/usr/share/pyshared/dipy/boots/resampling.py is in python-dipy 0.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | #!/usr/bin/python
#import modules
import time
import sys, os, traceback, optparse
import numpy as np
import scipy as sp
from copy import copy, deepcopy
import warnings
warnings.warn("This module is most likely to change both as a name and in structure in the future",FutureWarning)
def bs_se(bs_pdf):
"""
Calculates the bootstrap standard error estimate of a statistic
"""
N = len(bs_pdf)
return np.std(bs_pdf) * np.sqrt(N / (N - 1))
def bootstrap(x, statistic = bs_se, B = 1000, alpha = 0.95):
"""
Bootstrap resampling _[1] to accurately estimate the standard error and
confidence interval of a desired statistic of a probability distribution
function (pdf).
Parameters
------------
x : ndarray (N, 1)
Observable sample to resample. N should be reasonably large.
statistic : method (optional)
Method to calculate the desired statistic. (Default: calculate
bootstrap standard error)
B : integer (optional)
Total number of bootstrap resamples in bootstrap pdf. (Default: 1000)
alpha : float (optional)
Percentile for confidence interval of the statistic. (Default: 0.05)
Returns
---------
bs_pdf : ndarray (M, 1)
Jackknife probabilisty distribution function of the statistic.
se : float
Standard error of the statistic.
ci : ndarray (2, 1)
Confidence interval of the statistic.
See Also
-----------
numpy.std, numpy.random.random
Notes
--------
Bootstrap resampling is non parametric. It is quite powerful in
determining the standard error and the confidence interval of a sample
distribution. The key characteristics of bootstrap is:
1) uniform weighting among all samples (1/n)
2) resampling with replacement
In general, the sample size should be large to ensure accuracy of the
estimates. The number of bootstrap resamples should be large as well as
that will also influence the accuracy of the estimate.
References
----------
.. [1] Efron, B., 1979. 1977 Rietz lecture--Bootstrap methods--Another
look at the jackknife. Ann. Stat. 7, 1-26.
"""
N = len(x)
pdf_mask = np.ones((N,),dtype='int16')
bs_pdf = np.empty((B,))
for ii in range(0, B):
#resample with replacement
rand_index = np.int16(np.round(np.random.random(N) * (N - 1)))
bs_pdf[ii] = statistic(x[rand_index])
return bs_pdf, bs_se(bs_pdf), abc(x, statistic, alpha = alpha)
def abc(x, statistic = bs_se , alpha = 0.05, eps = 1e-5):
"""
Calculates the bootstrap confidence interval by approximating the BCa.
Parameters
----------
x : np.ndarray
Observed data (e.g. chosen gold standard estimate used for bootstrap)
statistic : method
Method to calculate the desired statistic given x and probability
proportions (flat probability densities vector)
alpha : float (0, 1)
Desired confidence interval initial endpoint (Default: 0.05)
eps : float (optional)
Specifies step size in calculating numerical derivative T' and
T''. Default: 1e-5
See Also
--------
__tt, __tt_dot, __tt_dot_dot, __calc_z0
Notes
-----
Unlike the BCa method of calculating the bootstrap confidence interval,
the ABC method is computationally less demanding (about 3% computational
power needed) and is fairly accurate (sometimes out performing BCa!). It
does not require any bootstrap resampling and instead uses numerical
derivatives via Taylor series to approximate the BCa calculation. However,
the ABC method requires the statistic to be smooth and follow a
multinomial distribution.
References
----------
.. [1] DiCiccio, T.J., Efron, B., 1996. Bootstrap Confidence Intervals.
Statistical Science. 11, 3, 189-228.
"""
#define base variables -- n, p_0, sigma_hat, delta_hat
n = len(x)
p_0 = np.ones(x.shape) / n
sigma_hat = np.zeros(x.shape)
delta_hat = np.zeros(x.shape)
for i in range(0, n):
sigma_hat[i] = __tt_dot(i, x, p_0, statistic, eps)**2
delta_hat[i] = __tt_dot(i, x, p_0, statistic, eps)
sigma_hat = (sigma_hat / n**2)**0.5
#estimate the bias (z_0) and the acceleration (a_hat)
a_hat = np.zeros(x.shape)
a_num = np.zeros(x.shape)
a_dem = np.zeros(x.shape)
for i in range(0, n):
a_num[i] = __tt_dot(i, x, p_0, statistic, eps)**3
a_dem[i] = __tt_dot(i, x, p_0, statistic, eps)**2
a_hat = 1 / 6 * a_num / a_dem**1.5
z_0 = __calc_z0(x, p_0, statistic, eps, a_hat, sigma_hat)
#define helper variables -- w and l
w = z_0 + __calc_z_alpha(1 - alpha)
l = w / (1 - a_hat * w)**2
return __tt(x, p_0 + l * delta_hat / sigma_hat, statistic)
def __calc_z_alpha(alpha):
"""
Classic "quantile function" that calculates inverse of cdf of standard
normal.
