'run', p)
if debug:
setattr(self, '_run', f)
else:
setattr(self, 'run', f)
self.named(getattr(p, 'name', p.__doc__))
def run(self, tokens, s):
"""Sequence(a), State -> (b, State)
Runs a parser wrapped into this object.
"""
if debug:
log.debug(u'trying %s' % self.name)
return self._run(tokens, s)
def _run(self, tokens, s):
raise NotImplementedError(u'you must define() a parser')
def parse(self, tokens):
"""Sequence(a) -> b
Applies the parser to a sequence of tokens producing a parsing result.
It provides a way to invoke a parser hiding details related to the
parser state. Also it makes error messages more readable by specifying
the position of the rightmost token that has been reached.
"""
try:
(tree, _) = self.run(tokens, State())
return tree
except NoParseError, e:
max = e.state.max
if len(tokens) > max:
tok = tokens[max]
else:
tok = u'<EOF>'
raise NoParseError(u'%s: %s' % (e.msg, tok), e.state)
def __add__(self, other):
"""Parser(a, b), Parser(a, c) -> Parser(a, _Tuple(b, c))
A sequential composition of parsers.
NOTE: The real type of the parsed value isn't always such as specified.
Here we use dynamic typing for ignoring the tokens that are of no
interest to the user. Also we merge parsing results into a single _Tuple
unless the user explicitely prevents it. See also skip and >>
combinators.
"""
def magic(v1, v2):
vs = [v for v in [v1, v2] if not isinstance(v, _Ignored)]
if len(vs) == 1:
return vs[0]
elif len(vs) == 2:
if isinstance(vs[0], _Tuple):
return _Tuple(v1 + (v2,))
else:
return _Tuple(vs)
else:
return _Ignored(())
@Parser
def _add(tokens, s):
(v1, s2) = self.run(tokens, s)
(v2, s3) = other.run(tokens, s2)
return magic(v1, v2), s3
# or in terms of bind and pure:
# _add = self.bind(lambda x: other.bind(lambda y: pure(magic(x, y))))
_add.name = u'(%s , %s)' % (self.name, other.name)
return _add
def __or__(self, other):
"""Parser(a, b), Parser(a, c) -> Parser(a, b or c)
A choice composition of two parsers.
NOTE: Here we are not providing the exact type of the result. In a
statically typed langage something like Either b c could be used. See
also + combinator.
"""
@Parser
def _or(tokens, s):
try:
return self.run(tokens, s)
except NoParseError, e:
return other.run(tokens, State(s.pos, e.state.max))
_or.name = u'(%s | %s)' % (self.name, other.name)
return _or
def __rshift__(self, f):
"""Parser(a, b), (b -> c) -> Parser(a, c)
Given a function from b to c, transforms a parser of b into a parser of
c. It is useful for transorming a parser value into another value for
making it a part of a parse tree or an AST.
This combinator may be thought of as a functor from b -> c to Parser(a,
b) -> Parser(a, c).
"""
@Parser
def _shift(tokens, s):
(v, s2) = self.run(tokens, s)
return f(v), s2
# or in terms of bind and pure:
# _shift = self.bind(lambda x: pure(f(x)))
_shift.name = u'(%s)' % (self.name,)
return _shift
def bind(self, f):
"""Parser(a, b), (b -> Parser(a, c)) -> Parser(a, c)
NOTE: A monadic bind function. It is used internally to implement other
combinators. Functions bind and pure make the Parser a Monad.
"""
@Parser
def _bind(tokens, s):
(v, s2) = self.run(tokens, s)
return f(v).run(tokens, s2)
_bind.name = u'(%s >>=)' % (self.name,)
return _bind
class State(object):
"""A parsing state that is maintained basically for error reporting.
It consists of the current position pos in the sequence being parsed and
the position max of the rightmost token that has been consumed while
parsing.
