This file is indexed.

/usr/share/pyshared/dipy/align/aniso2iso.py is in python-dipy 0.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
''' Anisotropic to isotropic voxel conversion '''

import numpy as np
from scipy.ndimage import affine_transform

def resample(data,affine,zooms,new_zooms,order=1):
    ''' Resample data from anisotropic to isotropic voxel size
    
    Parameters
    -----------
    data : array, shape (I,J,K) or (I,J,K,N) 
        3d volume or 4d volume with datasets
    affine : array, shape (4,4) 
        mapping from voxel coordinates to world coordinates
    zooms : tuple, shape (3,)
        voxel size for (i,j,k) dimensions
    new_zooms : tuple, shape (3,)
        new voxel size for (i,j,k) after resampling
    order : int, from 0 to 5
        order of interpolation for resampling/reslicing,
        0 nearest interpolation, 1 trilinear etc..
        if you don't want any smoothing 0 is the option you need.
    
    Returns
    --------
    data2 : array, shape (I,J,K) or (I,J,K,N) 
        datasets resampled into isotropic voxel size
        
    Notes
    ------
    It is also possible with this function to resample/reslice from isotropic voxel size to anisotropic 
    or from isotropic to isotropic or even from anisotropic to anisotropic, as long as you provide
    the correct zooms (voxel sizes) and new_zooms (new voxel sizes). It is fairly easy to get the correct
    zooms using nibabel as show in the example below. 
    
    Examples
    ---------
    >>> import nibabel as nib
    >>> from dipy.align.aniso2iso import resample
    >>> from dipy.data import get_data    
    >>> fimg=get_data('aniso_vox')    
    >>> img=nib.load(fimg)
    >>> data=img.get_data()
    >>> data.shape
    (58, 58, 24)
    >>> affine=img.get_affine()
    >>> zooms=img.get_header().get_zooms()[:3]
    >>> zooms      
    (4.0, 4.0, 5.0)
    >>> new_zooms=(3.,3.,3.)
    >>> new_zooms
    (3.0, 3.0, 3.0)
    >>> data2,affine2=resample(data,affine,zooms,new_zooms)
    >>> data2.shape
    (77, 77, 40)
    
    '''        
    R=np.diag(np.array(new_zooms)/np.array(zooms))    
    new_shape=np.array(zooms)/np.array(new_zooms) * np.array(data.shape[:3])
    new_shape=np.round(new_shape).astype('i8')   
    if data.ndim==3:
        data2=affine_transform(input=data,matrix=R,offset=np.zeros(3,),output_shape=tuple(new_shape),order=order)
    if data.ndim==4:
        data2l=[] 
        for i in range(data.shape[-1]):
            tmp=affine_transform(input=data[...,i],matrix=R,offset=np.zeros(3,),output_shape=tuple(new_shape),order=order)
            data2l.append(tmp)        
        data2=np.zeros(tmp.shape+(data.shape[-1],),data.dtype)
        for i in range(data.shape[-1]):
            data2[...,i]=data2l[i]        
    Rx=np.eye(4)
    Rx[:3,:3]=R
    affine2=np.dot(affine,Rx)
    return data2,affine2