This file is indexed.

/usr/lib/python2.7/dist-packages/electrum/bitcoin.py is in python-electrum 1.9.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# -*- coding: utf-8 -*-
#!/usr/bin/env python
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2011 thomasv@gitorious
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.


import hashlib, base64, ecdsa, re
import hmac
from util import print_error

def rev_hex(s):
    return s.decode('hex')[::-1].encode('hex')

def int_to_hex(i, length=1):
    s = hex(i)[2:].rstrip('L')
    s = "0"*(2*length - len(s)) + s
    return rev_hex(s)

def var_int(i):
    # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
    if i<0xfd:
        return int_to_hex(i)
    elif i<=0xffff:
        return "fd"+int_to_hex(i,2)
    elif i<=0xffffffff:
        return "fe"+int_to_hex(i,4)
    else:
        return "ff"+int_to_hex(i,8)

def op_push(i):
    if i<0x4c:
        return int_to_hex(i)
    elif i<0xff:
        return '4c' + int_to_hex(i)
    elif i<0xffff:
        return '4d' + int_to_hex(i,2)
    else:
        return '4e' + int_to_hex(i,4)
    


def Hash(x):
    if type(x) is unicode: x=x.encode('utf-8')
    return hashlib.sha256(hashlib.sha256(x).digest()).digest()
hash_encode = lambda x: x[::-1].encode('hex')
hash_decode = lambda x: x.decode('hex')[::-1]

hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest()
mnemonic_hash = lambda x: hmac_sha_512("Bitcoin mnemonic", x).encode('hex')

# pywallet openssl private key implementation

def i2d_ECPrivateKey(pkey, compressed=False):
    if compressed:
        key = '3081d30201010420' + \
              '%064x' % pkey.secret + \
              'a081a53081a2020101302c06072a8648ce3d0101022100' + \
              '%064x' % _p + \
              '3006040100040107042102' + \
              '%064x' % _Gx + \
              '022100' + \
              '%064x' % _r + \
              '020101a124032200'
    else:
        key = '308201130201010420' + \
              '%064x' % pkey.secret + \
              'a081a53081a2020101302c06072a8648ce3d0101022100' + \
              '%064x' % _p + \
              '3006040100040107044104' + \
              '%064x' % _Gx + \
              '%064x' % _Gy + \
              '022100' + \
              '%064x' % _r + \
              '020101a144034200'
        
    return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
    
def i2o_ECPublicKey(pubkey, compressed=False):
    # public keys are 65 bytes long (520 bits)
    # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
    # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
    # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
    if compressed:
        if pubkey.point.y() & 1:
            key = '03' + '%064x' % pubkey.point.x()
        else:
            key = '02' + '%064x' % pubkey.point.x()
    else:
        key = '04' + \
              '%064x' % pubkey.point.x() + \
              '%064x' % pubkey.point.y()
            
    return key.decode('hex')
            
# end pywallet openssl private key implementation

                                                
            
############ functions from pywallet ##################### 

def hash_160(public_key):
    try:
        md = hashlib.new('ripemd160')
        md.update(hashlib.sha256(public_key).digest())
        return md.digest()
    except Exception:
        import ripemd
        md = ripemd.new(hashlib.sha256(public_key).digest())
        return md.digest()


def public_key_to_bc_address(public_key):
    h160 = hash_160(public_key)
    return hash_160_to_bc_address(h160)

def hash_160_to_bc_address(h160, addrtype = 0):
    vh160 = chr(addrtype) + h160
    h = Hash(vh160)
    addr = vh160 + h[0:4]
    return b58encode(addr)

def bc_address_to_hash_160(addr):
    bytes = b58decode(addr, 25)
    return ord(bytes[0]), bytes[1:21]

def encode_point(pubkey, compressed=False):
    order = generator_secp256k1.order()
    p = pubkey.pubkey.point
    x_str = ecdsa.util.number_to_string(p.x(), order)
    y_str = ecdsa.util.number_to_string(p.y(), order)
    if compressed:
        return chr(2 + (p.y() & 1)) + x_str
    else:
        return chr(4) + pubkey.to_string() #x_str + y_str

__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)

def b58encode(v):
    """ encode v, which is a string of bytes, to base58."""

    long_value = 0L
    for (i, c) in enumerate(v[::-1]):
        long_value += (256**i) * ord(c)

    result = ''
    while long_value >= __b58base:
        div, mod = divmod(long_value, __b58base)
        result = __b58chars[mod] + result
        long_value = div
    result = __b58chars[long_value] + result

