This file is indexed.

/usr/share/pyshared/cclib/parser/gamessparser.py is in python-cclib 1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
# This file is part of cclib (http://cclib.sf.net), a library for parsing
# and interpreting the results of computational chemistry packages.
#
# Copyright (C) 2006, the cclib development team
#
# The library is free software, distributed under the terms of
# the GNU Lesser General Public version 2.1 or later. You should have
# received a copy of the license along with cclib. You can also access
# the full license online at http://www.gnu.org/copyleft/lgpl.html.

__revision__ = "$Revision: 1030 $"

import re

import numpy

import logfileparser
import utils


class GAMESS(logfileparser.Logfile):
    """A GAMESS log file."""
    SCFRMS, SCFMAX, SCFENERGY = range(3) # Used to index self.scftargets[]
    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(GAMESS, self).__init__(logname="GAMESS", *args, **kwargs)

    def __str__(self):
        """Return a string representation of the object."""
        return "GAMESS log file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'GAMESS("%s")' % (self.filename)

    def normalisesym(self, label):
        """Normalise the symmetries used by GAMESS.

        To normalise, two rules need to be applied:
        (1) Occurences of U/G in the 2/3 position of the label
            must be lower-cased
        (2) Two single quotation marks must be replaced by a double

        >>> t = GAMESS("dummyfile").normalisesym
        >>> labels = ['A', 'A1', 'A1G', "A'", "A''", "AG"]
        >>> answers = map(t, labels)
        >>> print answers
        ['A', 'A1', 'A1g', "A'", 'A"', 'Ag']
        """
        if label[1:] == "''":
            end = '"'
        else:
            end = label[1:].replace("U", "u").replace("G", "g")
        return label[0] + end

    def before_parsing(self):

        self.firststdorient = True # Used to decide whether to wipe the atomcoords clean
        self.geooptfinished = False # Used to avoid extracting the final geometry twice
        self.cihamtyp = "none" # Type of CI Hamiltonian: saps or dets.
        self.scftype = "none" # Type of SCF calculation: BLYP, RHF, ROHF, etc.
    
    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""

        if line [1:12] == "INPUT CARD>":
            return

        # We are looking for this line:
        #           PARAMETERS CONTROLLING GEOMETRY SEARCH ARE
        #           ...
        #           OPTTOL = 1.000E-04          RMIN   = 1.500E-03
        if line[10:18] == "OPTTOL =":
            if not hasattr(self, "geotargets"):
                opttol = float(line.split()[2])
                self.geotargets = numpy.array([opttol, 3. / opttol], "d")
                        
        if line.find("FINAL") == 1:
            if not hasattr(self, "scfenergies"):
                self.scfenergies = []
        # Has to deal with such lines as:
        #  FINAL R-B3LYP ENERGY IS     -382.0507446475 AFTER  10 ITERATIONS
        #  FINAL ENERGY IS     -379.7594673378 AFTER   9 ITERATIONS
        # ...so take the number after the "IS"
            temp = line.split()
            self.scfenergies.append(utils.convertor(float(temp[temp.index("IS") + 1]), "hartree", "eV"))

        # Total energies after Moller-Plesset corrections
        if (line.find("RESULTS OF MOLLER-PLESSET") >= 0 or
            line[6:37] == "SCHWARZ INEQUALITY TEST SKIPPED"):
            # Output looks something like this:
            # RESULTS OF MOLLER-PLESSET 2ND ORDER CORRECTION ARE
            #         E(0)=      -285.7568061536
            #         E(1)=         0.0
            #         E(2)=        -0.9679419329
            #       E(MP2)=      -286.7247480864
            # where E(MP2) = E(0) + E(2)
            #
            # with GAMESS-US 12 Jan 2009 (R3) the preceding text is different:
            ##      DIRECT 4-INDEX TRANSFORMATION 
            ##      SCHWARZ INEQUALITY TEST SKIPPED          0 INTEGRAL BLOCKS
            ##                     E(SCF)=       -76.0088477471
            ##                       E(2)=        -0.1403745370
            ##                     E(MP2)=       -76.1492222841            
            if not hasattr(self, "mpenergies"):
                self.mpenergies = []
            # Each iteration has a new print-out
            self.mpenergies.append([])
            # GAMESS-US presently supports only second order corrections (MP2)
            # PC GAMESS also has higher levels (3rd and 4th), with different output
            # Only the highest level MP4 energy is gathered (SDQ or SDTQ)            
            while re.search("DONE WITH MP(\d) ENERGY", line) is None:
                line = inputfile.next()
                if len(line.split()) > 0:
                    # Only up to MP2 correction
                    if line.split()[0] == "E(MP2)=":
                        mp2energy = float(line.split()[1])
                        self.mpenergies[-1].append(utils.convertor(mp2energy, "hartree", "eV"))
                    # MP2 before higher order calculations
                    if line.split()[0] == "E(MP2)":
                        mp2energy = float(line.split()[2])
                        self.mpenergies[-1].append(utils.convertor(mp2energy, "hartree", "eV"))
                    if line.split()[0] == "E(MP3)":
                        mp3energy = float(line.split()[2])
                        self.mpenergies[-1].append(utils.convertor(mp3energy, "hartree", "eV"))
                    if line.split()[0] in ["E(MP4-SDQ)", "E(MP4-SDTQ)"]:
                        mp4energy = float(line.split()[2])
                        self.mpenergies[-1].append(utils.convertor(mp4energy, "hartree", "eV"))

