/usr/share/pyshared/dipy/reconst/dti.py is in python-dipy 0.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 | #!/usr/bin/python
""" Classes and functions for fitting tensors """
# 5/17/2010
import numpy as np
from dipy.reconst.maskedview import MaskedView, _makearray, _filled
from dipy.reconst.modelarray import ModelArray
from dipy.data import get_sphere
class Tensor(ModelArray):
""" Fits a diffusion tensor given diffusion-weighted signals and gradient info
Tensor object that when initialized calculates single self diffusion
tensor [1]_ in each voxel using selected fitting algorithm
(DEFAULT: weighted least squares [2]_)
Requires a given gradient table, b value for each diffusion-weighted
gradient vector, and image data given all as arrays.
Parameters
----------
data : array ([X, Y, Z, ...], g)
Diffusion-weighted signals. The dimension corresponding to the
diffusion weighting must be the last dimenssion
bval : array (g,)
Diffusion weighting factor b for each vector in gtab.
gtab : array (g, 3)
Diffusion gradient table found in DICOM header as a array.
mask : array, optional
The tensor will only be fit where mask is True. Mask must must
broadcast to the shape of data and must have fewer dimensions than data
thresh : float, default = None
The tensor will not be fit where data[bval == 0] < thresh. If multiple
b0 volumes are given, the minimum b0 signal is used.
fit_method : funciton or string, default = 'WLS'
The method to be used to fit the given data to a tensor. Any function
that takes the B matrix and the data and returns eigen values and eigen
vectors can be passed as the fit method. Any of the common fit methods
can be passed as a string.
*args, **kargs :
Any other arguments or keywards will be passed to fit_method.
common fit methods:
'WLS' : weighted least squares
dti.wls_fit_tensor
'LS' : ordinary least squares
dti.ols_fit_tensor
Attributes
----------
D : array (..., 3, 3)
Self diffusion tensor calculated from cached eigenvalues and
eigenvectors.
mask : array
True in voxels where a tensor was fit, false if the voxel was skipped
B : array (g, 7)
Design matrix or B matrix constructed from given gradient table and
b-value vector.
evals : array (..., 3)
Cached eigenvalues of self diffusion tensor for given index.
(eval1, eval2, eval3)
evecs : array (..., 3, 3)
Cached associated eigenvectors of self diffusion tensor for given
index. Note: evals[..., j] is associated with evecs[..., :, j]
Methods
-------
fa : array
Calculates fractional anisotropy [2]_.
md : array
Calculates the mean diffusivity [2]_.
Note: [units ADC] ~ [units b value]*10**-1
See Also
--------
dipy.io.bvectxt.read_bvec_file, dipy.core.qball.ODF
Notes
-----
Due to the fact that diffusion MRI entails large volumes (e.g. [256,256,
50,64]), memory can be an issue. Therefore, only the following parameters
of the self diffusion tensor are cached for each voxel:
- All three eigenvalues
- Primary and secondary eigenvectors
From these cached parameters, one can presumably construct any desired
parameter.
References
----------
.. [1] Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of
the effective self-diffusion tensor from the NMR spin echo. J Magn
Reson B 103, 247-254.
.. [2] Basser, P., Pierpaoli, C., 1996. Microstructural and physiological
features of tissues elucidated by quantitative diffusion-tensor MRI.
Journal of Magnetic Resonance 111, 209-219.
Examples
----------
For a complete example have a look at the main dipy/examples folder
"""
### Eigenvalues Property ###
@property
def evals(self):
"""
Returns the eigenvalues of the tensor as an array
"""
return _filled(self.model_params[..., :3])
### Eigenvectors Property ###
@property
def evecs(self):
"""
Returns the eigenvectors of teh tensor as an array
"""
evecs = _filled(self.model_params[..., 3:])
return evecs.reshape(self.shape + (3, 3))
def __init__(self, data, b_values, grad_table, mask=True, thresh=None,
fit_method='WLS', verbose=False, *args, **kargs):
"""
Fits a tensors to diffusion weighted data.
