This file is indexed.

/usr/share/pyshared/funcparserlib/parser.py is in python-funcparserlib 0.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# -*- coding: utf-8 -*-

# Copyright (c) 2008/2013 Andrey Vlasovskikh
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""A recurisve descent parser library based on functional combinators.

Basic combinators are taken from Harrison's book ["Introduction to Functional
Programming"][1] and translated from ML into Python. See also [a Russian
translation of the book][2].

  [1]: http://www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/
  [2]: http://code.google.com/p/funprog-ru/

A parser `p` is represented by a function of type:

    p :: Sequence(a), State -> (b, State)

that takes as its input a sequence of tokens of arbitrary type `a` and a
current parsing state and return a pair of a parsed token of arbitrary type
`b` and the new parsing state.

The parsing state includes the current position in the sequence being parsed and
the position of the rightmost token that has been consumed while parsing.

Parser functions are wrapped into an object of the class `Parser`. This class
implements custom operators `+` for sequential composition of parsers, `|` for
choice composition, `>>` for transforming the result of parsing. The method
`Parser.parse` provides an easier way for invoking a parser hiding details
related to a parser state:

    Parser.parse :: Parser(a, b), Sequence(a) -> b

Altough this module is able to deal with a sequences of any kind of objects, the
recommended way of using it is applying a parser to a `Sequence(Token)`.
`Token` objects are produced by a regexp-based tokenizer defined in
`funcparserlib.lexer`. By using it this way you get more readable parsing error
messages (as `Token` objects contain their position in the source file) and good
separation of lexical and syntactic levels of the grammar. See examples for more
info.

Debug messages are emitted via a `logging.Logger` object named
`"funcparserlib"`.
"""

__all__ = [
    'some', 'a', 'many', 'pure', 'finished', 'maybe', 'skip', 'oneplus',
    'forward_decl', 'NoParseError',
]

import logging

log = logging.getLogger('funcparserlib')

debug = False


class Parser(object):
    """A wrapper around a parser function that defines some operators for parser
    composition.
    """

    def __init__(self, p):
        """Wraps a parser function p into an object."""
        self.define(p)

    def named(self, name):
        """Specifies the name of the parser for more readable parsing log."""
        self.name = name
        return self

    def define(self, p):
        """Defines a parser wrapped into this object."""
        f = getattr(p, 'run', p)
        if debug:
            setattr(self, '_run', f)
        else:
            setattr(self, 'run', f)
        self.named(getattr(p, 'name', p.__doc__))

    def run(self, tokens, s):
        """Sequence(a), State -> (b, State)

        Runs a parser wrapped into this object.
        """
        if debug:
            log.debug(u'trying %s' % self.name)
        return self._run(tokens, s)

    def _run(self, tokens, s):
        raise NotImplementedError(u'you must define() a parser')

    def parse(self, tokens):
        """Sequence(a) -> b

        Applies the parser to a sequence of tokens producing a parsing result.

        It provides a way to invoke a parser hiding details related to the
        parser state. Also it makes error messages more readable by specifying
        the position of the rightmost token that has been reached.
        """
        try:
            (tree, _) = self.run(tokens, State())
            return tree
        except NoParseError, e:
            max = e.state.max
            if len(tokens) > max:
                tok = tokens[max]
            else:
                tok = u'<EOF>'
            raise NoParseError(u'%s: %s' % (e.msg, tok), e.state)

    def __add__(self, other):
        """Parser(a, b), Parser(a, c) -> Parser(a, _Tuple(b, c))

        A sequential composition of parsers.

        NOTE: The real type of the parsed value isn't always such as specified.
        Here we use dynamic typing for ignoring the tokens that are of no
        interest to the user. Also we merge parsing results into a single _Tuple
        unless the user explicitely prevents it. See also skip and >>
        combinators.
        """

        def magic(v1, v2):
            vs = [v for v in [v1, v2] if not isinstance(v, _Ignored)]
            if len(vs) == 1:
                return vs[0]
            elif len(vs) == 2:
                if isinstance(vs[0], _Tuple):
                    return _Tuple(v1 + (v2,))
                else:
                    return _Tuple(vs)
            else:
                return _Ignored(())

        @Parser
        def _add(tokens, s):
            (v1, s2) = self.run(tokens, s)
            (v2, s3) = other.run(tokens, s2)
            return magic(v1, v2), s3

        # or in terms of bind and pure:
        # _add = self.bind(lambda x: other.bind(lambda y: pure(magic(x, y))))
        _add.name = u'(%s , %s)' % (self.name, other.name)
        return _add

    def __or__(self, other):
        """Parser(a, b), Parser(a, c) -> Parser(a, b or c)

        A choice composition of two parsers.

        NOTE: Here we are not providing the exact type of the result. In a
        statically typed langage something like Either b c could be used. See
        also + combinator.
        """

        @Parser
        def _or(tokens, s):
            try:
                return self.run(tokens, s)
            except NoParseError, e:
                return other.run(tokens, State(s.pos, e.state.max))

        _or.name = u'(%s | %s)' % (self.name, other.name)
        return _or

    def __rshift__(self, f):
        """Parser(a, b), (b -> c) -> Parser(a, c)

        Given a function from b to c, transforms a parser of b into a parser of
        c. It is useful for transorming a parser value into another value for
        making it a part of a parse tree or an AST.

