This file is indexed.

/usr/share/pyshared/cclib/method/volume.py is in python-cclib 1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# This file is part of cclib (http://cclib.sf.net), a library for parsing
# and interpreting the results of computational chemistry packages.
#
# Copyright (C) 2006, the cclib development team
#
# The library is free software, distributed under the terms of
# the GNU Lesser General Public version 2.1 or later. You should have
# received a copy of the license along with cclib. You can also access
# the full license online at http://www.gnu.org/copyleft/lgpl.html.

__revision__ = "$Revision: 960 $"

import copy

import numpy

try:
    from PyQuante.CGBF import CGBF
    module_pyq = True
except:
    module_pyq = False

try:
    from pyvtk import *
    from pyvtk.DataSetAttr import *
    module_pyvtk = True
except:
    module_pyvtk = False

from cclib.bridge import makepyquante
from cclib.parser.utils import convertor


class Volume(object):
    """Represent a volume in space.

    Required parameters:
       origin -- the bottom left hand corner of the volume
       topcorner -- the top right hand corner
       spacing -- the distance between the points in the cube

    Attributes:   
       data -- a numpy array of values for each point in the volume
               (set to zero at initialisation)
       numpts -- the numbers of points in the (x,y,z) directions

    """
    
    def __init__(self, origin, topcorner, spacing):
    
        self.origin = origin
        self.spacing = spacing
        self.topcorner = topcorner
        self.numpts = []
        for i in range(3):
            self.numpts.append(int((self.topcorner[i]-self.origin[i])/self.spacing[i]                                   + 1) )
        self.data = numpy.zeros( tuple(self.numpts), "d")

    def __str__(self):
        """Return a string representation."""
        return "Volume %s to %s (density: %s)" % (self.origin, self.topcorner,
                                                  self.spacing)

    def write(self, filename, format="Cube"):
        """Write the volume to file."""

        format = format.upper()

        if format.upper() not in ["VTK", "CUBE"]:
            raise "Format must be either VTK or Cube"
        elif format=="VTK":
            self.writeasvtk(filename)
        else:
            self.writeascube(filename)

    def writeasvtk(self, filename):
        if not module_pyvtk:
            raise Exception, "You need to have pyvtk installed"
        ranges = (numpy.arange(self.data.shape[2]),
                  numpy.arange(self.data.shape[1]),
                  numpy.arange(self.data.shape[0]))
        v = VtkData(RectilinearGrid(*ranges), "Test",
                    PointData(Scalars(self.data.ravel(), "from cclib", "default")))
        v.tofile(filename)

    def integrate(self):
        boxvol = (self.spacing[0] * self.spacing[1] * self.spacing[2] *
                  convertor(1, "Angstrom", "bohr")**3)
        return sum(self.data.ravel()) * boxvol

    def integrate_square(self):
        boxvol = (self.spacing[0] * self.spacing[1] * self.spacing[2] *
                  convertor(1, "Angstrom", "bohr")**3)
        return sum(self.data.ravel()**2) * boxvol

    def writeascube(self, filename):
        # Remember that the units are bohr, not Angstroms
        convert = lambda x : convertor(x, "Angstrom", "bohr")
        ans = []
        ans.append("Cube file generated by cclib")
        ans.append("")
        format = "%4d%12.6f%12.6f%12.6f"
        origin = [convert(x) for x in self.origin]
        ans.append(format % (0, origin[0], origin[1], origin[2]))
        ans.append(format % (self.data.shape[0], convert(self.spacing[0]), 0.0, 0.0))
        ans.append(format % (self.data.shape[1], 0.0, convert(self.spacing[1]), 0.0))
        ans.append(format % (self.data.shape[2], 0.0, 0.0, convert(self.spacing[2])))
        line = []
        for i in range(self.data.shape[0]):
            for j in range(self.data.shape[1]):
                for k in range(self.data.shape[2]):
                    line.append(scinotation(self.data[i][j][k]))
                    if len(line)==6:
                        ans.append(" ".join(line))
                        line = []
                if line:
                    ans.append(" ".join(line))
                    line = []
        outputfile = open(filename, "w")
        outputfile.write("\n".join(ans))
        outputfile.close()


def scinotation(num):
   """Write in scientific notation

   >>> scinotation(1./654)
   ' 1.52905E-03'
   >>> scinotation(-1./654)
   '-1.52905E-03'
   """
   ans = "%10.5E" % num
   broken = ans.split("E")
   exponent = int(broken[1])
   if exponent<-99:
       return "  0.000E+00"
   if exponent<0:
       sign="-"
   else:
       sign="+"
   return ("%sE%s%s" % (broken[0],sign,broken[1][-2:])).rjust(12)                


def getbfs(coords, gbasis):
    """Convenience function for both wavefunction and density based on PyQuante Ints.py."""
    mymol = makepyquante(coords, [0 for x in coords])

    sym2powerlist = {
        'S' : [(0,0,0)],
        'P' : [(1,0,0),(0,1,0),(0,0,1)],
        'D' : [(2,0,0),(0,2,0),(0,0,2),(1,1,0),(0,1,1),(1,0,1)],
        'F' : [(3,0,0),(2,1,0),(2,0,1),(1,2,0),(1,1,1),(1,0,2),
               (0,3,0),(0,2,1),(0,1,2), (0,0,3)]
        }

    bfs = []
    for i,atom in enumerate(mymol):
        bs = gbasis[i]
        for sym,prims in bs:
            for power in sym2powerlist[sym]:
                bf = CGBF(atom.pos(),power)
                for expnt,coef in prims:
                    bf.add_primitive(expnt,coef)
                bf.normalize()
                bfs.append(bf)

    return bfs


def wavefunction(coords, mocoeffs, gbasis, volume):
    """Calculate the magnitude of the wavefunction at every point in a volume.
    
