This file is indexed.

/usr/lib/python2.7/dist-packages/FIAT/expansions.py is in python-fiat 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (C) 2008 Robert C. Kirby (Texas Tech University)
#
# This file is part of FIAT.
#
# FIAT is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FIAT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FIAT. If not, see <http://www.gnu.org/licenses/>.

"""Principal orthgonal expansion functions as defined by Karniadakis
and Sherwin.  These are parametrized over a reference element so as
to allow users to get coordinates that they want."""

from . import reference_element
import numpy,math
from . import jacobi, reference_element

# Import AD modules from ScientificPython
try:
    import Scientific.Functions.Derivatives as Derivatives
    import Scientific.Functions.FirstDerivatives as FirstDerivatives
except:
    raise Exception("""\
Unable to import the Python Scientific module required by FIAT.
Consider installing the package python-scientific.
""")

def xi_triangle( eta ):
    """Maps from [-1,1]^2 to the (-1,1) reference triangle."""
    eta1,eta2 = eta
    xi1 = 0.5 * ( 1.0 + eta1 ) * ( 1.0 - eta2 ) - 1.0
    xi2 = eta2
    return (xi1,xi2)

def xi_tetrahedron( eta ):
    """Maps from [-1,1]^3 to the -1/1 reference tetrahedron."""
    eta1,eta2,eta3 = eta
    xi1 = 0.25 * ( 1. + eta1 ) * ( 1. - eta2 ) * ( 1. - eta3 ) - 1.
    xi2 = 0.5 * ( 1. + eta2 ) * ( 1. - eta3 ) - 1.
    xi3 = eta3
    return xi1,xi2,xi3

class LineExpansionSet:
    """Evaluates the Legendre basis on a line reference element."""
    def __init__( self , ref_el ):
        if ref_el.get_spatial_dimension() != 1:
            raise Exception("Must have a line")
        self.ref_el = ref_el
        self.base_ref_el = reference_element.DefaultLine()
        v1 = ref_el.get_vertices()
        v2 = self.base_ref_el.get_vertices()
        self.A,self.b = reference_element.make_affine_mapping( v1 , v2 )
        self.mapping = lambda x: numpy.dot( self.A , x ) + self.b
        self.scale = numpy.sqrt( numpy.linalg.det( self.A ) )

    def get_num_members( self , n ):
        return n+1

    def tabulate( self , n , pts ):
        """Returns a numpy array A[i,j] = phi_i( pts[j] )"""
        if len( pts ) > 0:
            ref_pts = numpy.array([ self.mapping( pt ) for pt in pts ])
            psitilde_as = jacobi.eval_jacobi_batch(0,0,n,ref_pts)

            results = numpy.zeros( ( n+1 , len(pts) ) , type( pts[0][0] ) )
            for k in range( n + 1 ):
                results[k,:] = psitilde_as[k,:] * math.sqrt( k + 0.5 )

            return results
        else:
            return []

    def tabulate_derivatives( self , n , pts ):
        """Returns a tuple of length one (A,) such that
        A[i,j] = D phi_i( pts[j] ).  The tuple is returned for
        compatibility with the interfaces of the triangle and
        tetrahedron expansions."""
        ref_pts = [ self.mapping( pt ) for pt in pts ]
        psitilde_as_derivs = jacobi.eval_jacobi_deriv_batch(0,0,n,ref_pts)

        results = numpy.zeros( ( n+1 , len(pts[0]) ) , "d" )
        for k in range( 0 , n + 1 ):
            results[k,:] = psitilde_as_derivs[k,:] * numpy.sqrt( k + 0.5 )

        return (results,)


class TriangleExpansionSet:
    """Evaluates the orthonormal Dubiner basis on a triangular
    reference element."""
    def __init__( self , ref_el ):
        if ref_el.get_spatial_dimension() != 2:
            raise Exception("Must have a triangle")
        self.ref_el = ref_el
        self.base_ref_el = reference_element.DefaultTriangle( )
        v1 = ref_el.get_vertices()
        v2 = self.base_ref_el.get_vertices()
        self.A,self.b = reference_element.make_affine_mapping( v1 , v2 )
        self.mapping = lambda x: numpy.dot( self.A , x ) + self.b
#        self.scale = numpy.sqrt( numpy.linalg.det( self.A ) )

    def get_num_members( self , n ):
        return (n+1)*(n+2)/2

    def tabulate( self , n , pts ):
        if len( pts ) == 0:
            return numpy.array( [] )

        ref_pts = [ self.mapping( pt ) for pt in pts ]