"""
return 2**0.5 * sp.special.erfinv(2 * alpha - 1)
def __calc_z0(x, p_0, statistic, eps, a_hat, sigma_hat):
"""
Function that calculates the bias z_0 for abc method.
See Also
----------
abc, __tt, __tt_dot, __tt_dot_dot
"""
n = len(x)
b_hat = np.ones(x.shape)
c_q_hat = np.ones(x.shape)
tt_dot = np.ones(x.shape)
for i in range(0, n):
b_hat[i] = __tt_dot_dot(i, x, p_0, statistic, eps)
tt_dot[i] = __tt_dot(i, x, p_0, statistic, eps)
b_hat = b_hat / (2 * n**2)
c_q_hat = (__tt(x, (1 - eps) * p_0 + eps * tt_dot / (n**2 * sigma_hat)
, statistic) +
__tt(x, (1 - eps) * p_0 - eps * tt_dot / (n**2 * sigma_hat)
, statistic) -
2 * __tt(x, p_0, statistic) ) / eps**2
return a_hat - (b_hat / sigma_hat - c_q_hat)
def __tt(x, p_0, statistic = bs_se):
"""
Function that calculates desired statistic from observable data and a
given proportional weighting.
Parameters
------------
x : np.ndarray
Observable data (e.g. from gold standard).
p_0 : np.ndarray
Proportional weighting vector (Default: uniform weighting 1/n)
Returns
-------
theta_hat : float
Desired statistic of the observable data.
See Also
-----------
abc, __tt_dot, __tt_dot_dot
"""
return statistic(x / p_0)
def __tt_dot(i, x, p_0, statistic, eps):
"""
First numerical derivative of __tt
"""
e = np.zeros(x.shape)
e[i] = 1
return ( (__tt(x, (1 - eps) * p_0 + eps * e[i], statistic) -
__tt(x, p_0, statistic)) / eps )
def __tt_dot_dot(i, x, p_0, statistic, eps):
"""
Second numerical derivative of __tt
"""
e = np.zeros(x.shape)
e[i] = 1
return (__tt_dot(i, x, p_0, statistic, eps) / eps +
(__tt(x, (1 - eps) * p_0 - eps * e[i], statistic) -
__tt(x, p_0, statistic)) / eps**2)
def jackknife(pdf, statistic = np.std, M = None):
"""
Jackknife resampling _[1] to quickly estimate the bias and standard
error of a desired statistic in a probability distribution function (pdf).
Parameters
------------
pdf : ndarray (N, 1)
Probability distribution function to resample. N should be reasonably
large.
statistic : method (optional)
Method to calculate the desired statistic. (Default: calculate
standard deviation)
M : integer (M < N)
Total number of samples in jackknife pdf. (Default: M == N)
Returns
---------
jk_pdf : ndarray (M, 1)
Jackknife probabilisty distribution function of the statistic.
bias : float
Bias of the jackknife pdf of the statistic.
se : float
Standard error of the statistic.
See Also
-----------
numpy.std, numpy.mean, numpy.random.random
Notes
--------
Jackknife resampling like bootstrap resampling is non parametric. However,
it requires a large distribution to be accurate and in some ways can be
considered deterministic (if one removes the same set of samples,
then one will get the same estimates of the bias and variance).
In the context of this implementation, the sample size should be at least
larger than the asymptotic convergence of the statistic (ACstat);
preferably, larger than ACstat + np.greater(ACbias, ACvar)
The clear benefit of using jackknife is its ability to estimate the bias
of the statistic. The most powerful application of this is estimating the
bias of a bootstrap-estimated standard error. In fact, one could
"bootstrap the bootstrap" (nested bootstrap) of the estimated standard
error, but the inaccuracy of the bootstrap to characterize the true mean
would incur a poor estimate of the bias (recall: bias = mean[sample_est] -
mean[true population])
References
-------------
.. [1] Efron, B., 1979. 1977 Rietz lecture--Bootstrap methods--Another
look at the jackknife. Ann. Stat. 7, 1-26.
"""
N = len(pdf)
pdf_mask = np.ones((N,),dtype='int16') #keeps track of all n - 1 indexes
mask_index = np.copy(pdf_mask)
if M == None:
M = N
M = np.minimum(M, N - 1)
jk_pdf = np.empty((M,))
for ii in range(0, M):
rand_index = np.round(np.random.random() * (N - 1))
#choose a unique random sample to remove
while pdf_mask[rand_index] == 0 :
rand_index = np.round(np.random.random() * (N - 1))
#set mask to zero for chosen random index so not to choose again
pdf_mask[rand_index] = 0
mask_index[rand_index] = 0
jk_pdf[ii] = statistic(pdf[mask_index > 0]) #compute n-1 statistic
mask_index[rand_index] = 1
return jk_pdf, (N - 1) * (np.mean(jk_pdf) - statistic(pdf)), np.sqrt(N -
1) * np.std(jk_pdf)
def residual_bootstrap(data):
pass
def repetition_bootstrap(data):
pass
|