        # Total energies after Coupled Cluster calculations
        # Only the highest Coupled Cluster level result is gathered
        if line[12:23] == "CCD ENERGY:":
            if not hasattr(self, "ccenergies"):
                self.ccenergies = []
            ccenergy = float(line.split()[2])
            self.ccenergies.append(utils.convertor(ccenergy, "hartree", "eV"))
        if line.find("CCSD") >= 0 and line.split()[0:2] == ["CCSD", "ENERGY:"]:
            if not hasattr(self, "ccenergies"):
                self.ccenergies = []
            ccenergy = float(line.split()[2])
            line = inputfile.next()
            if line[8:23] == "CCSD[T] ENERGY:":
                ccenergy = float(line.split()[2])
                line = inputfile.next()
                if line[8:23] == "CCSD(T) ENERGY:":
                    ccenergy = float(line.split()[2])
            self.ccenergies.append(utils.convertor(ccenergy, "hartree", "eV"))
        # Also collect MP2 energies, which are always calculated before CC
        if line [8:23] == "MBPT(2) ENERGY:":
            if not hasattr(self, "mpenergies"):
                self.mpenergies = []
            self.mpenergies.append([])
            mp2energy = float(line.split()[2])
            self.mpenergies[-1].append(utils.convertor(mp2energy, "hartree", "eV"))

        # Extract charge and multiplicity
        if line[1:19] == "CHARGE OF MOLECULE":
            self.charge = int(line.split()[-1])
            self.mult = int(inputfile.next().split()[-1])

        # etenergies (used only for CIS runs now)
        if "EXCITATION ENERGIES" in line and line.find("DONE WITH") < 0:
            if not hasattr(self, "etenergies"):
                self.etenergies = []
            header = inputfile.next().rstrip()
            get_etosc = False
            if header.endswith("OSC. STR."):
                # water_cis_dets.out does not have the oscillator strength
                # in this table...it is extracted from a different section below
                get_etosc = True
                self.etoscs = []
            dashes = inputfile.next()
            line = inputfile.next()
            broken = line.split()
            while len(broken) > 0:
                # Take hartree value with more numbers, and convert.
                # Note that the values listed after this are also less exact!
                etenergy = float(broken[1])
                self.etenergies.append(utils.convertor(etenergy, "hartree", "cm-1"))
                if get_etosc:
                    etosc = float(broken[-1])
                    self.etoscs.append(etosc)
                broken = inputfile.next().split()

        # Detect the CI hamiltonian type, if applicable.
        # Should always be detected if CIS is done.
        if line[8:64] == "RESULTS FROM SPIN-ADAPTED ANTISYMMETRIZED PRODUCT (SAPS)":
            self.cihamtyp = "saps"
        if line[8:64] == "RESULTS FROM DETERMINANT BASED ATOMIC ORBITAL CI-SINGLES":
            self.cihamtyp = "dets"

        # etsecs (used only for CIS runs for now)
        if line[1:14] == "EXCITED STATE":
            if not hasattr(self, 'etsecs'):
                self.etsecs = []
            if not hasattr(self, 'etsyms'):
                self.etsyms = []
            statenumber = int(line.split()[2])
            spin = int(float(line.split()[7]))
            if spin == 0:
                sym = "Singlet"
            if spin == 1:
                sym = "Triplet"
            sym += '-' + line.split()[-1]
            self.etsyms.append(sym)
            # skip 5 lines
            for i in range(5):
                line = inputfile.next()
            line = inputfile.next()
            CIScontribs = []
            while line.strip()[0] != "-":
                MOtype = 0
                # alpha/beta are specified for hamtyp=dets
                if self.cihamtyp == "dets":
                    if line.split()[0] == "BETA":
                        MOtype = 1
                fromMO = int(line.split()[-3])-1
                toMO = int(line.split()[-2])-1
                coeff = float(line.split()[-1])
                # With the SAPS hamiltonian, the coefficients are multiplied
                #   by sqrt(2) so that they normalize to 1.
                # With DETS, both alpha and beta excitations are printed.
                # if self.cihamtyp == "saps":
                #    coeff /= numpy.sqrt(2.0)
                CIScontribs.append([(fromMO,MOtype), (toMO,MOtype), coeff])
                line = inputfile.next()
            self.etsecs.append(CIScontribs)

        # etoscs (used only for CIS runs now)
        if line[1:50] == "TRANSITION FROM THE GROUND STATE TO EXCITED STATE":
            if not hasattr(self, "etoscs"):
                self.etoscs = []
            statenumber = int(line.split()[-1])
            # skip 7 lines
            for i in range(8):
                line = inputfile.next()
            strength = float(line.split()[3])
            self.etoscs.append(strength)

        # TD-DFT for GAMESS-US.
        # The format for excitations has changed a bit between 2007 and 2012.
        # Original format parser was written for:
        #
        #          -------------------
        #          TRIPLET EXCITATIONS
        #          -------------------
        #
        # STATE #   1  ENERGY =    3.027228 EV
        # OSCILLATOR STRENGTH =    0.000000
        #        DRF    COEF       OCC      VIR
        #        ---    ----       ---      ---
        #         35 -1.105383     35  ->   36
        #         69 -0.389181     34  ->   37
        #        103 -0.405078     33  ->   38
        #        137  0.252485     32  ->   39
        #        168 -0.158406     28  ->   40
        #
        # STATE #   2  ENERGY =    4.227763 EV
        # ...
        #
        # Here is the corresponding 2012 version:
        #
        #          -------------------
        #          TRIPLET EXCITATIONS
        #          -------------------
        #
        # STATE #   1  ENERGY =    3.027297 EV
        # OSCILLATOR STRENGTH =    0.000000
        # LAMBDA DIAGNOSTIC   =    0.925 (RYDBERG/CHARGE TRANSFER CHARACTER)
        # SYMMETRY OF STATE   =    A   
        #                 EXCITATION  DE-EXCITATION
        #     OCC     VIR  AMPLITUDE      AMPLITUDE
        #      I       A     X(I->A)        Y(A->I)
        #     ---     ---   --------       --------
        #     35      36   -0.929190      -0.176167
        #     34      37   -0.279823      -0.109414
        # ...
        #
        # We discern these two by the presence of the arrow in the old version.
        #
        # The "LET EXCITATIONS" pattern used below catches both
        # singlet and triplet excitations output.
        if line[14:29] == "LET EXCITATIONS":

            self.etenergies = []
            self.etoscs = []
            self.etsecs = []
            etsyms = []

            minuses = inputfile.next()
            blanks = inputfile.next()