    # Bitcoin does a little leading-zero-compression:
    # leading 0-bytes in the input become leading-1s
    nPad = 0
    for c in v:
        if c == '\0': nPad += 1
        else: break

    return (__b58chars[0]*nPad) + result

def b58decode(v, length):
    """ decode v into a string of len bytes."""
    long_value = 0L
    for (i, c) in enumerate(v[::-1]):
        long_value += __b58chars.find(c) * (__b58base**i)

    result = ''
    while long_value >= 256:
        div, mod = divmod(long_value, 256)
        result = chr(mod) + result
        long_value = div
    result = chr(long_value) + result

    nPad = 0
    for c in v:
        if c == __b58chars[0]: nPad += 1
        else: break

    result = chr(0)*nPad + result
    if length is not None and len(result) != length:
        return None

    return result


def EncodeBase58Check(vchIn):
    hash = Hash(vchIn)
    return b58encode(vchIn + hash[0:4])

def DecodeBase58Check(psz):
    vchRet = b58decode(psz, None)
    key = vchRet[0:-4]
    csum = vchRet[-4:]
    hash = Hash(key)
    cs32 = hash[0:4]
    if cs32 != csum:
        return None
    else:
        return key

def PrivKeyToSecret(privkey):
    return privkey[9:9+32]

def SecretToASecret(secret, compressed=False, addrtype=0):
    vchIn = chr((addrtype+128)&255) + secret
    if compressed: vchIn += '\01'
    return EncodeBase58Check(vchIn)

def ASecretToSecret(key, addrtype=0):
    vch = DecodeBase58Check(key)
    if vch and vch[0] == chr((addrtype+128)&255):
        return vch[1:]
    else:
        return False

def regenerate_key(sec):
    b = ASecretToSecret(sec)
    if not b:
        return False
    b = b[0:32]
    secret = int('0x' + b.encode('hex'), 16)
    return EC_KEY(secret)

def GetPubKey(pubkey, compressed=False):
    return i2o_ECPublicKey(pubkey, compressed)

def GetPrivKey(pkey, compressed=False):
    return i2d_ECPrivateKey(pkey, compressed)

def GetSecret(pkey):
    return ('%064x' % pkey.secret).decode('hex')

def is_compressed(sec):
    b = ASecretToSecret(sec)
    return len(b) == 33


def public_key_from_private_key(sec):
    # rebuild public key from private key, compressed or uncompressed
    pkey = regenerate_key(sec)
    assert pkey
    compressed = is_compressed(sec)
    public_key = GetPubKey(pkey.pubkey, compressed)
    return public_key.encode('hex')


def address_from_private_key(sec):
    public_key = public_key_from_private_key(sec)
    address = public_key_to_bc_address(public_key.decode('hex'))
    return address


def is_valid(addr):
    ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
    if not ADDRESS_RE.match(addr): return False
    try:
        addrtype, h = bc_address_to_hash_160(addr)
    except Exception:
        return False
    return addr == hash_160_to_bc_address(h, addrtype)


########### end pywallet functions #######################

try:
    from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
except Exception:
    print "cannot import ecdsa.curve_secp256k1. You probably need to upgrade ecdsa.\nTry: sudo pip install --upgrade ecdsa"
    exit()
from ecdsa.curves import SECP256k1
from ecdsa.util import string_to_number, number_to_string

def msg_magic(message):
    varint = var_int(len(message))
    encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)])

    return "\x18Bitcoin Signed Message:\n" + encoded_varint + message


def verify_message(address, signature, message):
    try:
        EC_KEY.verify_message(address, signature, message)
        return True
    except Exception as e:
        print_error("Verification error: {0}".format(e))
        return False



class EC_KEY(object):
    def __init__( self, secret ):
        self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
        self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
        self.secret = secret

    def sign_message(self, message, compressed, address):
        private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
        public_key = private_key.get_verifying_key()
        signature = private_key.sign_digest_deterministic( Hash( msg_magic(message) ), hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string )
        assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
        for i in range(4):
            sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
            try:
                self.verify_message( address, sig, message)
                return sig
            except Exception:
                continue
        else:
            raise Exception("error: cannot sign message")

    @classmethod
    def verify_message(self, address, signature, message):
        """ See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
        from ecdsa import numbertheory, ellipticcurve, util
        import msqr
        curve = curve_secp256k1
        G = generator_secp256k1
        order = G.order()
        # extract r,s from signature
        sig = base64.b64decode(signature)
        if len(sig) != 65: raise Exception("Wrong encoding")
        r,s = util.sigdecode_string(sig[1:], order)
        nV = ord(sig[0])
        if nV < 27 or nV >= 35:
            raise Exception("Bad encoding")
        if nV >= 31:
            compressed = True
            nV -= 4
        else:
            compressed = False

        recid = nV - 27
        # 1.1
        x = r + (recid/2) * order
        # 1.3
        alpha = ( x * x * x  + curve.a() * x + curve.b() ) % curve.p()
        beta = msqr.modular_sqrt(alpha, curve.p())
        y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
        # 1.4 the constructor checks that nR is at infinity
        R = ellipticcurve.Point(curve, x, y, order)
        # 1.5 compute e from message:
        h = Hash( msg_magic(message) )
        e = string_to_number(h)
        minus_e = -e % order
        # 1.6 compute Q = r^-1 (sR - eG)
        inv_r = numbertheory.inverse_mod(r,order)
        Q = inv_r * ( s * R + minus_e * G )
        public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
        # check that Q is the public key
        public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
        # check that we get the original signing address
        addr = public_key_to_bc_address( encode_point(public_key, compressed) )
        if address != addr:
            raise Exception("Bad signature")