"""
if not callable(fit_method):
try:
fit_method = common_fit_methods[fit_method]
except KeyError:
raise ValueError('"'+str(fit_method)+'" is not a known fit '+
'method, the fit method should either be a '+
'function or one of the common fit methods')
#64 bit design matrix makes for faster pinv
B = design_matrix(grad_table.T, b_values)
self.B = B
mask = np.atleast_1d(mask)
if thresh is not None:
#Define total mask from thresh and mask
#mask = mask & (np.min(data[..., b_values == 0], -1) >
#thresh)
#the assumption that the lowest b_value is always 0 is
#incorrect the lowest b_value could also be higher than 0
#this is common with grid q-spaces
min_b0_sig = np.min(data[..., b_values == b_values.min()], -1)
mask = mask & (min_b0_sig > thresh)
#if mask is all False
if not mask.any():
raise ValueError('between mask and thresh, there is no data to '+
'fit')
#and the mask is not all True
if not mask.all():
#leave only data[mask is True]
data = data[mask]
data = MaskedView(mask, data)
#Perform WLS fit on masked data
dti_params = fit_method(B, data, *args, **kargs)
self.model_params = dti_params
### Self Diffusion Tensor Property ###
def _getD(self):
evals = self.evals
evecs = self.evecs
evals_flat = evals.reshape((-1, 3))
evecs_flat = evecs.reshape((-1, 3, 3))
D_flat = np.empty(evecs_flat.shape)
for L, Q, D in zip(evals_flat, evecs_flat, D_flat):
D[:] = np.dot(Q*L, Q.T)
return D_flat.reshape(evecs.shape)
D = property(_getD, doc = "Self diffusion tensor")
def fa(self):
r"""
Fractional anisotropy (FA) calculated from cached eigenvalues.
Returns
---------
fa : array (V, 1)
Calculated FA. Note: range is 0 <= FA <= 1.
Notes
--------
FA is calculated with the following equation:
.. math::
FA = \sqrt{\frac{1}{2}\frac{(\lambda_1-\lambda_2)^2+(\lambda_1-
\lambda_3)^2+(\lambda_2-lambda_3)^2}{\lambda_1^2+
\lambda_2^2+\lambda_3^2} }
"""
evals, wrap = _makearray(self.model_params[..., :3])
ev1 = evals[..., 0]
ev2 = evals[..., 1]
ev3 = evals[..., 2]
fa = np.sqrt(0.5 * ((ev1 - ev2)**2 + (ev2 - ev3)**2 + (ev3 - ev1)**2)
/ (ev1*ev1 + ev2*ev2 + ev3*ev3))
fa = wrap(np.asarray(fa))
return _filled(fa)
def md(self):
r"""
Mean diffusitivity (MD) calculated from cached eigenvalues.
Returns
---------
md : array (V, 1)
Calculated MD.
Notes
--------
MD is calculated with the following equation:
.. math::
ADC = \frac{\lambda_1+\lambda_2+\lambda_3}{3}
"""
#adc/md = (ev1+ev2+ev3)/3
return self.evals.mean(-1)
def ind(self):
''' Quantizes eigenvectors with maximum eigenvalues on an
evenly distributed sphere so that the can be used for tractography.
Returns
---------
IN : array, shape(x,y,z) integer indices for the points of the
evenly distributed sphere representing tensor eigenvectors of
maximum eigenvalue
'''
return quantize_evecs(self.evecs,odf_vertices=None)
def wls_fit_tensor(design_matrix, data, min_signal=1):
r"""
Computes weighted least squares (WLS) fit to calculate self-diffusion
tensor using a linear regression model [1]_.
Parameters
----------
design_matrix : array (g, 7)
Design matrix holding the covariants used to solve for the regression
coefficients.
data : array ([X, Y, Z, ...], g)
Data or response variables holding the data. Note that the last
dimension should contain the data. It makes no copies of data.
min_signal : default = 1
All values below min_signal are repalced with min_signal. This is done
in order to avaid taking log(0) durring the tensor fitting.
Returns
-------
eigvals : array (..., 3)
Eigenvalues from eigen decomposition of the tensor.
eigvecs : array (..., 3, 3)
Associated eigenvectors from eigen decomposition of the tensor.
Eigenvectors are columnar (e.g. eigvecs[:,j] is associated with
eigvals[j])
See Also
--------
decompose_tensor
Notes
-----
In Chung, et al. 2006, the regression of the WLS fit needed an unbiased
preliminary estimate of the weights and therefore the ordinary least
squares (OLS) estimates were used. A "two pass" method was implemented:
1. calculate OLS estimates of the data
2. apply the OLS estimates as weights to the WLS fit of the data
This ensured heteroscadasticity could be properly modeled for various
types of bootstrap resampling (namely residual bootstrap).
.. math::
y = \mathrm{data} \\
X = \mathrm{design matrix} \\
\hat{\beta}_\mathrm{WLS} = \mathrm{desired regression coefficients (e.g. tensor)}\\
\\
\hat{\beta}_\mathrm{WLS} = (X^T W X)^{-1} X^T W y \\
\\
W = \mathrm{diag}((X \hat{\beta}_\mathrm{OLS})^2),
\mathrm{where} \hat{\beta}_\mathrm{OLS} = (X^T X)^{-1} X^T y
References
----------
.. _[1] Chung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap
approaches for estimation of uncertainties of DTI parameters.