            # Loop while states are still being printed.
            line = inputfile.next()
            while line[1:6] == "STATE":

                if self.progress:
                    self.updateprogress(inputfile, "Excited States")

                etenergy = utils.convertor(float(line.split()[-2]), "eV", "cm-1")
                etoscs = float(inputfile.next().split()[-1])
                self.etenergies.append(etenergy)
                self.etoscs.append(etoscs)

                # Symmetry is not always present, especially in old versions.
                # Newer versions, on the other hand, can also provide a line
                # with lambda diagnostic and some extra headers.
                line = inputfile.next()
                if "LAMBDA DIAGNOSTIC" in line:
                    line = inputfile.next()
                if "SYMMETRY" in line:
                    etsyms.append(line.split()[-1])
                    line = inputfile.next()
                if "EXCITATION" in line and "DE-EXCITATION" in line:
                    line = inputfile.next()
                if line.count("AMPLITUDE") == 2:
                    line = inputfile.next()

                minuses = inputfile.next()
                CIScontribs = []
                line = inputfile.next()
                while line.strip():
                    cols = line.split()
                    if "->" in line:
                        i_occ_vir = [2, 4]
                        i_coeff = 1
                        
                    else:
                        i_occ_vir = [0, 1]
                        i_coeff = 2
                    fromMO, toMO = [int(cols[i]) - 1 for i in i_occ_vir]
                    coeff = float(cols[i_coeff])
                    CIScontribs.append([(fromMO, 0), (toMO, 0), coeff])
                    line = inputfile.next()
                self.etsecs.append(CIScontribs)
                line = inputfile.next()

            # The symmetries are not always present.
            if etsyms:
                self.etsyms = etsyms
         
        # Maximum and RMS gradients.
        if "MAXIMUM GRADIENT" in line or "RMS GRADIENT" in line:

            parts = line.split()

            # Avoid parsing the following...
            
            ## YOU SHOULD RESTART "OPTIMIZE" RUNS WITH THE COORDINATES
            ## WHOSE ENERGY IS LOWEST.  RESTART "SADPOINT" RUNS WITH THE
            ## COORDINATES WHOSE RMS GRADIENT IS SMALLEST.  THESE ARE NOT
            ## ALWAYS THE LAST POINT COMPUTED!            

            if parts[0] not in ["MAXIMUM", "RMS", "(1)"]:
                return

            if not hasattr(self, "geovalues"):
                self.geovalues = []

            # Newer versions (around 2006) have both maximum and RMS on one line:
            #       MAXIMUM GRADIENT =  0.0531540    RMS GRADIENT = 0.0189223
            if len(parts) == 8:
                maximum = float(parts[3])
                rms = float(parts[7])
            
            # In older versions of GAMESS, this spanned two lines, like this:
            #       MAXIMUM GRADIENT =    0.057578167
            #           RMS GRADIENT =    0.027589766
            if len(parts) == 4:
                maximum = float(parts[3])
                line = inputfile.next()
                parts = line.split()
                rms = float(parts[3])


            # FMO also prints two final one- and two-body gradients (see exam37):
            #   (1) MAXIMUM GRADIENT =  0.0531540    RMS GRADIENT = 0.0189223
            if len(parts) == 9:
                maximum = float(parts[4])
                rms = float(parts[8])

            self.geovalues.append([maximum, rms])

        if line[11:50] == "ATOMIC                      COORDINATES":
            # This is the input orientation, which is the only data available for
            # SP calcs, but which should be overwritten by the standard orientation
            # values, which is the only information available for all geoopt cycles.
            if not hasattr(self, "atomcoords"):
                self.atomcoords = []
                self.atomnos = []
            line = inputfile.next()
            atomcoords = []
            atomnos = []
            line = inputfile.next()
            while line.strip():
                temp = line.strip().split()
                atomcoords.append([utils.convertor(float(x), "bohr", "Angstrom") for x in temp[2:5]])
                atomnos.append(int(round(float(temp[1])))) # Don't use the atom name as this is arbitary
                line = inputfile.next()
            self.atomnos = numpy.array(atomnos, "i")
            self.atomcoords.append(atomcoords)

        if line[12:40] == "EQUILIBRIUM GEOMETRY LOCATED":
            # Prevent extraction of the final geometry twice
            self.geooptfinished = True
        
        if line[1:29] == "COORDINATES OF ALL ATOMS ARE" and not self.geooptfinished:
            # This is the standard orientation, which is the only coordinate
            # information available for all geometry optimisation cycles.
            # The input orientation will be overwritten if this is a geometry optimisation
            # We assume that a previous Input Orientation has been found and
            # used to extract the atomnos
            if self.progress:
                self.updateprogress(inputfile, "Coordinates")

            if self.firststdorient:
                self.firststdorient = False
                # Wipes out the single input coordinate at the start of the file
                self.atomcoords = []
                
            line = inputfile.next()
            hyphens = inputfile.next()

            atomcoords = []
            line = inputfile.next()                

            for i in range(self.natom):
                temp = line.strip().split()
                atomcoords.append(map(float, temp[2:5]))
                line = inputfile.next()
            self.atomcoords.append(atomcoords)
        
