/usr/share/pyshared/dipy/viz/fvtk.py is in python-dipy 0.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 | ''' Fvtk module implements simple visualization functions using VTK. Fos means light in Greek.
The main idea is the following:
A window can have one or more renderers. A renderer can have none, one or more actors. Examples of actors are a sphere, line, point etc.
You basically add actors in a renderer and in that way you can visualize the forementioned objects e.g. sphere, line ...
Examples
----------------
>>> from dipy.viz import fvtk
>>> r=fvtk.ren()
>>> a=fvtk.axes()
>>> fvtk.add(r,a)
>>> #fvtk.show(r)
'''
import types
import numpy as np
import scipy as sp
# Conditional import machinery for vtk
from ..utils.optpkg import optional_package
# Allow import, but disable doctests if we don't have vtk
vtk, have_vtk, setup_module = optional_package('vtk')
'''
For more color names see
http://www.colourlovers.com/blog/2007/07/24/32-common-color-names-for-easy-reference/
'''
#Some common colors
red=np.array([1,0,0])
green=np.array([0,1,0])
blue=np.array([0,0,1])
yellow=np.array([1,1,0])
cyan=np.array([0,1,1])
azure=np.array([0,0.49,1])
golden=np.array([1,0.84,0])
white=np.array([1,1,1])
black=np.array([0,0,0])
aquamarine=np.array([0.498,1.,0.83])
indigo=np.array([ 0.29411765, 0., 0.50980392])
lime=np.array([ 0.74901961, 1., 0.])
hot_pink=np.array([ 0.98823529, 0.05882353, 0.75294118])
gray=np.array([0.5,0.5,0.5])
dark_red=np.array([0.5,0,0])
dark_green=np.array([0,0.5,0])
dark_blue=np.array([0,0,0.5])
tan=np.array([ 0.82352941, 0.70588235, 0.54901961])
chartreuse=np.array([ 0.49803922, 1. , 0. ])
coral=np.array([ 1. , 0.49803922, 0.31372549])
#a track buffer used only with picking tracks
track_buffer=[]
#indices buffer for the tracks
ind_buffer=[]
#tempory renderer used only with picking tracks
tmp_ren=None
if have_vtk:
# Create a text mapper and actor to display the results of picking.
textMapper = vtk.vtkTextMapper()
tprop = textMapper.GetTextProperty()
tprop.SetFontFamilyToArial()
tprop.SetFontSize(10)
#tprop.BoldOn()
#tprop.ShadowOn()
tprop.SetColor(1, 0, 0)
textActor = vtk.vtkActor2D()
textActor.VisibilityOff()
textActor.SetMapper(textMapper)
# Create a cell picker.
picker = vtk.vtkCellPicker()
def ren():
''' Create a renderer
Returns
--------
a vtkRenderer() object
Examples
---------
>>> from dipy.viz import fvtk
>>> import numpy as np
>>> r=fvtk.ren()
>>> lines=[np.random.rand(10,3)]
>>> c=fvtk.line(lines,fvtk.red)
>>> fvtk.add(r,c)
>>> #fvtk.show(r)
'''
return vtk.vtkRenderer()
def add(ren,a):
''' Add a specific actor
'''
if isinstance(a,vtk.vtkVolume):
ren.AddVolume(a)
else:
ren.AddActor(a)
def rm(ren,a):
''' Remove a specific actor
'''
ren.RemoveActor(a)
def clear(ren):
''' Remove all actors from the renderer
'''
ren.RemoveAllViewProps()
def rm_all(ren):
''' Remove all actors from the renderer
'''
clear(ren)
def _arrow(pos=(0,0,0),color=(1,0,0),scale=(1,1,1),opacity=1):
''' Internal function for generating arrow actors.
'''
arrow = vtk.vtkArrowSource()
#arrow.SetTipLength(length)
arrowm = vtk.vtkPolyDataMapper()
arrowm.SetInput(arrow.GetOutput())
arrowa= vtk.vtkActor()
arrowa.SetMapper(arrowm)
arrowa.GetProperty().SetColor(color)
arrowa.GetProperty().SetOpacity(opacity)
arrowa.SetScale(scale)
return arrowa
def axes(scale=(1,1,1),colorx=(1,0,0),colory=(0,1,0),colorz=(0,0,1),opacity=1):
''' Create an actor with the coordinate system axes where red = x, green = y, blue =z.
'''
arrowx=_arrow(color=colorx,scale=scale,opacity=opacity)
arrowy=_arrow(color=colory,scale=scale,opacity=opacity)
arrowz=_arrow(color=colorz,scale=scale,opacity=opacity)
arrowy.RotateZ(90)
arrowz.RotateY(-90)
ass=vtk.vtkAssembly()
ass.AddPart(arrowx)
ass.AddPart(arrowy)
ass.AddPart(arrowz)
return ass
def _lookup(colors):
''' Internal function
Creates a lookup table with given colors.
Parameters
------------
colors : array, shape (N,3)
Colormap where every triplet is encoding red, green and blue e.g.
r1,g1,b1
r2,g2,b2
...
rN,gN,bN
where
0=<r<=1,
0=<g<=1,
0=<b<=1,
Returns
----------
vtkLookupTable
'''
colors=np.asarray(colors,dtype=np.float32)
if colors.ndim>2:
raise ValueError('Incorrect shape of array in colors')
if colors.ndim==1:
N=1
if colors.ndim==2:
N=colors.shape[0]
lut=vtk.vtkLookupTable()
lut.SetNumberOfColors(N)
lut.Build()
if colors.ndim==2:
scalar=0
for (r,g,b) in colors:
lut.SetTableValue(scalar,r,g,b,1.0)
scalar+=1
if colors.ndim==1:
lut.SetTableValue(0,colors[0],colors[1],colors[2],1.0)
return lut
def line(lines,colors,opacity=1,linewidth=1):
''' Create an actor for one or more lines.