    Attributes:
        coords -- the coordinates of the atoms
        mocoeffs -- mocoeffs for one eigenvalue
        gbasis -- gbasis from a parser object
        volume -- a template Volume object (will not be altered)
    """
    bfs = getbfs(coords, gbasis)
    
    wavefn = copy.copy(volume)
    wavefn.data = numpy.zeros( wavefn.data.shape, "d")

    conversion = convertor(1,"bohr","Angstrom")
    x = numpy.arange(wavefn.origin[0], wavefn.topcorner[0]+wavefn.spacing[0], wavefn.spacing[0]) / conversion
    y = numpy.arange(wavefn.origin[1], wavefn.topcorner[1]+wavefn.spacing[1], wavefn.spacing[1]) / conversion
    z = numpy.arange(wavefn.origin[2], wavefn.topcorner[2]+wavefn.spacing[2], wavefn.spacing[2]) / conversion

    for bs in range(len(bfs)):
        data = numpy.zeros( wavefn.data.shape, "d")
        for i,xval in enumerate(x):
            for j,yval in enumerate(y):
                for k,zval in enumerate(z):
                    data[i, j, k] = bfs[bs].amp(xval,yval,zval)
        numpy.multiply(data, mocoeffs[bs], data)
        numpy.add(wavefn.data, data, wavefn.data)
    
    return wavefn


def electrondensity(coords, mocoeffslist, gbasis, volume):
    """Calculate the magnitude of the electron density at every point in a volume.
    
    Attributes:
        coords -- the coordinates of the atoms
        mocoeffs -- mocoeffs for all of the occupied eigenvalues
        gbasis -- gbasis from a parser object
        volume -- a template Volume object (will not be altered)

    Note: mocoeffs is a list of numpy arrays. The list will be of length 1
          for restricted calculations, and length 2 for unrestricted.
    """
    bfs = getbfs(coords, gbasis)
    
    density = copy.copy(volume)
    density.data = numpy.zeros( density.data.shape, "d")

    conversion = convertor(1,"bohr","Angstrom")
    x = numpy.arange(density.origin[0], density.topcorner[0]+density.spacing[0], density.spacing[0]) / conversion
    y = numpy.arange(density.origin[1], density.topcorner[1]+density.spacing[1], density.spacing[1]) / conversion
    z = numpy.arange(density.origin[2], density.topcorner[2]+density.spacing[2], density.spacing[2]) / conversion

    for mocoeffs in mocoeffslist:
        for mocoeff in mocoeffs:
            wavefn = numpy.zeros( density.data.shape, "d")
            for bs in range(len(bfs)):
                data = numpy.zeros( density.data.shape, "d")
                for i,xval in enumerate(x):
                    for j,yval in enumerate(y):
                        tmp = []
                        for k,zval in enumerate(z):
                            tmp.append(bfs[bs].amp(xval, yval, zval))
                        data[i,j,:] = tmp
                numpy.multiply(data, mocoeff[bs], data)
                numpy.add(wavefn, data, wavefn)
            density.data += wavefn**2
        
    if len(mocoeffslist) == 1:
        density.data = density.data*2. # doubly-occupied
    
    return density


if __name__=="__main__":

    try:
        import psyco
        psyco.full()
    except ImportError:
        pass

    from cclib.parser import ccopen
    import logging
    a = ccopen("../../../data/Gaussian/basicGaussian03/dvb_sp_basis.log")
    a.logger.setLevel(logging.ERROR)
    c = a.parse()
    
    b = ccopen("../../../data/Gaussian/basicGaussian03/dvb_sp.out")
    b.logger.setLevel(logging.ERROR)
    d = b.parse()

    vol = Volume( (-3.0,-6,-2.0), (3.0, 6, 2.0), spacing=(0.25,0.25,0.25) )
    wavefn = wavefunction(d.atomcoords[0], d.mocoeffs[0][d.homos[0]],
                          c.gbasis, vol)
    assert abs(wavefn.integrate())<1E-6 # not necessarily true for all wavefns
    assert abs(wavefn.integrate_square() - 1.00)<1E-3 #   true for all wavefns
    print wavefn.integrate(), wavefn.integrate_square()

    vol = Volume( (-3.0,-6,-2.0), (3.0, 6, 2.0), spacing=(0.25,0.25,0.25) )
    frontierorbs = [d.mocoeffs[0][(d.homos[0]-3):(d.homos[0]+1)]]
    density = electrondensity(d.atomcoords[0], frontierorbs, c.gbasis, vol)
    assert abs(density.integrate()-8.00)<1E-2
    print "Combined Density of 4 Frontier orbitals=",density.integrate()