        # Section with SCF information.
        #
        # The space at the start of the search string is to differentiate from MCSCF.
        # Everything before the search string is stored as the type of SCF.
        # SCF types may include: BLYP, RHF, ROHF, UHF, etc.
        #
        # For example, in exam17 the section looks like this (note that this is GVB):
        #          ------------------------
        #          ROHF-GVB SCF CALCULATION
        #          ------------------------
        # GVB STEP WILL USE    119875 WORDS OF MEMORY.
        #
        #     MAXIT=  30   NPUNCH= 2   SQCDF TOL=1.0000E-05
        #     NUCLEAR ENERGY=        6.1597411978
        #     EXTRAP=T   DAMP=F   SHIFT=F   RSTRCT=F   DIIS=F  SOSCF=F
        #
        # ITER EX     TOTAL ENERGY       E CHANGE        SQCDF       DIIS ERROR
        #   0  0      -38.298939963   -38.298939963   0.131784454   0.000000000
        #   1  1      -38.332044339    -0.033104376   0.026019716   0.000000000
        # ... and will be terminated by a blank line.
        if line.rstrip()[-16:] == " SCF CALCULATION":

            # Remember the type of SCF.
            self.scftype = line.strip()[:-16]

            dashes = inputfile.next()

            while line [:5] != " ITER":

                if self.progress:
                    self.updateprogress(inputfile, "Attributes")

                # GVB uses SQCDF for checking convergence (for example in exam17).
                if "GVB" in self.scftype and "SQCDF TOL=" in line:
                    scftarget = float(line.split("=")[-1])

                # Normally however the density is used as the convergence criterium.
                # Deal with various versions:
                #   (GAMESS VERSION = 12 DEC 2003)
                #     DENSITY MATRIX CONV=  2.00E-05  DFT GRID SWITCH THRESHOLD=  3.00E-04
                #   (GAMESS VERSION = 22 FEB 2006)
                #     DENSITY MATRIX CONV=  1.00E-05
                #   (PC GAMESS version 6.2, Not DFT?)
                #     DENSITY CONV=  1.00E-05
                elif "DENSITY CONV" in line or "DENSITY MATRIX CONV" in line:
                    scftarget = float(line.split()[-1])

                line = inputfile.next()

            if not hasattr(self, "scftargets"):
                self.scftargets = []

            self.scftargets.append([scftarget])

            if not hasattr(self,"scfvalues"):
                self.scfvalues = []

            line = inputfile.next()

            # Normally the iteration print in 6 columns.
            # For ROHF, however, it is 5 columns, thus this extra parameter.
            if "ROHF" in self.scftype:
                valcol = 4
            else:
                valcol = 5

            # SCF iterations are terminated by a blank line.
            # The first four characters usually contains the step number.
            # However, lines can also contain messages, including:
            #   * * *   INITIATING DIIS PROCEDURE   * * *
            #   CONVERGED TO SWOFF, SO DFT CALCULATION IS NOW SWITCHED ON
            #   DFT CODE IS SWITCHING BACK TO THE FINER GRID
            values = []
            while line.strip():
                try:
                    temp = int(line[0:4])
                except ValueError:
                    pass
                else:
                    values.append([float(line.split()[valcol])])
                line = inputfile.next()
            self.scfvalues.append(values)

        # Extract normal coordinate analysis, including vibrational frequencies (vibfreq),
        # IT intensities (vibirs) and displacements (vibdisps).
        #
        # This section typically looks like the following in GAMESS-US:
        #
        # MODES 1 TO 6 ARE TAKEN AS ROTATIONS AND TRANSLATIONS.
        #
        #     FREQUENCIES IN CM**-1, IR INTENSITIES IN DEBYE**2/AMU-ANGSTROM**2,
        #     REDUCED MASSES IN AMU.
        #
        #                          1           2           3           4           5
        #       FREQUENCY:        52.49       41.45       17.61        9.23       10.61  
        #    REDUCED MASS:      3.92418     3.77048     5.43419     6.44636     5.50693
        #    IR INTENSITY:      0.00013     0.00001     0.00004     0.00000     0.00003
        #
        # ...or in the case of a numerical Hessian job...
        #
        # MODES 1 TO 5 ARE TAKEN AS ROTATIONS AND TRANSLATIONS.
        #
        #     FREQUENCIES IN CM**-1, IR INTENSITIES IN DEBYE**2/AMU-ANGSTROM**2,
        #     REDUCED MASSES IN AMU.
        #
        #                          1           2           3           4           5
        #       FREQUENCY:         0.05        0.03        0.03       30.89       30.94  
        #    REDUCED MASS:      8.50125     8.50137     8.50136     1.06709     1.06709
        #       
        # ...whereas PC-GAMESS has...
        #
        # MODES 1 TO 6 ARE TAKEN AS ROTATIONS AND TRANSLATIONS.
        #
        #     FREQUENCIES IN CM**-1, IR INTENSITIES IN DEBYE**2/AMU-ANGSTROM**2
        #
        #                          1           2           3           4           5
        #       FREQUENCY:         5.89        1.46        0.01        0.01        0.01  
        #    IR INTENSITY:      0.00000     0.00000     0.00000     0.00000     0.00000
        #
        # If Raman is present we have (for PC-GAMESS)...
        #
        # MODES 1 TO 6 ARE TAKEN AS ROTATIONS AND TRANSLATIONS.
        #
        #     FREQUENCIES IN CM**-1, IR INTENSITIES IN DEBYE**2/AMU-ANGSTROM**2
        #     RAMAN INTENSITIES IN ANGSTROM**4/AMU, DEPOLARIZATIONS ARE DIMENSIONLESS
        #
        #                          1           2           3           4           5
        #       FREQUENCY:         5.89        1.46        0.04        0.03        0.01  
        #    IR INTENSITY:      0.00000     0.00000     0.00000     0.00000     0.00000
        # RAMAN INTENSITY:       12.675       1.828       0.000       0.000       0.000
        #  DEPOLARIZATION:        0.750       0.750       0.124       0.009       0.750
        #
        # If GAMESS-US or PC-GAMESS has not reached the stationary point we have
        # and additional warning, repeated twice, like so (see n_water.log for an example):
        #
        #     *******************************************************
        #     * THIS IS NOT A STATIONARY POINT ON THE MOLECULAR PES *
        #     *     THE VIBRATIONAL ANALYSIS IS NOT VALID !!!       *
        #     *******************************************************
        #
        # There can also be additional warnings about the selection of modes, for example:
        #
        # * * * WARNING, MODE 6 HAS BEEN CHOSEN AS A VIBRATION
        #          WHILE MODE12 IS ASSUMED TO BE A TRANSLATION/ROTATION.
        # PLEASE VERIFY THE PROGRAM'S DECISION MANUALLY!
        #
        if "NORMAL COORDINATE ANALYSIS IN THE HARMONIC APPROXIMATION" in line:
 
            self.vibfreqs = []
            self.vibirs = []
            self.vibdisps = []