Parameters
------------
lines : list of arrays representing lines as 3d points for example
lines=[np.random.rand(10,3),np.random.rand(20,3)]
represents 2 lines the first with 10 points and the second with 20 points in x,y,z coordinates.
colors : array, shape (N,3)
Colormap where every triplet is encoding red, green and blue e.g.
r1,g1,b1
r2,g2,b2
...
rN,gN,bN
where
0=<r<=1,
0=<g<=1,
0=<b<=1
opacity : float, default 1
0<=transparency <=1
linewidth : float, default is 1
line thickness
Returns
----------
vtkActor object
Examples
----------
>>> from dipy.viz import fvtk
>>> r=fvtk.ren()
>>> lines=[np.random.rand(10,3),np.random.rand(20,3)]
>>> colors=np.random.rand(2,3)
>>> c=fvtk.line(lines,colors)
>>> fvtk.add(r,c)
>>> #fvtk.show(r)
'''
if not isinstance(lines,types.ListType):
lines=[lines]
points= vtk.vtkPoints()
lines_=vtk.vtkCellArray()
linescalars=vtk.vtkFloatArray()
#lookuptable=vtk.vtkLookupTable()
lookuptable=_lookup(colors)
scalarmin=0
if colors.ndim==2:
scalarmax=colors.shape[0]-1
if colors.ndim==1:
scalarmax=0
curPointID=0
m=(0.0,0.0,0.0)
n=(1.0,0.0,0.0)
scalar=0
#many colors
if colors.ndim==2:
for Line in lines:
inw=True
mit=iter(Line)
nit=iter(Line)
nit.next()
while(inw):
try:
m=mit.next()
n=nit.next()
#scalar=sp.rand(1)
linescalars.SetNumberOfComponents(1)
points.InsertNextPoint(m)
linescalars.InsertNextTuple1(scalar)
points.InsertNextPoint(n)
linescalars.InsertNextTuple1(scalar)
lines_.InsertNextCell(2)
lines_.InsertCellPoint(curPointID)
lines_.InsertCellPoint(curPointID+1)
curPointID+=2
except StopIteration:
break
scalar+=1
#one color only
if colors.ndim==1:
for Line in lines:
inw=True
mit=iter(Line)
nit=iter(Line)
nit.next()
while(inw):
try:
m=mit.next()
n=nit.next()
#scalar=sp.rand(1)
linescalars.SetNumberOfComponents(1)
points.InsertNextPoint(m)
linescalars.InsertNextTuple1(scalar)
points.InsertNextPoint(n)
linescalars.InsertNextTuple1(scalar)
lines_.InsertNextCell(2)
lines_.InsertCellPoint(curPointID)
lines_.InsertCellPoint(curPointID+1)
curPointID+=2
except StopIteration:
break
polydata = vtk.vtkPolyData()
polydata.SetPoints(points)
polydata.SetLines(lines_)
polydata.GetPointData().SetScalars(linescalars)
mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(polydata)
mapper.SetLookupTable(lookuptable)
mapper.SetColorModeToMapScalars()
mapper.SetScalarRange(scalarmin,scalarmax)
mapper.SetScalarModeToUsePointData()
actor=vtk.vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetLineWidth(linewidth)
actor.GetProperty().SetOpacity(opacity)
return actor
def dots(points,color=(1,0,0),opacity=1):
'''
Create one or more 3d dots(points) returns one actor handling all the points
'''
if points.ndim==2:
points_no=points.shape[0]
else:
points_no=1
polyVertexPoints = vtk.vtkPoints()
polyVertexPoints.SetNumberOfPoints(points_no)
aPolyVertex = vtk.vtkPolyVertex()
aPolyVertex.GetPointIds().SetNumberOfIds(points_no)
cnt=0
if points.ndim>1:
for point in points:
polyVertexPoints.InsertPoint(cnt, point[0], point[1], point[2])
aPolyVertex.GetPointIds().SetId(cnt, cnt)
cnt+=1
else:
polyVertexPoints.InsertPoint(cnt, points[0], points[1], points[2])
aPolyVertex.GetPointIds().SetId(cnt, cnt)
cnt+=1
aPolyVertexGrid = vtk.vtkUnstructuredGrid()
aPolyVertexGrid.Allocate(1, 1)
aPolyVertexGrid.InsertNextCell(aPolyVertex.GetCellType(), aPolyVertex.GetPointIds())
aPolyVertexGrid.SetPoints(polyVertexPoints)
aPolyVertexMapper = vtk.vtkDataSetMapper()
aPolyVertexMapper.SetInput(aPolyVertexGrid)
aPolyVertexActor = vtk.vtkActor()
aPolyVertexActor.SetMapper(aPolyVertexMapper)
aPolyVertexActor.GetProperty().SetColor(color)
aPolyVertexActor.GetProperty().SetOpacity(opacity)
return aPolyVertexActor
def point(points,colors,opacity=1,point_radius=0.001,theta=3,phi=3):
if np.array(colors).ndim==1:
#return dots(points,colors,opacity)
colors=np.tile(colors,(len(points),1))
scalars=vtk.vtkUnsignedCharArray()
scalars.SetNumberOfComponents(3)
pts=vtk.vtkPoints()
cnt_colors=0
for p in points:
pts.InsertNextPoint(p[0],p[1],p[2])
scalars.InsertNextTuple3(round(255*colors[cnt_colors][0]),round(255*colors[cnt_colors][1]),round(255*colors[cnt_colors][2]))
#scalars.InsertNextTuple3(255,255,255)
cnt_colors+=1
'''
src = vtk.vtkDiskSource()
src.SetRadialResolution(1)
src.SetCircumferentialResolution(10)
src.SetInnerRadius(0.0)
src.SetOuterRadius(0.001)
'''
#src = vtk.vtkPointSource()
src = vtk.vtkSphereSource()
src.SetRadius(point_radius)
src.SetThetaResolution(theta)
src.SetPhiResolution(phi)
polyData = vtk.vtkPolyData()
polyData.SetPoints(pts)
polyData.GetPointData().SetScalars(scalars)
glyph = vtk.vtkGlyph3D()
glyph.SetSourceConnection(src.GetOutputPort())
glyph.SetInput(polyData)
glyph.SetColorModeToColorByScalar()
glyph.SetScaleModeToDataScalingOff()
mapper=vtk.vtkPolyDataMapper()
mapper.SetInput(glyph.GetOutput())
actor=vtk.vtkActor()
actor.SetMapper(mapper)
return actor
def sphere(position=(0,0,0),radius=0.5,thetares=8,phires=8,color=(0,0,1),opacity=1,tessel=0):
''' Create a sphere actor
'''
sphere = vtk.vtkSphereSource()
sphere.SetRadius(radius)
sphere.SetLatLongTessellation(tessel)
sphere.SetThetaResolution(thetares)
sphere.SetPhiResolution(phires)
spherem = vtk.vtkPolyDataMapper()
spherem.SetInput(sphere.GetOutput())
spherea = vtk.vtkActor()
spherea.SetMapper(spherem)
spherea.SetPosition(position)
spherea.GetProperty().SetColor(color)
spherea.GetProperty().SetOpacity(opacity)
return spherea
def ellipsoid(R=np.array([[2, 0, 0],[0, 1, 0],[0, 0, 1] ]),position=(0,0,0),thetares=20,phires=20,color=(0,0,1),opacity=1,tessel=0):
''' Create a ellipsoid actor.