"""
def __init__(self, pos=0, max=0):
self.pos = pos
self.max = max
def __str__(self):
return unicode((self.pos, self.max))
def __repr__(self):
return u'State(%r, %r)' % (self.pos, self.max)
class NoParseError(Exception):
def __init__(self, msg=u'', state=None):
self.msg = msg
self.state = state
def __str__(self):
return self.msg
class _Tuple(tuple):
pass
class _Ignored(object):
def __init__(self, value):
self.value = value
def __repr__(self):
return u'_Ignored(%s)' % repr(self.value)
@Parser
def finished(tokens, s):
"""Parser(a, None)
Throws an exception if any tokens are left in the input unparsed.
"""
if s.pos >= len(tokens):
return None, s
else:
raise NoParseError(u'should have reached <EOF>', s)
finished.name = u'finished'
def many(p):
"""Parser(a, b) -> Parser(a, [b])
Returns a parser that infinitely applies the parser p to the input sequence
of tokens while it successfully parsers them. The resulting parser returns a
list of parsed values.
"""
@Parser
def _many(tokens, s):
"""Iterative implementation preventing the stack overflow."""
res = []
try:
while True:
(v, s) = p.run(tokens, s)
res.append(v)
except NoParseError, e:
return res, State(s.pos, e.state.max)
_many.name = u'{ %s }' % p.name
return _many
def some(pred):
"""(a -> bool) -> Parser(a, a)
Returns a parser that parses a token if it satisfies a predicate pred.
"""
@Parser
def _some(tokens, s):
if s.pos >= len(tokens):
raise NoParseError(u'no tokens left in the stream', s)
else:
t = tokens[s.pos]
if pred(t):
pos = s.pos + 1
s2 = State(pos, max(pos, s.max))
if debug:
log.debug(u'*matched* "%s", new state = %s' % (t, s2))
return t, s2
else:
if debug:
log.debug(u'failed "%s", state = %s' % (t, s))
raise NoParseError(u'got unexpected token', s)
_some.name = u'(some)'
return _some
def a(value):
"""Eq(a) -> Parser(a, a)
Returns a parser that parses a token that is equal to the value value.
"""
name = getattr(value, 'name', value)
return some(lambda t: t == value).named(u'(a "%s")' % (name,))
def pure(x):
@Parser
def _pure(_, s):
return x, s
_pure.name = u'(pure %r)' % (x,)
return _pure
def maybe(p):
"""Parser(a, b) -> Parser(a, b or None)
Returns a parser that retuns None if parsing fails.
NOTE: In a statically typed language, the type Maybe b could be more
approprieate.
"""
return (p | pure(None)).named(u'[ %s ]' % (p.name,))
def skip(p):
"""Parser(a, b) -> Parser(a, _Ignored(b))
Returns a parser which results are ignored by the combinator +. It is useful
for throwing away elements of concrete syntax (e. g. ",", ";").
"""
return p >> _Ignored
def oneplus(p):
"""Parser(a, b) -> Parser(a, [b])
Returns a parser that applies the parser p one or more times.
"""
q = p + many(p) >> (lambda x: [x[0]] + x[1])
return q.named(u'(%s , { %s })' % (p.name, p.name))
def with_forward_decls(suspension):
"""(None -> Parser(a, b)) -> Parser(a, b)
Returns a parser that computes itself lazily as a result of the suspension
provided. It is needed when some parsers contain forward references to
parsers defined later and such references are cyclic. See examples for more
details.
"""
@Parser
def f(tokens, s):
return suspension().run(tokens, s)
return f
def forward_decl():
"""None -> Parser(?, ?)
Returns an undefined parser that can be used as a forward declaration. You
will be able to define() it when all the parsers it depends on are
available.
"""
@Parser
def f(tokens, s):
raise NotImplementedError(u'you must define() a forward_decl somewhere')
return f
if __name__ == '__main__':
import doctest
doctest.testmod()
|