        def idx(p,q):
            return (p+q)*(p+q+1)/2 + q

        def jrc( a , b , n ):
            an = float( ( 2*n+1+a+b)*(2*n+2+a+b)) \
                / float( 2*(n+1)*(n+1+a+b))
            bn = float( (a*a-b*b) * (2*n+1+a+b) ) \
                / float( 2*(n+1)*(2*n+a+b)*(n+1+a+b) )
            cn = float( (n+a)*(n+b)*(2*n+2+a+b)  ) \
                / float( (n+1)*(n+1+a+b)*(2*n+a+b) )
            return an,bn,cn


        pt_types = [ type(p) for p in pts[0] ]
        ntype = type(0.0)
        for pt in pt_types:
            if type(pt) != type(0.0):
                ntype = type(pt)
                break

        results = numpy.zeros( ( (n+1)*(n+2)/2,len(pts)),ntype )
        apts = numpy.array( pts )

        for ii in range( results.shape[1] ):
            results[0,ii] = 1.0 + apts[ii,0]-apts[ii,0]+apts[ii,1]-apts[ii,1]

        if n == 0:
            return results

        x = numpy.array( [ pt[0] for pt in ref_pts ] )
        y = numpy.array( [ pt[1] for pt in ref_pts ] )

        f1 = (1.0+2*x+y)/2.0
        f2 = (1.0 - y) / 2.0
        f3 = f2**2

        results[idx(1,0),:] = f1

        for p in range(1,n):
            a = (2.0*p+1)/(1.0+p)
            b = p / (p+1.0)
            results[idx(p+1,0)] = a * f1 * results[idx(p,0),:] \
                - p/(1.0+p) * f3 *results[idx(p-1,0),:]

        for p in range(n):
            results[idx(p,1),:] = 0.5 * (1+2.0*p+(3.0+2.0*p)*y) \
                * results[idx(p,0)]

        for p in range(n-1):
            for q in range(1,n-p):
                (a1,a2,a3) = jrc(2*p+1,0,q)
                results[idx(p,q+1),:] \
                    = ( a1 * y + a2 ) * results[idx(p,q)] \
                    - a3 * results[idx(p,q-1)]

        for p in range(n+1):
            for q in range(n-p+1):
                results[idx(p,q),:] *= math.sqrt((p+0.5)*(p+q+1.0))

        return results
        #return self.scale * results

    def tabulate_jet( self , n , pts , order = 1 ):
        import sys
        from Derivatives import DerivVar
        dpts = [ tuple( [ DerivVar( pt[i] , i , order ) \
                              for i in range( len( pt ) ) ] ) for pt in pts ]
        dbfs = self.tabulate( n , dpts )
        result = []
        for d in range( order + 1 ):
            result_d = [ [ foo[d] for foo in bar ] for bar in dbfs ]
            result.append( numpy.array( result_d ) )

        return result


class TetrahedronExpansionSet:
    """Collapsed orthonormal polynomial expanion on a tetrahedron."""
    def __init__( self , ref_el ):
        if ref_el.get_spatial_dimension() != 3:
            raise Exception("Must be a tetrahedron")
        self.ref_el = ref_el
        self.base_ref_el = reference_element.DefaultTetrahedron( )
        v1 = ref_el.get_vertices()
        v2 = self.base_ref_el.get_vertices()
        self.A,self.b = reference_element.make_affine_mapping( v1 , v2 )
        self.mapping = lambda x: numpy.dot( self.A , x ) + self.b
        self.scale = numpy.sqrt( numpy.linalg.det( self.A ) )

        return

    def get_num_members( self , n ):
        return (n+1)*(n+2)*(n+3)/6

    def tabulate( self , n , pts ):
        if len( pts ) == 0:
            return numpy.array( [] )


        ref_pts = [ self.mapping( pt ) for pt in pts ]

        def idx(p,q,r):
            return (p+q+r)*(p+q+r+1)*(p+q+r+2)/6 + (q+r)*(q+r+1)/2 + r

        def jrc( a , b , n ):
            an = float( ( 2*n+1+a+b)*(2*n+2+a+b)) \
                / float( 2*(n+1)*(n+1+a+b))
            bn = float( (a*a-b*b) * (2*n+1+a+b) ) \
                / float( 2*(n+1)*(2*n+a+b)*(n+1+a+b) )
            cn = float( (n+a)*(n+b)*(2*n+2+a+b)  ) \
                / float( (n+1)*(n+1+a+b)*(2*n+a+b) )
            return an,bn,cn

        apts = numpy.array( pts )

        results = numpy.zeros( ( (n+1)*(n+2)*(n+3)/6,len(pts)), type(pts[0][0]))
        results[0,:] = 1.0 + apts[:,0]-apts[:,0]+apts[:,1]-apts[:,1]+apts[:,2]-apts[:,2]