Stretch a unit sphere to make it an ellipsoid under a 3x3 translation matrix R
R=sp.array([[2, 0, 0],
[0, 1, 0],
[0, 0, 1] ])
'''
Mat=sp.identity(4)
Mat[0:3,0:3]=R
'''
Mat=sp.array([[2, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1] ])
'''
mat=vtk.vtkMatrix4x4()
for i in sp.ndindex(4,4):
mat.SetElement(i[0],i[1],Mat[i])
radius=1
sphere = vtk.vtkSphereSource()
sphere.SetRadius(radius)
sphere.SetLatLongTessellation(tessel)
sphere.SetThetaResolution(thetares)
sphere.SetPhiResolution(phires)
trans=vtk.vtkTransform()
trans.Identity()
#trans.Scale(0.3,0.9,0.2)
trans.SetMatrix(mat)
trans.Update()
transf=vtk.vtkTransformPolyDataFilter()
transf.SetTransform(trans)
transf.SetInput(sphere.GetOutput())
transf.Update()
spherem = vtk.vtkPolyDataMapper()
spherem.SetInput(transf.GetOutput())
spherea = vtk.vtkActor()
spherea.SetMapper(spherem)
spherea.SetPosition(position)
spherea.GetProperty().SetColor(color)
spherea.GetProperty().SetOpacity(opacity)
#spherea.GetProperty().SetRepresentationToWireframe()
return spherea
def label(ren,text='Origin',pos=(0,0,0),scale=(0.2,0.2,0.2),color=(1,1,1)):
''' Create a label actor
This actor will always face the camera
Parameters
------------
ren : vtkRenderer() object as returned from ren()
text : a text for the label
pos : left down position of the label
scale : change the size of the label
color : (r,g,b) and RGB tuple
Returns
----------
vtkActor object
Examples
----------
>>> from dipy.viz import fvtk
>>> r=fvtk.ren()
>>> l=fvtk.label(r)
>>> fvtk.add(r,l)
>>> #fvtk.show(r)
'''
atext=vtk.vtkVectorText()
atext.SetText(text)
textm=vtk.vtkPolyDataMapper()
textm.SetInput(atext.GetOutput())
texta=vtk.vtkFollower()
texta.SetMapper(textm)
texta.SetScale(scale)
texta.GetProperty().SetColor(color)
texta.SetPosition(pos)
ren.AddActor(texta)
texta.SetCamera(ren.GetActiveCamera())
return texta
def volume(vol,voxsz=(1.0,1.0,1.0),affine=None,center_origin=1,info=0,maptype=0,trilinear=1,iso=0,iso_thr=100,opacitymap=None,colormap=None):
''' Create a volume and return a volumetric actor using volumetric rendering.
This function has many different interesting capabilities. The maptype, opacitymap and colormap are the most crucial parameters here.
Parameters
----------------
vol : array, shape (N, M, K), dtype uint8
an array representing the volumetric dataset that we want to visualize using volumetric rendering
voxsz : sequence of 3 floats
default (1., 1., 1.)
affine : array, shape (4,4), default None
as given by volumeimages
center_origin : int {0,1}, default 1
it considers that the center of the volume is the
point (-vol.shape[0]/2.0+0.5,-vol.shape[1]/2.0+0.5,-vol.shape[2]/2.0+0.5)
info : int {0,1}, default 1
if 1 it prints out some info about the volume, the method and the dataset.
trilinear: int {0,1}, default 1
Use trilinear interpolation, default 1, gives smoother rendering. If you want faster interpolation use 0 (Nearest).
maptype : int {0,1}, default 0,
The maptype is a very important parameter which affects the raycasting algorithm in use for the rendering.
The options are:
If 0 then vtkVolumeTextureMapper2D is used.
If 1 then vtkVolumeRayCastFunction is used.
iso : int {0,1} default 0,
If iso is 1 and maptype is 1 then we use vtkVolumeRayCastIsosurfaceFunction which generates an isosurface at
the predefined iso_thr value. If iso is 0 and maptype is 1 vtkVolumeRayCastCompositeFunction is used.
iso_thr : int, default 100,
if iso is 1 then then this threshold in the volume defines the value which will be used to create the isosurface.
opacitymap : array, shape (N,2), default None.
The opacity map assigns a transparency coefficient to every point in the volume.
The default value uses the histogram of the volume to calculate the opacitymap.
colormap : array, shape (N,4), default None.
The color map assigns a color value to every point in the volume.
When None from the histogram it uses a red-blue colormap.
Returns
----------
vtkVolume
Notes
--------
What is the difference between TextureMapper2D and RayCastFunction?
Coming soon... See VTK user's guide [book] & The Visualization Toolkit [book] and VTK's online documentation & online docs.
What is the difference between RayCastIsosurfaceFunction and RayCastCompositeFunction?
Coming soon... See VTK user's guide [book] & The Visualization Toolkit [book] and VTK's online documentation & online docs.
What about trilinear interpolation?
Coming soon... well when time permits really ... :-)
Examples
------------
First example random points
>>> from dipy.viz import fvtk
>>> import numpy as np
>>> vol=100*np.random.rand(100,100,100)
>>> vol=vol.astype('uint8')
>>> print vol.min(), vol.max()
0 99
>>> r = fvtk.ren()
>>> v = fvtk.volume(vol)
>>> fvtk.add(r,v)
>>> #fvtk.show(r)
Second example with a more complicated function
>>> from dipy.viz import fvtk
>>> import numpy as np
>>> x, y, z = np.ogrid[-10:10:20j, -10:10:20j, -10:10:20j]
>>> s = np.sin(x*y*z)/(x*y*z)
>>> r = fvtk.ren()
>>> v = fvtk.volume(s)
>>> fvtk.add(r,v)
>>> #fvtk.show(r)
If you find this function too complicated you can always use mayavi.
