This file is indexed.

/usr/lib/python2.7/dist-packages/FIAT/argyris.py is in python-fiat 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (C) 2008 Robert C. Kirby (Texas Tech University)
#
# This file is part of FIAT.
#
# FIAT is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FIAT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FIAT. If not, see <http://www.gnu.org/licenses/>.

import finite_element, polynomial_set, dual_set, functional, numpy

class ArgyrisDualSet( dual_set.DualSet ):
    def __init__( self , ref_el , degree ):
        entity_ids = {}
        nodes = []
        cur = 0

        top = ref_el.get_topology()
        verts = ref_el.get_vertices()
        sd = ref_el.get_spatial_dimension()

        if sd != 2:
            raise Exception("Illegal spatial dimension")

        pe = functional.PointEvaluation
        pd = functional.PointDerivative
        pnd = functional.PointNormalDerivative

        # get jet at each vertex

        entity_ids[0] = {}
        for v in sorted( top[0] ):
            nodes.append( pe( ref_el , verts[v] ) )

            # first derivatives
            for i in range( sd ):
                alpha = [0] * sd
                alpha[i] = 1
                nodes.append( pd( ref_el , verts[v] , alpha ) )

            # second derivatives
            alphas = [ [2,0] , [0,2] , [1,1] ]
            for alpha in alphas:
                nodes.append( pd( ref_el , verts[v] , alpha ) )


            entity_ids[0][v] = list(range(cur,cur+6))
            cur += 6

        # edge dof
        entity_ids[1] = {}
        for e in sorted( top[1] ):
            # normal derivatives at degree - 4 points on each edge
            ndpts = ref_el.make_points( 1 , e , degree - 3 )
            ndnds = [ pnd( ref_el , e , pt ) for pt in ndpts ]
            nodes.extend( ndnds )
            entity_ids[1][e] = list(range(cur,cur + len(ndpts)))
            cur += len( ndpts )

            # point value at degree-5 points on each edge
            if degree > 5:
                ptvalpts = ref_el.make_points( 1 , e , degree - 4 )
                ptvalnds = [ pe( ref_el , pt ) for pt in ptvalpts ]
                nodes.extend( ptvalnds )
                entity_ids[1][e] += list(range(cur,cur+len(ptvalpts)))
                cur += len( ptvalpts )

        # internal dof
        entity_ids[2] = {}
        if degree > 5:
            internalpts = ref_el.make_points( 2 , 0 , degree - 3 )
            internalnds = [ pe( ref_el , pt ) for pt in internalpts ]
            nodes.extend( internalnds )
            entity_ids[2][0] = list(range(cur,cur+len(internalpts)))
            cur += len(internalpts)

        dual_set.DualSet.__init__( self , nodes , ref_el , entity_ids )

class QuinticArgyrisDualSet( dual_set.DualSet ):
    """The dual basis for Lagrange elements.  This class works for
    simplices of any dimension.  Nodes are point evaluation at
    equispaced points."""
    def __init__( self , ref_el ):
        entity_ids = {}
        nodes = []
        cur = 0

        # make nodes by getting points
        # need to do this dimension-by-dimension, facet-by-facet
        top = ref_el.get_topology()
        verts = ref_el.get_vertices()
        sd = ref_el.get_spatial_dimension()
        if sd != 2:
            raise Exception("Illegal spatial dimension")

        pd = functional.PointDerivative

        # get jet at each vertex

        entity_ids[0] = {}
        for v in sorted( top[0] ):
            nodes.append( functional.PointEvaluation( ref_el , verts[v] ) )

            # first derivatives
            for i in range( sd ):
                alpha = [0] * sd
                alpha[i] = 1
                nodes.append( pd( ref_el , verts[v] , alpha ) )

            # second derivatives
            alphas = [ [2,0] , [0,2] , [1,1] ]
            for alpha in alphas:
                nodes.append( pd( ref_el , verts[v] , alpha ) )


            entity_ids[0][v] = list(range(cur,cur+6))
            cur += 6

        # edge dof -- normal at each edge midpoint
        entity_ids[1] = {}
        for e in sorted( top[1] ):
            pt = ref_el.make_points( 1 , e , 2 )[0]
            n = functional.PointNormalDerivative( ref_el , e , pt )
            nodes.append( n )
            entity_ids[1][e] = [cur]
            cur += 1



        dual_set.DualSet.__init__( self , nodes , ref_el , entity_ids )


class Argyris( finite_element.FiniteElement ):
    """The Argyris finite element."""
    def __init__( self , ref_el , degree ):
        poly_set = polynomial_set.ONPolynomialSet( ref_el , degree )
        dual = ArgyrisDualSet( ref_el , degree )
        finite_element.FiniteElement.__init__( self , poly_set , dual , degree )

class QuinticArgyris( finite_element.FiniteElement ):
    """The Argyris finite element."""
    def __init__( self , ref_el ):
        poly_set = polynomial_set.ONPolynomialSet( ref_el , 5 )
        dual = QuinticArgyrisDualSet( ref_el  )
        finite_element.FiniteElement.__init__( self , poly_set , dual , 5 )

if __name__=="__main__":
    from . import reference_element
    from . import lagrange
    T = reference_element.DefaultTriangle()
    for k in range(5,11):
        U = Argyris( T , k )
        U2 = lagrange.Lagrange( T , k )
        c = U.get_nodal_basis().get_coeffs()
        sigma = numpy.linalg.svd( c , compute_uv = 0)
        print("Argyris ",k, max(sigma) / min(sigma))
        c = U2.get_nodal_basis().get_coeffs()
        sigma = numpy.linalg.svd( c , compute_uv = 0)
        print("Lagrange ",k,max(sigma) / min(sigma ))
        print()