        This combinator may be thought of as a functor from b -> c to Parser(a,
        b) -> Parser(a, c).
        """

        @Parser
        def _shift(tokens, s):
            (v, s2) = self.run(tokens, s)
            return f(v), s2

        # or in terms of bind and pure:
        # _shift = self.bind(lambda x: pure(f(x)))
        _shift.name = u'(%s)' % (self.name,)
        return _shift

    def bind(self, f):
        """Parser(a, b), (b -> Parser(a, c)) -> Parser(a, c)

        NOTE: A monadic bind function. It is used internally to implement other
        combinators. Functions bind and pure make the Parser a Monad.
        """

        @Parser
        def _bind(tokens, s):
            (v, s2) = self.run(tokens, s)
            return f(v).run(tokens, s2)

        _bind.name = u'(%s >>=)' % (self.name,)
        return _bind


class State(object):
    """A parsing state that is maintained basically for error reporting.

    It consists of the current position pos in the sequence being parsed and
    the position max of the rightmost token that has been consumed while
    parsing.
    """

    def __init__(self, pos=0, max=0):
        self.pos = pos
        self.max = max

    def __str__(self):
        return unicode((self.pos, self.max))

    def __repr__(self):
        return u'State(%r, %r)' % (self.pos, self.max)


class NoParseError(Exception):
    def __init__(self, msg=u'', state=None):
        self.msg = msg
        self.state = state

    def __str__(self):
        return self.msg


class _Tuple(tuple):
    pass


class _Ignored(object):
    def __init__(self, value):
        self.value = value

    def __repr__(self):
        return u'_Ignored(%s)' % repr(self.value)


@Parser
def finished(tokens, s):
    """Parser(a, None)

    Throws an exception if any tokens are left in the input unparsed.
    """
    if s.pos >= len(tokens):
        return None, s
    else:
        raise NoParseError(u'should have reached <EOF>', s)


finished.name = u'finished'


def many(p):
    """Parser(a, b) -> Parser(a, [b])

    Returns a parser that infinitely applies the parser p to the input sequence
    of tokens while it successfully parsers them. The resulting parser returns a
    list of parsed values.
    """

    @Parser
    def _many(tokens, s):
        """Iterative implementation preventing the stack overflow."""
        res = []
        try:
            while True:
                (v, s) = p.run(tokens, s)
                res.append(v)
        except NoParseError, e:
            return res, State(s.pos, e.state.max)

    _many.name = u'{ %s }' % p.name
    return _many


def some(pred):
    """(a -> bool) -> Parser(a, a)

    Returns a parser that parses a token if it satisfies a predicate pred.
    """

    @Parser
    def _some(tokens, s):
        if s.pos >= len(tokens):
            raise NoParseError(u'no tokens left in the stream', s)
        else:
            t = tokens[s.pos]
            if pred(t):
                pos = s.pos + 1
                s2 = State(pos, max(pos, s.max))
                if debug:
                    log.debug(u'*matched* "%s", new state = %s' % (t, s2))
                return t, s2
            else:
                if debug:
                    log.debug(u'failed "%s", state = %s' % (t, s))
                raise NoParseError(u'got unexpected token', s)

    _some.name = u'(some)'
    return _some


def a(value):
    """Eq(a) -> Parser(a, a)

    Returns a parser that parses a token that is equal to the value value.
    """
    name = getattr(value, 'name', value)
    return some(lambda t: t == value).named(u'(a "%s")' % (name,))


def pure(x):
    @Parser
    def _pure(_, s):
        return x, s

    _pure.name = u'(pure %r)' % (x,)
    return _pure


def maybe(p):
    """Parser(a, b) -> Parser(a, b or None)

    Returns a parser that retuns None if parsing fails.

    NOTE: In a statically typed language, the type Maybe b could be more
    approprieate.
    """
    return (p | pure(None)).named(u'[ %s ]' % (p.name,))


def skip(p):
    """Parser(a, b) -> Parser(a, _Ignored(b))

    Returns a parser which results are ignored by the combinator +. It is useful
    for throwing away elements of concrete syntax (e. g. ",", ";").
    """
    return p >> _Ignored


def oneplus(p):
    """Parser(a, b) -> Parser(a, [b])

    Returns a parser that applies the parser p one or more times.
    """
    q = p + many(p) >> (lambda x: [x[0]] + x[1])
    return q.named(u'(%s , { %s })' % (p.name, p.name))


def with_forward_decls(suspension):
    """(None -> Parser(a, b)) -> Parser(a, b)

    Returns a parser that computes itself lazily as a result of the suspension
    provided. It is needed when some parsers contain forward references to
    parsers defined later and such references are cyclic. See examples for more
    details.
    """

    @Parser
    def f(tokens, s):
        return suspension().run(tokens, s)

    return f


def forward_decl():
    """None -> Parser(?, ?)

    Returns an undefined parser that can be used as a forward declaration. You
    will be able to define() it when all the parsers it depends on are
    available.
    """

    @Parser
    def f(tokens, s):
        raise NotImplementedError(u'you must define() a forward_decl somewhere')

    return f


if __name__ == '__main__':
    import doctest
    doctest.testmod()