Please do not forget to use the -wthread switch in ipython if you are running mayavi.
from enthought.mayavi import mlab
import numpy as np
x, y, z = np.ogrid[-10:10:20j, -10:10:20j, -10:10:20j]
s = np.sin(x*y*z)/(x*y*z)
mlab.pipeline.volume(mlab.pipeline.scalar_field(s))
mlab.show()
More mayavi demos are available here:
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/mlab.html
'''
if vol.ndim!=3:
raise ValueError('3d numpy arrays only please')
if info :
print('Datatype',vol.dtype,'converted to uint8' )
vol=np.interp(vol,[vol.min(),vol.max()],[0,255])
vol=vol.astype('uint8')
if opacitymap==None:
bin,res=np.histogram(vol.ravel())
res2=np.interp(res,[vol.min(),vol.max()],[0,1])
opacitymap=np.vstack((res,res2)).T
opacitymap=opacitymap.astype('float32')
'''
opacitymap=np.array([[ 0.0, 0.0],
[50.0, 0.9]])
'''
if info:
print 'opacitymap', opacitymap
if colormap==None:
bin,res=np.histogram(vol.ravel())
res2=np.interp(res,[vol.min(),vol.max()],[0,1])
zer=np.zeros(res2.shape)
colormap=np.vstack((res,res2,zer,res2[::-1])).T
colormap=colormap.astype('float32')
'''
colormap=np.array([[0.0, 0.5, 0.0, 0.0],
[64.0, 1.0, 0.5, 0.5],
[128.0, 0.9, 0.2, 0.3],
[196.0, 0.81, 0.27, 0.1],
[255.0, 0.5, 0.5, 0.5]])
'''
if info:
print 'colormap', colormap
im = vtk.vtkImageData()
im.SetScalarTypeToUnsignedChar()
im.SetDimensions(vol.shape[0],vol.shape[1],vol.shape[2])
#im.SetOrigin(0,0,0)
#im.SetSpacing(voxsz[2],voxsz[0],voxsz[1])
im.AllocateScalars()
for i in range(vol.shape[0]):
for j in range(vol.shape[1]):
for k in range(vol.shape[2]):
im.SetScalarComponentFromFloat(i,j,k,0,vol[i,j,k])
if affine != None:
aff = vtk.vtkMatrix4x4()
aff.DeepCopy((affine[0,0],affine[0,1],affine[0,2],affine[0,3],affine[1,0],affine[1,1],affine[1,2],affine[1,3],affine[2,0],affine[2,1],affine[2,2],affine[2,3],affine[3,0],affine[3,1],affine[3,2],affine[3,3]))
#aff.DeepCopy((affine[0,0],affine[0,1],affine[0,2],0,affine[1,0],affine[1,1],affine[1,2],0,affine[2,0],affine[2,1],affine[2,2],0,affine[3,0],affine[3,1],affine[3,2],1))
#aff.DeepCopy((affine[0,0],affine[0,1],affine[0,2],127.5,affine[1,0],affine[1,1],affine[1,2],-127.5,affine[2,0],affine[2,1],affine[2,2],-127.5,affine[3,0],affine[3,1],affine[3,2],1))
reslice = vtk.vtkImageReslice()
reslice.SetInput(im)
#reslice.SetOutputDimensionality(2)
#reslice.SetOutputOrigin(127,-145,147)
reslice.SetResliceAxes(aff)
#reslice.SetOutputOrigin(-127,-127,-127)
#reslice.SetOutputExtent(-127,128,-127,128,-127,128)
#reslice.SetResliceAxesOrigin(0,0,0)
#print 'Get Reslice Axes Origin ', reslice.GetResliceAxesOrigin()
#reslice.SetOutputSpacing(1.0,1.0,1.0)
reslice.SetInterpolationModeToLinear()
#reslice.UpdateWholeExtent()
#print 'reslice GetOutputOrigin', reslice.GetOutputOrigin()
#print 'reslice GetOutputExtent',reslice.GetOutputExtent()
#print 'reslice GetOutputSpacing',reslice.GetOutputSpacing()
changeFilter=vtk.vtkImageChangeInformation()
changeFilter.SetInput(reslice.GetOutput())
#changeFilter.SetInput(im)
if center_origin:
changeFilter.SetOutputOrigin(-vol.shape[0]/2.0+0.5,-vol.shape[1]/2.0+0.5,-vol.shape[2]/2.0+0.5)
print 'ChangeFilter ', changeFilter.GetOutputOrigin()
opacity = vtk.vtkPiecewiseFunction()
for i in range(opacitymap.shape[0]):
opacity.AddPoint(opacitymap[i,0],opacitymap[i,1])
color = vtk.vtkColorTransferFunction()
for i in range(colormap.shape[0]):
color.AddRGBPoint(colormap[i,0],colormap[i,1],colormap[i,2],colormap[i,3])
if(maptype==0):
property = vtk.vtkVolumeProperty()
property.SetColor(color)
property.SetScalarOpacity(opacity)
if trilinear:
property.SetInterpolationTypeToLinear()
else:
property.SetInterpolationTypeToNearest()
if info:
print('mapper VolumeTextureMapper2D')
mapper = vtk.vtkVolumeTextureMapper2D()
if affine == None:
mapper.SetInput(im)
else:
#mapper.SetInput(reslice.GetOutput())
mapper.SetInput(changeFilter.GetOutput())
if (maptype==1):
property = vtk.vtkVolumeProperty()
property.SetColor(color)
property.SetScalarOpacity(opacity)
property.ShadeOn()
if trilinear:
property.SetInterpolationTypeToLinear()
else:
property.SetInterpolationTypeToNearest()
if iso:
isofunc=vtk.vtkVolumeRayCastIsosurfaceFunction()
isofunc.SetIsoValue(iso_thr)
else:
compositeFunction = vtk.vtkVolumeRayCastCompositeFunction()
if info:
print('mapper VolumeRayCastMapper')
mapper = vtk.vtkVolumeRayCastMapper()
if iso:
mapper.SetVolumeRayCastFunction(isofunc)
if info:
print('Isosurface')
else:
mapper.SetVolumeRayCastFunction(compositeFunction)
#mapper.SetMinimumImageSampleDistance(0.2)
if info:
print('Composite')
if affine == None:
mapper.SetInput(im)
else:
#mapper.SetInput(reslice.GetOutput())
mapper.SetInput(changeFilter.GetOutput())
#Return mid position in world space
#im2=reslice.GetOutput()
#index=im2.FindPoint(vol.shape[0]/2.0,vol.shape[1]/2.0,vol.shape[2]/2.0)
#print 'Image Getpoint ' , im2.GetPoint(index)
volum = vtk.vtkVolume()
volum.SetMapper(mapper)
volum.SetProperty(property)
if info :
print 'Origin', volum.GetOrigin()
print 'Orientation', volum.GetOrientation()
print 'OrientationW', volum.GetOrientationWXYZ()
print 'Position', volum.GetPosition()
print 'Center', volum.GetCenter()
print 'Get XRange', volum.GetXRange()
print 'Get YRange', volum.GetYRange()
print 'Get ZRange', volum.GetZRange()
print 'Volume data type', vol.dtype
return volum
def contour(vol,voxsz=(1.0,1.0,1.0),affine=None,levels=[50],colors=[np.array([1.0,0.0,0.0])],opacities=[0.5]):
''' Take a volume and draw surface contours for any any number of thresholds (levels) where every contour has its own
color and opacity
Parameters
----------------
vol : array, shape (N, M, K)
an array representing the volumetric dataset for which we will draw some beautiful contours .