###################################### BIP32 ##############################

random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
BIP32_PRIME = 0x80000000

def bip32_init(seed):
    import hmac
    seed = seed.decode('hex')        
    I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()

    master_secret = I[0:32]
    master_chain = I[32:]

    K, K_compressed = get_pubkeys_from_secret(master_secret)
    return master_secret, master_chain, K, K_compressed


def get_pubkeys_from_secret(secret):
    # public key
    private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
    public_key = private_key.get_verifying_key()
    K = public_key.to_string()
    K_compressed = GetPubKey(public_key.pubkey,True)
    return K, K_compressed



# Child private key derivation function (from master private key)
# k = master private key (32 bytes)
# c = master chain code (extra entropy for key derivation) (32 bytes)
# n = the index of the key we want to derive. (only 32 bits will be used)
# If n is negative (i.e. the 32nd bit is set), the resulting private key's
#  corresponding public key can NOT be determined without the master private key.
# However, if n is positive, the resulting private key's corresponding
#  public key can be determined without the master private key.
def CKD(k, c, n):
    import hmac
    from ecdsa.util import string_to_number, number_to_string
    order = generator_secp256k1.order()
    keypair = EC_KEY(string_to_number(k))
    K = GetPubKey(keypair.pubkey,True)

    if n & BIP32_PRIME: # We want to make a "secret" address that can't be determined from K
        data = chr(0) + k + rev_hex(int_to_hex(n,4)).decode('hex')
        I = hmac.new(c, data, hashlib.sha512).digest()
    else: # We want a "non-secret" address that can be determined from K
        I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
        
    k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
    c_n = I[32:]
    return k_n, c_n

# Child public key derivation function (from public key only)
# K = master public key 
# c = master chain code
# n = index of key we want to derive
# This function allows us to find the nth public key, as long as n is 
#  non-negative. If n is negative, we need the master private key to find it.
def CKD_prime(K, c, n):
    import hmac
    from ecdsa.util import string_to_number, number_to_string
    order = generator_secp256k1.order()

    if n & BIP32_PRIME: raise

    K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
    K_compressed = GetPubKey(K_public_key.pubkey,True)

    I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()

    curve = SECP256k1
    pubkey_point = string_to_number(I[0:32])*curve.generator + K_public_key.pubkey.point
    public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )

    K_n = public_key.to_string()
    K_n_compressed = GetPubKey(public_key.pubkey,True)
    c_n = I[32:]

    return K_n, K_n_compressed, c_n



def bip32_private_derivation(k, c, branch, sequence):
    assert sequence.startswith(branch)
    sequence = sequence[len(branch):]
    for n in sequence.split('/'):
        if n == '': continue
        n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
        k, c = CKD(k, c, n)
    K, K_compressed = get_pubkeys_from_secret(k)
    return k.encode('hex'), c.encode('hex'), K.encode('hex'), K_compressed.encode('hex')


def bip32_public_derivation(c, K, branch, sequence):
    assert sequence.startswith(branch)
    sequence = sequence[len(branch):]
    for n in sequence.split('/'):
        n = int(n)
        K, cK, c = CKD_prime(K, c, n)

    return c.encode('hex'), K.encode('hex'), cK.encode('hex')


def bip32_private_key(sequence, k, chain):
    for i in sequence:
        k, chain = CKD(k, chain, i)
    return SecretToASecret(k, True)




################################## transactions

MIN_RELAY_TX_FEE = 10000



def test_bip32(seed, sequence):
    """
    run a test vector,
    see https://en.bitcoin.it/wiki/BIP_0032_TestVectors
    """

    master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
        
    print "secret key", master_secret.encode('hex')
    print "chain code", master_chain.encode('hex')

    key_id = hash_160(master_public_key_compressed)
    print "keyid", key_id.encode('hex')
    print "base58"
    print "address", hash_160_to_bc_address(key_id)
    print "secret key", SecretToASecret(master_secret, True)

    k = master_secret
    c = master_chain

    s = ['m']
    for n in sequence.split('/'):
        s.append(n)
        print "Chain [%s]" % '/'.join(s)
        
        n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
        k0, c0 = CKD(k, c, n)
        K0, K0_compressed = get_pubkeys_from_secret(k0)

        print "* Identifier"
        print "  * (main addr)", hash_160_to_bc_address(hash_160(K0_compressed))

        print "* Secret Key"
        print "  * (hex)", k0.encode('hex')
        print "  * (wif)", SecretToASecret(k0, True)

        print "* Chain Code"
        print "   * (hex)", c0.encode('hex')

        k = k0
        c = c0
    print "----"

        


if __name__ == '__main__':
    test_bip32("000102030405060708090a0b0c0d0e0f", "0'/1/2'/2/1000000000")
    test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","0/2147483647'/1/2147483646'/2")