            # Need to get to the modes line, which is often preceeded by
            # a list of atomic weights and some possible warnings.
            # Pass the warnings to the logger if they are there.
            while not "MODES" in line:
                if self.progress:
                    self.updateprogress(inputfile, "Frequency Information")

                line = inputfile.next()
                if "THIS IS NOT A STATIONARY POINT" in line:
                    msg = "\n   This is not a stationary point on the molecular PES"
                    msg += "\n   The vibrational analysis is not valid!!!"
                    self.logger.warning(msg)
                if "* * * WARNING, MODE" in line:
                    line1 = line.strip()
                    line2 = inputfile.next().strip()
                    line3 = inputfile.next().strip()
                    self.logger.warning("\n   " + "\n   ".join((line1,line2,line3)))

            # In at least one case (regression zolm_dft3a.log) for older version of GAMESS-US,
            # the header concerning the range of nodes is formatted wrong and can look like so:
            # MODES 9 TO14 ARE TAKEN AS ROTATIONS AND TRANSLATIONS.
            #  ... although it's unclear whether this happens for all two-digit values.
            startrot = int(line.split()[1])
            if len(line.split()[2]) == 2:
                endrot = int(line.split()[3])
            else:
                endrot = int(line.split()[2][2:])

            blank = inputfile.next()

            line = inputfile.next()

            # This is to skip the output associated with symmetry analysis, fixes bug #3476063.
            if "ANALYZING SYMMETRY OF NORMAL MODES" in line:
                blank = inputfile.next()
                line = inputfile.next()
                while line != blank:
                    line = inputfile.next()

            # Skip over FREQUENCIES, etc., and get past the possibly second warning.
            line = inputfile.next()
            while line != blank:
                line = inputfile.next()
            line = inputfile.next()
            if "*****" in line:
                while line != blank:
                    line = inputfile.next()
                line = inputfile.next()
            
            while not "SAYVETZ" in line:
                if self.progress:
                    self.updateprogress(inputfile, "Frequency Information")

                # Note: there may be imaginary frequencies like this (which we make negative):
                #       FREQUENCY:       825.18 I    111.53       12.62       10.70        0.89
                #
                # A note for debuggers: some of these frequencies will be removed later,
                # assumed to be translations or rotations (see startrot/endrot above).
                for col in inputfile.next().split()[1:]:
                    if col == "I":
                        self.vibfreqs[-1] *= -1
                    else:
                        self.vibfreqs.append(float(col))

                line = inputfile.next()

                # Skip the symmetry (appears in newer versions), fixes bug #3476063.
                if line.find("SYMMETRY") >= 0:
                    line = inputfile.next()

                # Skip the reduced mass (not always present).
                if line.find("REDUCED") >= 0:
                    line = inputfile.next()

                # Not present in numerical Hessian calculations.
                if line.find("IR INTENSITY") >= 0:
                    irIntensity = map(float, line.strip().split()[2:])
                    self.vibirs.extend([utils.convertor(x, "Debye^2/amu-Angstrom^2", "km/mol") for x in irIntensity])
                    line = inputfile.next()

                # Read in Raman vibrational intensities if present.
                if line.find("RAMAN") >= 0:
                    if not hasattr(self,"vibramans"):
                        self.vibramans = []
                    ramanIntensity = line.strip().split()
                    self.vibramans.extend(map(float, ramanIntensity[2:]))
                    depolar = inputfile.next()
                    line = inputfile.next()

                # This line seems always to be blank.
                assert line == blank

                # Extract the Cartesian displacement vectors.
                p = [ [], [], [], [], [] ]
                for j in range(self.natom):
                    q = [ [], [], [], [], [] ]
                    for coord in ['x', 'y', 'z']:
                        cols = map(float, inputfile.next()[21:].split())
                        for i, val in enumerate(cols):
                            q[i].append(val)
                    for k in range(len(cols)):
                        p[k].append(q[k])
                self.vibdisps.extend(p[:len(cols)])

                # Skip the Sayvetz stuff at the end.
                for j in range(10):
                    line = inputfile.next()

                blank = inputfile.next()
                line = inputfile.next()

            # Exclude rotations and translations.
            self.vibfreqs = numpy.array(self.vibfreqs[:startrot-1]+self.vibfreqs[endrot:], "d")
            self.vibirs = numpy.array(self.vibirs[:startrot-1]+self.vibirs[endrot:], "d")
            self.vibdisps = numpy.array(self.vibdisps[:startrot-1]+self.vibdisps[endrot:], "d")
            if hasattr(self, "vibramans"):
                self.vibramans = numpy.array(self.vibramans[:startrot-1]+self.vibramans[endrot:], "d")