voxsz : sequence of 3 floats
default (1., 1., 1.)
affine : not used here
levels : sequence of thresholds for the contours taken from image values
needs to be same datatype as vol
colors : array, shape (N,3) with the rgb values in where r,g,b belong to [0,1]
opacities : sequence of floats [0,1]
Returns
-----------
ass: assembly of actors
representing the contour surfaces
Examples
-------------
>>> import numpy as np
>>> from dipy.viz import fvtk
>>> A=np.zeros((10,10,10))
>>> A[3:-3,3:-3,3:-3]=1
>>> r=fvtk.ren()
>>> fvtk.add(r,fvtk.contour(A,levels=[1]))
>>> #fvtk.show(r)
'''
im = vtk.vtkImageData()
im.SetScalarTypeToUnsignedChar()
im.SetDimensions(vol.shape[0],vol.shape[1],vol.shape[2])
#im.SetOrigin(0,0,0)
#im.SetSpacing(voxsz[2],voxsz[0],voxsz[1])
im.AllocateScalars()
for i in range(vol.shape[0]):
for j in range(vol.shape[1]):
for k in range(vol.shape[2]):
im.SetScalarComponentFromFloat(i,j,k,0,vol[i,j,k])
ass=vtk.vtkAssembly()
#ass=[]
for (i,l) in enumerate(levels):
#print levels
skinExtractor = vtk.vtkContourFilter()
skinExtractor.SetInput(im)
skinExtractor.SetValue(0, l)
skinNormals = vtk.vtkPolyDataNormals()
skinNormals.SetInputConnection(skinExtractor.GetOutputPort())
skinNormals.SetFeatureAngle(60.0)
skinMapper = vtk.vtkPolyDataMapper()
skinMapper.SetInputConnection(skinNormals.GetOutputPort())
skinMapper.ScalarVisibilityOff()
skin = vtk.vtkActor()
skin.SetMapper(skinMapper)
skin.GetProperty().SetOpacity(opacities[i])
#print colors[i]
skin.GetProperty().SetColor(colors[i][0],colors[i][1],colors[i][2])
#skin.Update()
ass.AddPart(skin)
del skin
del skinMapper
del skinExtractor
#ass=ass+[skin]
return ass
def _cm2colors(colormap='Blues'):
'''
Colormaps from matplotlib
['Spectral', 'summer', 'RdBu', 'gist_earth', 'Set1', 'Set2', 'Set3', 'Dark2',
'hot', 'PuOr_r', 'PuBuGn_r', 'RdPu', 'gist_ncar_r', 'gist_yarg_r', 'Dark2_r',
'YlGnBu', 'RdYlBu', 'hot_r', 'gist_rainbow_r', 'gist_stern', 'cool_r', 'cool',
'gray', 'copper_r', 'Greens_r', 'GnBu', 'gist_ncar', 'spring_r', 'gist_rainbow',
'RdYlBu_r', 'gist_heat_r', 'OrRd_r', 'bone', 'gist_stern_r', 'RdYlGn', 'Pastel2_r',
'spring', 'Accent', 'YlOrRd_r', 'Set2_r', 'PuBu', 'RdGy_r', 'spectral', 'flag_r', 'jet_r',
'RdPu_r', 'gist_yarg', 'BuGn', 'Paired_r', 'hsv_r', 'YlOrRd', 'Greens', 'PRGn',
'gist_heat', 'spectral_r', 'Paired', 'hsv', 'Oranges_r', 'prism_r', 'Pastel2', 'Pastel1_r',
'Pastel1', 'gray_r', 'PuRd_r', 'Spectral_r', 'BuGn_r', 'YlGnBu_r', 'copper',
'gist_earth_r', 'Set3_r', 'OrRd', 'PuBu_r', 'winter_r', 'jet', 'bone_r', 'BuPu',
'Oranges', 'RdYlGn_r', 'PiYG', 'YlGn', 'binary_r', 'gist_gray_r', 'BuPu_r',
'gist_gray', 'flag', 'RdBu_r', 'BrBG', 'Reds', 'summer_r', 'GnBu_r', 'BrBG_r',
'Reds_r', 'RdGy', 'PuRd', 'Accent_r', 'Blues', 'Greys', 'autumn', 'PRGn_r', 'Greys_r',
'pink', 'binary', 'winter', 'pink_r', 'prism', 'YlOrBr', 'Purples_r', 'PiYG_r', 'YlGn_r',
'Blues_r', 'YlOrBr_r', 'Purples', 'autumn_r', 'Set1_r', 'PuOr', 'PuBuGn']
'''
try:
from pylab import cm
except ImportError:
ImportError('pylab is not installed')
blue=cm.datad[colormap]['blue']
blue1=[b[0] for b in blue]
blue2=[b[1] for b in blue]
red=cm.datad[colormap]['red']
red1=[b[0] for b in red]
red2=[b[1] for b in red]
green=cm.datad[colormap]['green']
green1=[b[0] for b in green]
green2=[b[1] for b in green]
return red1,red2,green1,green2,blue1,blue2
def colors(v,colormap,auto=True):
''' Create colors from a specific colormap and return it
as an array of shape (N,3) where every row gives the corresponding
r,g,b value. The colormaps we use are similar with that of pylab.