NeuroImage 33, 531-541.
"""
if min_signal <= 0:
raise ValueError('min_signal must be > 0')
data, wrap = _makearray(data)
data_flat = data.reshape((-1, data.shape[-1]))
dti_params = np.empty((len(data_flat), 4, 3))
#obtain OLS fitting matrix
#U,S,V = np.linalg.svd(design_matrix, False)
#math: beta_ols = inv(X.T*X)*X.T*y
#math: ols_fit = X*beta_ols*inv(y)
#ols_fit = np.dot(U, U.T)
ols_fit = _ols_fit_matrix(design_matrix)
for param, sig in zip(dti_params, data_flat):
param[0], param[1:] = _wls_iter(ols_fit, design_matrix, sig,
min_signal=min_signal)
dti_params.shape = data.shape[:-1]+(12,)
dti_params = wrap(dti_params)
return dti_params
def _wls_iter(ols_fit, design_matrix, sig, min_signal=1):
'''
Function used by wls_fit_tensor for later optimization.
'''
sig = np.maximum(sig, min_signal) #throw out zero signals
log_s = np.log(sig)
w = np.exp(np.dot(ols_fit, log_s))
D = np.dot(np.linalg.pinv(design_matrix*w[:,None]), w*log_s)
tensor = _full_tensor(D)
return decompose_tensor(tensor)
def _ols_iter(inv_design, sig, min_signal=1):
'''
Function used by ols_fit_tensor for later optimization.
'''
sig = np.maximum(sig, min_signal) #throw out zero signals
log_s = np.log(sig)
D = np.dot(inv_design, log_s)
tensor = _full_tensor(D)
return decompose_tensor(tensor)
def ols_fit_tensor(design_matrix, data, min_signal=1):
r"""
Computes ordinary least squares (OLS) fit to calculate self-diffusion
tensor using a linear regression model [1]_.
Parameters
----------
design_matrix : array (g, 7)
Design matrix holding the covariants used to solve for the regression
coefficients. Use design_matrix to build a valid design matrix from
bvalues and a gradient table.
data : array ([X, Y, Z, ...], g)
Data or response variables holding the data. Note that the last
dimension should contain the data. It makes no copies of data.
min_signal : default = 1
All values below min_signal are repalced with min_signal. This is done
in order to avaid taking log(0) durring the tensor fitting.
Returns
-------
eigvals : array (..., 3)
Eigenvalues from eigen decomposition of the tensor.
eigvecs : array (..., 3, 3)
Associated eigenvectors from eigen decomposition of the tensor.
Eigenvectors are columnar (e.g. eigvecs[:,j] is associated with
eigvals[j])
See Also
--------
WLS_fit_tensor, decompose_tensor, design_matrix
Notes
-----
This function is offered mainly as a quick comparison to WLS.
.. math::
y = \mathrm{data} \\
X = \mathrm{design matrix} \\
\hat{\beta}_\mathrm{OLS} = (X^T X)^{-1} X^T y
References
----------
.. [1] Chung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap
approaches for estimation of uncertainties of DTI parameters.
NeuroImage 33, 531-541.
"""
data, wrap = _makearray(data)
data_flat = data.reshape((-1, data.shape[-1]))
evals = np.empty((len(data_flat), 3))
evecs = np.empty((len(data_flat), 3, 3))
dti_params = np.empty((len(data_flat), 4, 3))
#obtain OLS fitting matrix
#U,S,V = np.linalg.svd(design_matrix, False)
#math: beta_ols = inv(X.T*X)*X.T*y
#math: ols_fit = X*beta_ols*inv(y)
#ols_fit = np.dot(U, U.T)
inv_design = np.linalg.pinv(design_matrix)
for param, sig in zip(dti_params, data_flat):
param[0], param[1:] = _ols_iter(inv_design, sig, min_signal)
dti_params.shape = data.shape[:-1]+(12,)
dti_params = wrap(dti_params)
return dti_params
def _ols_fit_matrix(design_matrix):
"""
Helper function to calculate the ordinary least squares (OLS)
fit as a matrix multiplication. Mainly used to calculate WLS weights. Can
be used to calculate regression coefficients in OLS but not recommended.
See Also:
---------
wls_fit_tensor, ols_fit_tensor
Example:
--------
ols_fit = _ols_fit_matrix(design_mat)
ols_data = np.dot(ols_fit, data)
"""
U,S,V = np.linalg.svd(design_matrix, False)
return np.dot(U, U.T)
def _full_tensor(D):
"""
Returns a tensor given the six unique tensor elements
Given the six unique tensor elments (in the order: Dxx, Dyy, Dzz, Dxy, Dxz,
Dyz) returns a 3 by 3 tensor. All elements after the sixth are ignored.