        if line[5:21] == "ATOMIC BASIS SET":
            self.gbasis = []
            line = inputfile.next()
            while line.find("SHELL")<0:
                line = inputfile.next()
            blank = inputfile.next()
            atomname = inputfile.next()
            # shellcounter stores the shell no of the last shell
            # in the previous set of primitives
            shellcounter = 1
            while line.find("TOTAL NUMBER")<0:
                blank = inputfile.next()
                line = inputfile.next()
                shellno = int(line.split()[0])
                shellgap = shellno - shellcounter
                gbasis = [] # Stores basis sets on one atom
                shellsize = 0
                while len(line.split())!=1 and line.find("TOTAL NUMBER")<0:
                    shellsize += 1
                    coeff = {}
                    # coefficients and symmetries for a block of rows
                    while line.strip():
                        temp = line.strip().split()
                        sym = temp[1]
                        assert sym in ['S', 'P', 'D', 'F', 'G', 'L']
                        if sym == "L": # L refers to SP
                            if len(temp)==6: # GAMESS US
                                coeff.setdefault("S", []).append( (float(temp[3]), float(temp[4])) )
                                coeff.setdefault("P", []).append( (float(temp[3]), float(temp[5])) )
                            else: # PC GAMESS
                                assert temp[6][-1] == temp[9][-1] == ')'
                                coeff.setdefault("S", []).append( (float(temp[3]), float(temp[6][:-1])) )
                                coeff.setdefault("P", []).append( (float(temp[3]), float(temp[9][:-1])) )
                        else:
                            if len(temp)==5: # GAMESS US
                                coeff.setdefault(sym, []).append( (float(temp[3]), float(temp[4])) )
                            else: # PC GAMESS
                                assert temp[6][-1] == ')'
                                coeff.setdefault(sym, []).append( (float(temp[3]), float(temp[6][:-1])) )
                        line = inputfile.next()
                    # either a blank or a continuation of the block
                    if sym == "L":
                        gbasis.append( ('S', coeff['S']))
                        gbasis.append( ('P', coeff['P']))
                    else:
                        gbasis.append( (sym, coeff[sym]))
                    line = inputfile.next()
                # either the start of the next block or the start of a new atom or
                # the end of the basis function section
                
                numtoadd = 1 + (shellgap / shellsize)
                shellcounter = shellno + shellsize
                for x in range(numtoadd):
                    self.gbasis.append(gbasis)

        if line.find("EIGENVECTORS") == 10 or line.find("MOLECULAR OBRITALS") == 10:
            # The details returned come from the *final* report of evalues and
            #   the last list of symmetries in the log file.
            # Should be followed by lines like this:
            #           ------------
            #           EIGENVECTORS
            #           ------------
            # 
            #                       1          2          3          4          5
            #                   -10.0162   -10.0161   -10.0039   -10.0039   -10.0029
            #                      BU         AG         BU         AG         AG  
            #     1  C  1  S    0.699293   0.699290  -0.027566   0.027799   0.002412
            #     2  C  1  S    0.031569   0.031361   0.004097  -0.004054  -0.000605
            #     3  C  1  X    0.000908   0.000632  -0.004163   0.004132   0.000619
            #     4  C  1  Y   -0.000019   0.000033   0.000668  -0.000651   0.005256
            #     5  C  1  Z    0.000000   0.000000   0.000000   0.000000   0.000000
            #     6  C  2  S   -0.699293   0.699290   0.027566   0.027799   0.002412
            #     7  C  2  S   -0.031569   0.031361  -0.004097  -0.004054  -0.000605
            #     8  C  2  X    0.000908  -0.000632  -0.004163  -0.004132  -0.000619
            #     9  C  2  Y   -0.000019  -0.000033   0.000668   0.000651  -0.005256
            #    10  C  2  Z    0.000000   0.000000   0.000000   0.000000   0.000000
            #    11  C  3  S   -0.018967  -0.019439   0.011799  -0.014884  -0.452328
            #    12  C  3  S   -0.007748  -0.006932   0.000680  -0.000695  -0.024917
            #    13  C  3  X    0.002628   0.002997   0.000018   0.000061  -0.003608
            # and so forth... with blanks lines between blocks of 5 orbitals each.
            # Warning! There are subtle differences between GAMESS-US and PC-GAMES
            #   in the formatting of the first four columns.
            #
            # Watch out for F orbitals...
            # PC GAMESS
            #   19  C   1 YZ   0.000000   0.000000   0.000000   0.000000   0.000000
            #   20  C    XXX   0.000000   0.000000   0.000000   0.000000   0.002249
            #   21  C    YYY   0.000000   0.000000  -0.025555   0.000000   0.000000
            #   22  C    ZZZ   0.000000   0.000000   0.000000   0.002249   0.000000
            #   23  C    XXY   0.000000   0.000000   0.001343   0.000000   0.000000
            # GAMESS US
            #   55  C  1 XYZ   0.000000   0.000000   0.000000   0.000000   0.000000
            #   56  C  1XXXX  -0.000014  -0.000067   0.000000   0.000000   0.000000
            #
            # This is fine for GeoOpt and SP, but may be weird for TD and Freq.

            # This is the stuff that we can read from these blocks.
            self.moenergies = [[]]
            self.mosyms = [[]]
            if not hasattr(self, "nmo"):
                self.nmo = self.nbasis
            self.mocoeffs = [numpy.zeros((self.nmo, self.nbasis), "d")]
            readatombasis = False
            if not hasattr(self, "atombasis"):
                self.atombasis = []
                self.aonames = []
                for i in range(self.natom):
                    self.atombasis.append([])
                self.aonames = []
                readatombasis = True

            dashes = inputfile.next()
            for base in range(0, self.nmo, 5):

                if self.progress:
                    self.updateprogress(inputfile, "Coefficients")

                line = inputfile.next()
                # Make sure that this section does not end prematurely - checked by regression test 2CO.ccsd.aug-cc-pVDZ.out.
                if line.strip() != "":
                    break;
                
                numbers = inputfile.next() # Eigenvector numbers.