Current options for colormaps are 'jet','blues','blue_red', 'accent'
Notes
-------
If you want to add more colormaps here is what you could do. Go to
this website http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps
see which colormap you need and then get in pylab using the cm.datad
dictionary.
e.g. cm.datad['jet']
{'blue': ((0.0, 0.5, 0.5),
(0.11, 1, 1),
(0.34000000000000002, 1, 1),
(0.65000000000000002, 0, 0),
(1, 0, 0)),
'green': ((0.0, 0, 0),
(0.125, 0, 0),
(0.375, 1, 1),
(0.64000000000000001, 1, 1),
(0.91000000000000003, 0, 0),
(1, 0, 0)),
'red': ((0.0, 0, 0),
(0.34999999999999998, 0, 0),
(0.66000000000000003, 1, 1),
(0.89000000000000001, 1, 1),
(1, 0.5, 0.5))}
'''
if v.ndim>1:
ValueError('This function works only with 1d arrays. Use ravel()')
if auto:
v=np.interp(v,[v.min(),v.max()],[0,1])
else:
v=np.interp(v,[0,1],[0,1])
if colormap=='jet':
#print 'jet'
red=np.interp(v,[0,0.35,0.66,0.89,1],[0,0,1,1,0.5])
green=np.interp(v,[0,0.125,0.375,0.64,0.91,1],[0,0,1,1,0,0])
blue=np.interp(v,[0,0.11,0.34,0.65,1],[0.5,1,1,0,0])
if colormap=='blues':
#cm.datad['Blues']
#print 'blues'
red=np.interp(v,[0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0],[0.96862745285,0.870588243008,0.776470601559,0.61960786581,0.419607847929,0.258823543787,0.129411771894,0.0313725508749,0.0313725508749])
green=np.interp(v,[0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0],[0.984313726425,0.921568632126,0.858823537827,0.792156875134,0.68235296011,0.572549045086,0.443137258291,0.317647069693,0.188235297799])
blue=np.interp(v,[0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0] , [1.0,0.96862745285,0.937254905701,0.882352948189,0.839215695858,0.776470601559,0.709803938866,0.611764729023,0.419607847929])
if colormap=='blue_red':
#print 'blue_red'
#red=np.interp(v,[],[])
red=np.interp(v,[0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0],[0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0])
green=np.zeros(red.shape)
blue=np.interp(v,[0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0],[1.0,0.875,0.75,0.625,0.5,0.375,0.25,0.125,0.0])
blue=green
if colormap=='accent':
#print 'accent'
red=np.interp(v,[0.0, 0.14285714285714285, 0.2857142857142857, 0.42857142857142855, 0.5714285714285714, 0.7142857142857143, 0.8571428571428571,1.0],
[0.49803921580314636, 0.7450980544090271, 0.99215686321258545, 1.0, 0.21960784494876862, 0.94117647409439087, 0.74901962280273438, 0.40000000596046448])
green=np.interp(v,[0.0, 0.14285714285714285, 0.2857142857142857, 0.42857142857142855, 0.5714285714285714, 0.7142857142857143, 0.8571428571428571, 1.0],
[0.78823530673980713, 0.68235296010971069, 0.75294119119644165,1.0, 0.42352941632270813, 0.0078431377187371254, 0.35686275362968445, 0.40000000596046448])
blue=np.interp(v,[0.0, 0.14285714285714285, 0.2857142857142857, 0.42857142857142855, 0.5714285714285714, 0.7142857142857143, 0.8571428571428571, 1.0],
[0.49803921580314636, 0.83137255907058716, 0.52549022436141968, 0.60000002384185791, 0.69019609689712524, 0.49803921580314636, 0.090196080505847931, 0.40000000596046448])
return np.vstack((red,green,blue)).T
def tube(point1=(0,0,0),point2=(1,0,0),color=(1,0,0),opacity=1,radius=0.1,capson=1,specular=1,sides=8):
''' Deprecated
Wrap a tube around a line connecting point1 with point2 with a specific radius
'''
points = vtk.vtkPoints()
points.InsertPoint(0,point1[0],point1[1],point1[2])
points.InsertPoint(1,point2[0],point2[1],point2[2])
lines=vtk.vtkCellArray()
lines.InsertNextCell(2)
lines.InsertCellPoint(0)
lines.InsertCellPoint(1)
profileData=vtk.vtkPolyData()
profileData.SetPoints(points)
profileData.SetLines(lines)
# Add thickness to the resulting line.
profileTubes = vtk.vtkTubeFilter()
profileTubes.SetNumberOfSides(sides)
profileTubes.SetInput(profileData)
profileTubes.SetRadius(radius)
if capson:
profileTubes.SetCapping(1)
else:
profileTubes.SetCapping(0)
profileMapper = vtk.vtkPolyDataMapper()
profileMapper.SetInputConnection(profileTubes.GetOutputPort())
profile = vtk.vtkActor()
profile.SetMapper(profileMapper)
profile.GetProperty().SetDiffuseColor(color)
profile.GetProperty().SetSpecular(specular)
profile.GetProperty().SetSpecularPower(30)
profile.GetProperty().SetOpacity(opacity)
return profile
def _closest_track(p,tracks):
''' Return the index of the closest track from tracks to point p
'''
d=[]
#enumt= enumerate(tracks)
for (ind,t) in enumerate(tracks):
for i in range(len(t[:-1])):
d.append((ind, np.sqrt(np.sum(np.cross((p-t[i]),(p-t[i+1]))**2))/np.sqrt(np.sum((t[i+1]-t[i])**2))))
d=np.array(d)
imin=d[:,1].argmin()
return int(d[imin,0])
def crossing(a,ind,sph,scale,orient=False):
""" visualize a volume of crossings
Examples
----------
See 'dipy/doc/examples/visualize_crossings.py' at :ref:`examples`
"""
T=[]
Tor=[]
if a.ndim == 4 or a.ndim ==3:
x,y,z=ind.shape[:3]
for pos in np.ndindex(x,y,z):
i,j,k=pos
pos_=np.array(pos)
ind_=ind[i,j,k]
a_=a[i,j,k]
try:
len(ind_)
except TypeError:
ind_=[ind_]
a_=[a_]
for (i,_i) in enumerate(ind_):
T.append(pos_ + scale*a_[i]*np.vstack((sph[_i],-sph[_i])))
if orient:
Tor.append(sph[_i])
if a.ndim == 1:
for (i,_i) in enumerate(ind):
T.append(scale*a[i]*np.vstack((sph[_i],-sph[_i])))
if orient:
Tor.append(sph[_i])
if orient:
return T,Tor
return T
def slicer(ren,vol,voxsz=(1.0,1.0,1.0),affine=None,contours=1,planes=1,levels=[20,30,40],opacities=[0.8,0.7,0.3],colors=None,planesx=[20,30],planesy=[30,40],planesz=[20,30]):
''' Slicer and contour rendering of 3d volumes
Parameters
----------------
vol : array, shape (N, M, K), dtype uint8
an array representing the volumetric dataset that we want to visualize using volumetric rendering
voxsz : sequence of 3 floats
default (1., 1., 1.)