        if n == 0:
            return results

        x = numpy.array( [ pt[0] for pt in ref_pts ] )
        y = numpy.array( [ pt[1] for pt in ref_pts ] )
        z = numpy.array( [ pt[2] for pt in ref_pts ] )

        factor1 = 0.5 * ( 2.0 + 2.0*x + y + z )
        factor2 = (0.5*(y+z))**2
        factor3 = 0.5 * ( 1 + 2.0 * y + z )
        factor4 = 0.5 * ( 1 - z )
        factor5 = factor4 ** 2

        results[idx(1,0,0)] = factor1
        for p in range(1,n):
            a1 = ( 2.0 * p + 1.0 ) / ( p + 1.0 )
            a2 = p / (p + 1.0)
            results[idx(p+1,0,0)] = a1 * factor1 * results[idx(p,0,0)] \
                -a2 * factor2 * results[ idx(p-1,0,0) ]

        # q = 1
        for p in range(0,n):
            results[idx(p,1,0)] = results[idx(p,0,0)] \
                * ( p * (1.0 + y) + ( 2.0 + 3.0 * y + z ) / 2 )

        for p in range(0,n-1):
            for q in range(1,n-p):
                (aq,bq,cq) = jrc(2*p+1,0,q)
                qmcoeff = aq * factor3 + bq * factor4
                qm1coeff = cq * factor5
                results[idx(p,q+1,0)] = qmcoeff * results[idx(p,q,0)] \
                    - qm1coeff * results[idx(p,q-1,0)]

        # now handle r=1
        for p in range(n):
            for q in range(n-p):
                results[idx(p,q,1)] = results[idx(p,q,0)] \
                    * ( 1.0 + p + q + ( 2.0 + q + p ) * z )

        # general r by recurrence
        for p in range(n-1):
            for q in range(0,n-p-1):
                for r in range(1,n-p-q):
                    ar,br,cr = jrc(2*p+2*q+2,0,r)
                    results[idx(p,q,r+1)] = \
                                (ar * z + br) * results[idx(p,q,r) ] \
                                - cr * results[idx(p,q,r-1) ]

        for p in range(n+1):
            for q in range(n-p+1):
                for r in range(n-p-q+1):
                    results[idx(p,q,r)] *= math.sqrt((p+0.5)*(p+q+1.0)*(p+q+r+1.5))


        return results

    def tabulate_jet( self , n , pts , order = 1 ):
        from Derivatives import DerivVar
        dpts = [ tuple( [ DerivVar( pt[i] , i , order ) \
                              for i in range( len( pt ) ) ] ) for pt in pts ]
        dbfs = self.tabulate( n , dpts )
        result = []
        for d in range( order + 1 ):
            result_d = [ [ foo[d] for foo in bar ] for bar in dbfs ]
            result.append( numpy.array( result_d ) )

        return result


def get_expansion_set( ref_el ):
    """Returns an ExpansionSet instance appopriate for the given
    reference element."""
    if ref_el.get_shape() == reference_element.LINE:
        return LineExpansionSet( ref_el )
    elif ref_el.get_shape() == reference_element.TRIANGLE:
        return TriangleExpansionSet( ref_el )
    elif ref_el.get_shape() == reference_element.TETRAHEDRON:
        return TetrahedronExpansionSet( ref_el )
    else:
        raise Exception("Unknown reference element type.")

def polynomial_dimension( ref_el , degree ):
    """Returns the dimension of the space of polynomials of degree no
    greater than degree on the reference element."""
    if ref_el.get_shape() == reference_element.LINE:
        return max( 0 , degree + 1 )
    elif ref_el.get_shape() == reference_element.TRIANGLE:
        return max( (degree+1)*(degree+2)/2 , 0 )
    elif ref_el.get_shape() == reference_element.TETRAHEDRON:
        return max( 0 , (degree+1)*(degree+2)*(degree+3)/6 )
    else:
        raise Exception("Unknown reference element type.")

if __name__=="__main__":
    from . import reference_element, expansions
    from FirstDerivatives import DerivVar

    E = reference_element.DefaultTriangle( )

    k = 3

    pts = E.make_lattice( k )

    dpts = [ [ DerivVar( pt[j] , j ) for j in range(len( pt )) ] for pt in pts ]

    Phis = expansions.get_expansion_set( E )

    phis = Phis.tabulate(k,pts)
    dphis = Phis.tabulate(k,dpts)


#    dphis_x = numpy.array( [ [ d[1][0] for d in dphi ] for dphi in dphis ] )
#    dphis_y = numpy.array([[d[1][1] for d in dphi ] for dphi in dphis ] )
#    dphis_z = numpy.array([[d[1][2] for d in dphi ] for dphi in dphis ] )

#    print dphis_x

#    for dmat in make_dmats( E , k ):
#        print dmat
#        print