                # Sometimes there are some blank lines here.
                while not line.strip():
                    line = inputfile.next()

                # Eigenvalues for these orbitals (in hartrees).
                try:
                    self.moenergies[0].extend([utils.convertor(float(x), "hartree", "eV") for x in line.split()])
                except:
                    self.logger.warning('MO section found but could not be parsed!')
                    break;

                # Orbital symmetries.
                line = inputfile.next()
                if line.strip():
                    self.mosyms[0].extend(map(self.normalisesym, line.split()))
                
                # Now we have nbasis lines.
                # Going to use the same method as for normalise_aonames()
                # to extract basis set information.
                p = re.compile("(\d+)\s*([A-Z][A-Z]?)\s*(\d+)\s*([A-Z]+)")
                oldatom = '0'
                i_atom = 0 # counter to keep track of n_atoms > 99
                flag_w = True # flag necessary to keep from adding 100's at wrong time

                for i in range(self.nbasis):
                    line = inputfile.next()

                    # If line is empty, break (ex. for FMO in exam37).
                    if not line.strip(): break

                    # Fill atombasis and aonames only first time around
                    if readatombasis and base == 0:
                        aonames = []
                        start = line[:17].strip()
                        m = p.search(start)
                        if m:
                            g = m.groups()
                            g2 = int(g[2]) # atom index in GAMESS file; changes to 0 after 99

                            # Check if we have moved to a hundred
                            # if so, increment the counter and add it to the parsed value
                            # There will be subsequent 0's as that atoms AO's are parsed
                            # so wait until the next atom is parsed before resetting flag
                            if g2 == 0 and flag_w:
                                i_atom = i_atom + 100
                                flag_w = False # handle subsequent AO's
                            if g2 != 0:
                                flag_w = True # reset flag 
                            g2 = g2 + i_atom

                            aoname = "%s%i_%s" % (g[1].capitalize(), g2, g[3])
                            oldatom = str(g2)
                            atomno = g2-1
                            orbno = int(g[0])-1
                        else: # For F orbitals, as shown above
                            g = [x.strip() for x in line.split()]
                            aoname = "%s%s_%s" % (g[1].capitalize(), oldatom, g[2])
                            atomno = int(oldatom)-1
                            orbno = int(g[0])-1
                        self.atombasis[atomno].append(orbno)
                        self.aonames.append(aoname)
                    coeffs = line[15:] # Strip off the crud at the start.
                    j = 0
                    while j*11+4 < len(coeffs):
                        self.mocoeffs[0][base+j, i] = float(coeffs[j * 11:(j + 1) * 11])
                        j += 1

            line = inputfile.next()
            # If it's restricted and no more properties:
            #  ...... END OF RHF/DFT CALCULATION ......
            # If there are more properties (DENSITY MATRIX):
            #               --------------
            #
            # If it's unrestricted we have:
            #
            #  ----- BETA SET ----- 
            #
            #          ------------
            #          EIGENVECTORS
            #          ------------
            #
            #                      1          2          3          4          5
            # ... and so forth.
            line = inputfile.next()
            if line[2:22] == "----- BETA SET -----":
                self.mocoeffs.append(numpy.zeros((self.nmo, self.nbasis), "d"))
                self.moenergies.append([])
                self.mosyms.append([])
                for i in range(4):
                    line = inputfile.next()
                for base in range(0, self.nmo, 5):
                    if self.progress:
                        self.updateprogress(inputfile, "Coefficients")

                    blank = inputfile.next()
                    line = inputfile.next() # Eigenvector no
                    line = inputfile.next()
                    self.moenergies[1].extend([utils.convertor(float(x), "hartree", "eV") for x in line.split()])
                    line = inputfile.next()
                    self.mosyms[1].extend(map(self.normalisesym, line.split()))
                    for i in range(self.nbasis):
                        line = inputfile.next()
                        temp = line[15:] # Strip off the crud at the start
                        j = 0
                        while j * 11 + 4 < len(temp):
                            self.mocoeffs[1][base+j, i] = float(temp[j * 11:(j + 1) * 11])
                            j += 1
                line = inputfile.next()
            self.moenergies = [numpy.array(x, "d") for x in self.moenergies]

        # Natural orbitals - presently support only CIS.
        # Looks basically the same as eigenvectors, without symmetry labels.
        if line[10:30] == "CIS NATURAL ORBITALS":

            self.nocoeffs = numpy.zeros((self.nmo, self.nbasis), "d")

            dashes = inputfile.next()
            for base in range(0, self.nmo, 5):

                blank = inputfile.next()
                numbers = inputfile.next() # Eigenvector numbers.

                # Eigenvalues for these natural orbitals (not in hartrees!).
                # Sometimes there are some blank lines before it.
                line = inputfile.next()
                while not line.strip():
                    line = inputfile.next()
                eigenvalues = line

                # Orbital symemtry labels are normally here for MO coefficients.
                line = inputfile.next()
                
                # Now we have nbasis lines with the coefficients.
                for i in range(self.nbasis):

                    line = inputfile.next()
                    coeffs = line[15:]
                    j = 0
                    while j*11+4 < len(coeffs):
                        self.nocoeffs[base+j, i] = float(coeffs[j * 11:(j + 1) * 11])
                        j += 1

        # We cannot trust this self.homos until we come to the phrase:
        #   SYMMETRIES FOR INITAL GUESS ORBITALS FOLLOW
        # which either is followed by "ALPHA" or "BOTH" at which point we can say
        # for certain that it is an un/restricted calculations.
        # Note that MCSCF calcs also print this search string, so make sure
        #   that self.homos does not exist yet.
        if line[1:28] == "NUMBER OF OCCUPIED ORBITALS" and not hasattr(self,'homos'):
            homos = [int(line.split()[-1])-1]
            line = inputfile.next()
            homos.append(int(line.split()[-1])-1)
            self.homos = numpy.array(homos, "i")

        
        if line.find("SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW") >= 0:
            # Not unrestricted, so lop off the second index.
            # In case the search string above was not used (ex. FMO in exam38),
            #   we can try to use the next line which should also contain the
            #   number of occupied orbitals.
            if line.find("BOTH SET(S)") >= 0:
                nextline = inputfile.next()
                if "ORBITALS ARE OCCUPIED" in nextline:
                    homos = int(nextline.split()[0])-1
                    if hasattr(self,"homos"):
                        try:
                            assert self.homos[0] == homos
                        except AssertionError:
                            self.logger.warning("Number of occupied orbitals not consistent. This is normal for ECP and FMO jobs.")
                    else:
                        self.homos = [homos]
                self.homos = numpy.resize(self.homos, [1])