affine : array, shape (4,4), default None
as given by volumeimages
contours : bool 1 to show contours
planes : boolean 1 show planes
levels : contour levels
opacities : opacity for every contour level
colors : None or
planesx : saggital
planesy : coronal
planesz : axial
Examples
--------------
>>> import numpy as np
>>> from dipy.viz import fvtk
>>> x, y, z = np.ogrid[-10:10:80j, -10:10:80j, -10:10:80j]
>>> s = np.sin(x*y*z)/(x*y*z)
>>> r=fvtk.ren()
>>> #fvtk.slicer(r,s) #does showing too
'''
vol=np.interp(vol,xp=[vol.min(),vol.max()],fp=[0,255])
vol=vol.astype('uint8')
im = vtk.vtkImageData()
im.SetScalarTypeToUnsignedChar()
im.SetDimensions(vol.shape[0],vol.shape[1],vol.shape[2])
#im.SetOrigin(0,0,0)
im.SetSpacing(voxsz[2],voxsz[0],voxsz[1])
im.AllocateScalars()
for i in range(vol.shape[0]):
for j in range(vol.shape[1]):
for k in range(vol.shape[2]):
im.SetScalarComponentFromFloat(i,j,k,0,vol[i,j,k])
Contours=[]
for le in levels:
# An isosurface, or contour value of 500 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
skinExtractor = vtk.vtkContourFilter()
#skinExtractor.SetInputConnection(im.GetOutputPort())
skinExtractor.SetInput(im)
skinExtractor.SetValue(0, le)
skinNormals = vtk.vtkPolyDataNormals()
skinNormals.SetInputConnection(skinExtractor.GetOutputPort())
skinNormals.SetFeatureAngle(60.0)
skinStripper = vtk.vtkStripper()
skinStripper.SetInputConnection(skinNormals.GetOutputPort())
skinMapper = vtk.vtkPolyDataMapper()
skinMapper.SetInputConnection(skinStripper.GetOutputPort())
skinMapper.ScalarVisibilityOff()
skin = vtk.vtkActor()
skin.SetMapper(skinMapper)
if colors==None:
skin.GetProperty().SetDiffuseColor(1, .49, .25)
else:
colorskin=colors[le]
skin.GetProperty().SetDiffuseColor(colorskin[0], colorskin[1], colorskin[2])
skin.GetProperty().SetSpecular(.3)
skin.GetProperty().SetSpecularPower(20)
Contours.append(skin)
# An outline provides context around the data.
outlineData = vtk.vtkOutlineFilter()
#outlineData.SetInputConnection(im.GetOutputPort())
outlineData.SetInput(im)
mapOutline = vtk.vtkPolyDataMapper()
mapOutline.SetInputConnection(outlineData.GetOutputPort())
outline = vtk.vtkActor()
outline.SetMapper(mapOutline)
outline.GetProperty().SetColor(1, 0, 0)
# Now we are creating three orthogonal planes passing through the
# volume. Each plane uses a different texture map and therefore has
# diferent coloration.
# Start by creatin a black/white lookup table.
lut = vtk.vtkLookupTable()
lut.SetTableRange(vol.min(), vol.max())
lut.SetSaturationRange(0, 0)
lut.SetHueRange(0, 0)
lut.SetValueRange(0, 1)
lut.SetRampToLinear()
lut.Build()
x1,x2,y1,y2,z1,z2=im.GetExtent()
#print x1,x2,y1,y2,z1,z2
# Create the first of the three planes. The filter vtkImageMapToColors
# maps the data through the corresponding lookup table created above.
# The vtkImageActor is a type of vtkProp and conveniently displays an
# image on a single quadrilateral plane. It does this using texture
# mapping and as a result is quite fast. (Note: the input image has to
# be unsigned char values, which the vtkImageMapToColors produces.)
# Note also that by specifying the DisplayExtent, the pipeline
# requests data of this extent and the vtkImageMapToColors only
# processes a slice of data.
planeColors = vtk.vtkImageMapToColors()
#saggitalColors.SetInputConnection(im.GetOutputPort())
planeColors.SetInput(im)
planeColors.SetLookupTable(lut)
planeColors.Update()
saggitals=[]
for x in planesx:
saggital = vtk.vtkImageActor()
saggital.SetInput(planeColors.GetOutput())
saggital.SetDisplayExtent(x,x,y1,y2,z1,z2)
saggitals.append(saggital)
axials=[]
for z in planesz:
axial = vtk.vtkImageActor()
axial.SetInput(planeColors.GetOutput())
axial.SetDisplayExtent(x1, x2, y1, y2, z, z)
axials.append(axial)
coronals=[]
for y in planesy:
coronal = vtk.vtkImageActor()
coronal.SetInput(planeColors.GetOutput())
coronal.SetDisplayExtent(x1, x2, y, y, z1, z2)
coronals.append(coronal)
# It is convenient to create an initial view of the data. The FocalPoint
# and Position form a vector direction. Later on (ResetCamera() method)
# this vector is used to position the camera to look at the data in
# this direction.
aCamera = vtk.vtkCamera()
aCamera.SetViewUp(0, 0, -1)
aCamera.SetPosition(0, 1, 0)
aCamera.SetFocalPoint(0, 0, 0)
aCamera.ComputeViewPlaneNormal()
#saggital.SetOpacity(0.1)
# Actors are added to the renderer.
ren.AddActor(outline)
if planes:
for sag in saggitals:
ren.AddActor(sag)
for ax in axials:
ren.AddActor(ax)
for cor in coronals:
ren.AddActor(cor)
if contours:
cnt=0
for actor in Contours:
actor.GetProperty().SetOpacity(opacities[cnt])
ren.AddActor(actor)
cnt+=1
# Turn off bone for this example.
#bone.VisibilityOff()
# Set skin to semi-transparent.
# An initial camera view is created. The Dolly() method moves
# the camera towards the FocalPoint, thereby enlarging the image.
ren.SetActiveCamera(aCamera)
ren.ResetCamera()
aCamera.Dolly(1.5)
# Set a background color for the renderer and set the size of the
# render window (expressed in pixels).
ren.SetBackground(0, 0, 0)
#renWin.SetSize(640, 480)
# Note that when camera movement occurs (as it does in the Dolly()
# method), the clipping planes often need adjusting. Clipping planes
# consist of two planes: near and far along the view direction. The
# near plane clips out objects in front of the plane the far plane
# clips out objects behind the plane. This way only what is drawn
# between the planes is actually rendered.
#ren.ResetCameraClippingRange()
#return ren
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
ren.ResetCameraClippingRange()
# Interact with the data.
iren.Initialize()
renWin.Render()
iren.Start()
def annotatePick(object, event):
''' Create a Python function to create the text for the
text mapper used to display the results of picking.