"""
tensor = np.empty((3,3),dtype=D.dtype)
tensor[0, 0] = D[0] #Dxx
tensor[1, 1] = D[1] #Dyy
tensor[2, 2] = D[2] #Dzz
tensor[1, 0] = tensor[0, 1] = D[3] #Dxy
tensor[2, 0] = tensor[0, 2] = D[4] #Dxz
tensor[2, 1] = tensor[1, 2] = D[5] #Dyz
return tensor
def _compact_tensor(tensor, b0=1):
"""
Returns the six unique values of the tensor and a dummy value in the order
expected by the design matrix
"""
D = np.empty(tensor.shape[:-2] + (7,))
row = [0, 1, 2, 1, 2, 2]
colm = [0, 1, 2, 0, 0, 1]
D[..., :6] = tensor[..., row, colm]
D[..., 6] = np.log(b0)
return D
def decompose_tensor(tensor):
"""
Returns eigenvalues and eigenvectors given a diffusion tensor
Computes tensor eigen decomposition to calculate eigenvalues and
eigenvectors of self-diffusion tensor. (Basser et al., 1994a)
Parameters
----------
D : array (3,3)
array holding a tensor. Assumes D has units on order of
~ 10^-4 mm^2/s
Returns
-------
eigvals : array (3,)
Eigenvalues from eigen decomposition of the tensor. Negative
eigenvalues are replaced by zero. Sorted from largest to smallest.
eigvecs : array (3,3)
Associated eigenvectors from eigen decomposition of the tensor.
Eigenvectors are columnar (e.g. eigvecs[:,j] is associated with
eigvals[j])
See Also
--------
numpy.linalg.eig
"""
#outputs multiplicity as well so need to unique
eigenvals, eigenvecs = np.linalg.eig(tensor)
#need to sort the eigenvalues and associated eigenvectors
order = eigenvals.argsort()[::-1]
eigenvecs = eigenvecs[:, order]
eigenvals = eigenvals[order]
#Forcing negative eigenvalues to 0
eigenvals = np.maximum(eigenvals, 0)
# b ~ 10^3 s/mm^2 and D ~ 10^-4 mm^2/s
# eigenvecs: each vector is columnar
return eigenvals, eigenvecs
def design_matrix(gtab, bval, dtype=None):
"""
Constructs design matrix for DTI weighted least squares or least squares
fitting. (Basser et al., 1994a)
Parameters
----------
gtab : array with shape (3,g)
Diffusion gradient table found in DICOM header as a numpy array.
bval : array with shape (g,)
Diffusion weighting factor b for each vector in gtab.
dtype : string
Parameter to control the dtype of returned designed matrix
Returns
-------
design_matrix : array (g,7)
Design matrix or B matrix assuming Gaussian distributed tensor model.
Note: design_matrix[j,:] = (Bxx,Byy,Bzz,Bxy,Bxz,Byz,dummy)
"""
G = gtab
B = np.zeros((bval.size, 7), dtype = G.dtype)
if gtab.shape[1] != bval.shape[0]:
raise ValueError('The number of b values and gradient directions must'
+' be the same')
B[:, 0] = G[0, :] * G[0, :] * 1. * bval #Bxx
B[:, 1] = G[1, :] * G[1, :] * 1. * bval #Byy
B[:, 2] = G[2, :] * G[2, :] * 1. * bval #Bzz
B[:, 3] = G[0, :] * G[1, :] * 2. * bval #Bxy
B[:, 4] = G[0, :] * G[2, :] * 2. * bval #Bxz
B[:, 5] = G[1, :] * G[2, :] * 2. * bval #Byz
B[:, 6] = np.ones(bval.size)
return -B
def quantize_evecs(evecs, odf_vertices=None):
''' Find the closest orientation of an evenly distributed sphere
Parameters
----------
evecs : ndarray
odf_vertices : None or ndarray
If None, then set vertices from symmetric362 sphere. Otherwise use
passed ndarray as vertices
Returns
-------
IN : ndarray
'''
max_evecs=evecs[...,:,0]
if odf_vertices==None:
odf_vertices, _ = get_sphere('symmetric362')
tup=max_evecs.shape[:-1]
mec=max_evecs.reshape(np.prod(np.array(tup)),3)
IN=np.array([np.argmin(np.dot(odf_vertices,m)) for m in mec])
IN=IN.reshape(tup)
return IN
common_fit_methods = {'WLS': wls_fit_tensor,
'LS': ols_fit_tensor}
|