        # Set the total number of atoms, only once.
        # Normally GAMESS print TOTAL NUMBER OF ATOMS, however in some cases
        #   this is slightly different (ex. lower case for FMO in exam37).
        if not hasattr(self,"natom") and "NUMBER OF ATOMS" in line.upper():
            self.natom = int(line.split()[-1])
            
        if line.find("NUMBER OF CARTESIAN GAUSSIAN BASIS") == 1 or line.find("TOTAL NUMBER OF BASIS FUNCTIONS") == 1:
            # The first is from Julien's Example and the second is from Alexander's
            # I think it happens if you use a polar basis function instead of a cartesian one
            self.nbasis = int(line.strip().split()[-1])
                
        elif line.find("TOTAL NUMBER OF CONTAMINANTS DROPPED") >= 0:
            number = int(line.split()[-1])
            if hasattr(self, "nmo"):
                self.nmo -= number
            else:
                self.nmo = self.nbasis - number

        elif line.find("SPHERICAL HARMONICS KEPT IN THE VARIATION SPACE") >= 0:
            # Note that this line is present if ISPHER=1, e.g. for C_bigbasis
            self.nmo = int(line.strip().split()[-1])
            
        elif line.find("TOTAL NUMBER OF MOS IN VARIATION SPACE") == 1:
            # Note that this line is not always present, so by default
            # NBsUse is set equal to NBasis (see below).
            self.nmo = int(line.split()[-1])

        elif line.find("OVERLAP MATRIX") == 0 or line.find("OVERLAP MATRIX") == 1:
            # The first is for PC-GAMESS, the second for GAMESS
            # Read 1-electron overlap matrix
            if not hasattr(self, "aooverlaps"):
                self.aooverlaps = numpy.zeros((self.nbasis, self.nbasis), "d")
            else:
                self.logger.info("Reading additional aooverlaps...")
            base = 0
            while base < self.nbasis:
                if self.progress:
                    self.updateprogress(inputfile, "Overlap")

                blank = inputfile.next()
                line = inputfile.next() # Basis fn number
                blank = inputfile.next()
                for i in range(self.nbasis - base): # Fewer lines each time
                    line = inputfile.next()
                    temp = line.split()
                    for j in range(4, len(temp)):
                        self.aooverlaps[base+j-4, i+base] = float(temp[j])
                        self.aooverlaps[i+base, base+j-4] = float(temp[j])
                base += 5

        # ECP Pseudopotential information
        if "ECP POTENTIALS" in line:
            if not hasattr(self, "coreelectrons"):
                self.coreelectrons = [0]*self.natom
            dashes = inputfile.next()
            blank = inputfile.next()
            header = inputfile.next()
            while header.split()[0] == "PARAMETERS":
                name = header[17:25]
                atomnum = int(header[34:40])
                # The pseudopotnetial is given explicitely
                if header[40:50] == "WITH ZCORE":
                    zcore = int(header[50:55])
                    lmax = int(header[63:67])
                    self.coreelectrons[atomnum-1] = zcore
                # The pseudopotnetial is copied from another atom
                if header[40:55] == "ARE THE SAME AS":
                    atomcopy = int(header[60:])
                    self.coreelectrons[atomnum-1] = self.coreelectrons[atomcopy-1]
                line = inputfile.next()
                while line.split() <> []:
                    line = inputfile.next()
                header = inputfile.next()

        # This was used before refactoring the parser, geotargets was set here after parsing.
        #if not hasattr(self, "geotargets"):
        #    opttol = 1e-4
        #    self.geotargets = numpy.array([opttol, 3. / opttol], "d")
        #if hasattr(self,"geovalues"): self.geovalues = numpy.array(self.geovalues, "d")

        # This is quite simple to parse, but some files seem to print certain
        #   lines twice, repeating the populations without charges.
        # Now, unrestricted calculations are bit tricky, since GAMESS-US prints
        #   populations for both alpha and beta orbitals in the same format
        #   and with the same title, but it still prints the charges only
        #   at the very end. So, check for the number of columns in the header.
        if "TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS" in line:

            if not hasattr(self, "atomcharges"):
                self.atomcharges = {}

            header = inputfile.next()
            line = inputfile.next()

            double = line.strip()
            if double:
                header = inputfile.next()
                skip = inputfile.next()
                line = inputfile.next()

            # Only go further if the header had five columns, which should
            #   be the case when both populations and charges are printed.
            if not header.split() == 5:
                return
            
            mulliken, lowdin = [], []
            while line.strip():
                mulliken.append(float(line.split()[3]))
                lowdin.append(float(line.split()[5]))
                line = inputfile.next()
                if line.strip() and double:
                    line = inputfile.next()
            self.atomcharges["mulliken"] = mulliken
            self.atomcharges["lowdin"] = lowdin

        
if __name__ == "__main__":
    import doctest, gamessparser, sys
    if len(sys.argv) == 1:
        doctest.testmod(gamessparser, verbose=False)

    if len(sys.argv) >= 2:
        parser = gamessparser.GAMESS(sys.argv[1])
        data = parser.parse()

    if len(sys.argv) > 2:
        for i in range(len(sys.argv[2:])):
            if hasattr(data, sys.argv[2 + i]):
                print getattr(data, sys.argv[2 + i])