'''
global picker, textActor, textMapper,track_buffer
if picker.GetCellId() < 0:
textActor.VisibilityOff()
else:
if len(track_buffer)!=0:
selPt = picker.GetSelectionPoint()
pickPos = picker.GetPickPosition()
closest=_closest_track(np.array([pickPos[0],pickPos[1],pickPos[2]]),track_buffer)
textMapper.SetInput("(%.6f, %.6f, %.6f)"%pickPos)
textActor.SetPosition(selPt[:2])
textActor.VisibilityOn()
label(tmp_ren,text=str(ind_buffer[closest]),pos=(track_buffer[closest][0][0],track_buffer[closest][0][1],track_buffer[closest][0][2]))
tmp_ren.AddActor(line(track_buffer[closest],golden,opacity=1))
def show(ren,title='dipy.viz.fvtk',size=(300,300),png_magnify=1):
''' Show window
Notes
------
To save a screenshot press 's' and check your current directory for ``fvtk.png``
Parameters
------------
ren : vtkRenderer() object
as returned from function ren()
title : string
a string for the window title bar
size : (int, int)
(width,height) of the window
png_magnify : int
number of times to magnify the screenshot
Notes
-------
If you want to:
* navigate in the the 3d world use the left - middle - right mouse buttons
* reset the screen press 'r'
* save a screenshot press 's'
* quit press 'q'
See also
---------
dipy.viz.fvtk.record
Examples
----------
>>> import numpy as np
>>> from dipy.viz import fvtk
>>> r=fvtk.ren()
>>> lines=[np.random.rand(10,3),np.random.rand(20,3)]
>>> colors=np.array([[0.2,0.2,0.2],[0.8,0.8,0.8]])
>>> c=fvtk.line(lines,colors)
>>> fvtk.add(r,c)
>>> l=fvtk.label(r)
>>> fvtk.add(r,l)
>>> #fvtk.show(r)
See also
----------
dipy.viz.fvtk.record
'''
ren.AddActor2D(textActor)
ren.ResetCamera()
window = vtk.vtkRenderWindow()
window.AddRenderer(ren)
window.SetWindowName(title)
window.SetSize(size[0],size[1])
style=vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(window)
iren.SetPicker(picker)
def key_press(obj,event):
key = obj.GetKeySym()
if key=='s' or key=='S':
print('Saving image...')
renderLarge = vtk.vtkRenderLargeImage()
renderLarge.SetInput(ren)
renderLarge.SetMagnification(png_magnify)
renderLarge.Update()
writer = vtk.vtkPNGWriter()
writer.SetInputConnection(renderLarge.GetOutputPort())
writer.SetFileName('fvtk.png')
writer.Write()
print('Look for fvtk.png in your current dir.')
iren.AddObserver('KeyPressEvent',key_press)
iren.SetInteractorStyle(style)
iren.Initialize()
picker.Pick(85, 126, 0, ren)
window.Render()
iren.Start()
def record(ren=None,cam_pos=None,cam_focal=None,cam_view=None,out_path=None,n_frames=10, az_ang=10, magnification=1,size=(300,300),bgr_color=(0,0,0)):
''' This will record a video of your scene
Records a video as a series of .png files of your scene by rotating the
azimuth angle az_angle in every frame.
Parameters
-----------
ren : vtkRenderer() object
as returned from function ren()
cam_pos : None or sequence (3,), optional
camera position
cam_focal : None or sequence (3,), optional
camera focal point
cam_view : None or sequence (3,), optional
camera view up
out_path : str, optional
output directory for the frames
n_frames : int, optional
number of frames to save, default 10
az_ang : float, optional
azimuthal angle of camera rotation.
magnification : int, optional
how much to magnify the saved frame
Examples
---------
>>> from dipy.viz import fvtk
>>> r=fvtk.ren()
>>> a=fvtk.axes()
>>> from dipy.viz import fvtk
>>> r=fvtk.ren()
>>> fvtk.add(r,fvtk.axes())
>>> #uncomment below to record
>>> #fvtk.record(r,cam_pos=(0,0,-10))
'''
if ren==None:
ren = vtk.vtkRenderer()
ren.SetBackground(bgr_color)
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
renWin.SetSize(size[0],size[1])
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
#ren.GetActiveCamera().Azimuth(180)
'''
# We'll set up the view we want.
ren.GetActiveCamera().SetPosition(0, 1, 0)
ren.GetActiveCamera().SetFocalPoint(0, 0, 0)
ren.GetActiveCamera().SetViewUp(0, 0, 1)
# Let the renderer compute a good position and focal point.
ren.ResetCamera()
ren.GetActiveCamera().Dolly(1.4)
ren.ResetCameraClippingRange()
'''
ren.ResetCamera()
renderLarge = vtk.vtkRenderLargeImage()
renderLarge.SetInput(ren)
renderLarge.SetMagnification(magnification)
renderLarge.Update()
writer = vtk.vtkPNGWriter()
ang=0
if cam_pos!=None:
cx,cy,cz=cam_pos
ren.GetActiveCamera().SetPosition(cx,cy,cz)
if cam_focal!=None:
fx,fy,fz=cam_focal
ren.GetActiveCamera().SetFocalPoint(fx,fy,fz)
if cam_view!=None:
ux,uy,uz=cam_view
ren.GetActiveCamera().SetViewUp(ux, uy, uz)
cam=ren.GetActiveCamera()
print('------------------------------------')
print('Camera Position (%.2f,%.2f,%.2f)' % cam.GetPosition())
print('Camera Focal Point (%.2f,%.2f,%.2f)' % cam.GetFocalPoint())
print('Camera View Up (%.2f,%.2f,%.2f)' % cam.GetViewUp())
print('------------------------------------')
for i in range(n_frames):
ren.GetActiveCamera().Azimuth(ang)
renderLarge = vtk.vtkRenderLargeImage()
renderLarge.SetInput(ren)
renderLarge.SetMagnification(magnification)
renderLarge.Update()
writer.SetInputConnection(renderLarge.GetOutputPort())
#filename='/tmp/'+str(3000000+i)+'.png'
if out_path==None:
filename=str(1000000+i)+'.png'
else:
filename=out_path+str(1000000+i)+'.png'
writer.SetFileName(filename)
writer.Write()
ang=+az_ang
if __name__ == "__main__":
pass
|