/usr/share/pyshared/brian/neurongroup.py is in python-brian 1.3.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
'''
Neuron groups
'''
__all__ = ['NeuronGroup', 'linked_var']
from numpy import *
from scipy import rand, linalg, random
from numpy.random import exponential, randint
import copy
from units import *
from threshold import *
import bisect
from reset import *
from clock import *
from stateupdater import *
from inspection import *
from operator import isSequenceType
import types
from utils.circular import *
import magic
from itertools import count
from equations import *
from globalprefs import *
import sys
from brian_unit_prefs import bup
import numpy
from base import *
from group import *
from threshold import select_threshold
from collections import defaultdict
timedarray = None # ugly hack: import this module when it is needed, can't do it here because of order of imports
network = None # ugly hack: import this module when it is needed, can't do it here because of order of imports
class TArray(numpy.ndarray):
'''
This internal class is just used for when Brian sends an array t
to an object. All the elements will be the same in this case, and
you can check for isinstance(arr, TArray) to do optimisations based
on this. This behaviour may change in the future.
'''
def __new__(subtype, arr):
# All numpy.ndarray subclasses need something like this, see
# http://www.scipy.org/Subclasses
return numpy.array(arr, copy=False).view(subtype)
class LinkedVar(object):
def __init__(self, source, var=0, func=None, when='start', clock=None):
self.source = source
self.var = var
self.func = func
self.when = when
self.clock = clock
def linked_var(source, var=0, func=None, when='start', clock=None):
"""
Used for linking one :class:`NeuronGroup` variable to another.
Sample usage::
G = NeuronGroup(...)
H = NeuronGroup(...)
G.V = linked_var(H, 'W')
In this scenario, the variable V in group G will always be updated with
the values from variable W in group H. The groups G and H must be the
same size (although subgroups can be used if they are not the same size).
Arguments:
``source``
The group from which values will be taken.
``var``
The state variable of the source group to take values from.
``func``
An additional function of one argument to pass the source variable
values through, e.g. ``func=lambda x:clip(x,0,Inf)`` to half rectify the
values.
``when``
The time in the main Brian loop at which the copy operation is performed,
as explained in :class:`Network`.
``clock``
The update clock for the copy operation, by default it will use the clock
of the target group.
"""
return LinkedVar(source, var, func, when, clock)
class NeuronGroup(magic.InstanceTracker, ObjectContainer, Group):
"""Group of neurons
Initialised with arguments:
``N``
The number of neurons in the group.
``model``
An object defining the neuron model. It can be
an :class:`Equations` object, a string defining an :class:`Equations` object,
a :class:`StateUpdater` object, or a list or tuple of :class:`Equations` and
strings.
``threshold=None``
A :class:`Threshold` object, a function, a scalar quantity or a string.
If ``threshold`` is a function with one argument, it will be
converted to a :class:`SimpleFunThreshold`, otherwise it will be a
:class:`FunThreshold`. If ``threshold`` is a scalar, then a constant
single valued threshold with that value will be used. In this case,
the variable to apply the threshold to will be guessed. If there is
only one variable, or if you have a variable named one of
``V``, ``Vm``, ``v`` or ``vm`` it will be used. If ``threshold`` is a
string then the appropriate threshold type will be chosen, for example
you could do ``threshold='V>10*mV'``. The string must be a one line
string.
``reset=None``
A :class:`Reset` object, a function, a scalar quantity or a string. If it's a
function, it will be converted to a :class:`FunReset` object. If it's
a scalar, then a constant single valued reset with that value will
be used. In this case,
the variable to apply the reset to will be guessed. If there is
only one variable, or if you have a variable named one of
``V``, ``Vm``, ``v`` or ``vm`` it will be used. If ``reset`` is a
string it should be a series of expressions which are evaluated for
each neuron that is resetting. The series of expressions can be
multiline or separated by a semicolon. For example,
``reset=`Vt+=5*mV; V=Vt'``. Statements involving ``if`` constructions
will often not work because the code is automatically vectorised.
For such constructions, use a function instead of a string.
``refractory=0*ms``, ``min_refractory``, ``max_refractory``
A refractory period, used in combination with the ``reset`` value
if it is a scalar. For constant resets only, you can specify refractory
as an array of length the number of elements in the group, or as a
string, giving the name of a state variable in the group. In the case
of these variable refractory periods, you should specify
``min_refractory`` (optional) and ``max_refractory`` (required).
``clock``
A clock to use for scheduling this :class:`NeuronGroup`, if omitted the
default clock will be used.
``order=1``
The order to use for nonlinear differential equation solvers.
TODO: more details.
``implicit=False``
Whether to use an implicit method for solving the differential
equations. TODO: more details.
``max_delay=0*ms``
The maximum allowable delay (larger values use more memory).
This doesn't usually need to be specified because Connections will update it.
``compile=False``
Whether or not to attempt to compile the differential equation
solvers (into Python code). Typically, for best performance, both ``compile``
and ``freeze`` should be set to ``True`` for nonlinear differential equations.
``freeze=False``
If True, parameters are replaced by their values at the time
of initialization.
``method=None``
If not None, the integration method is forced. Possible values are
linear, nonlinear, Euler, exponential_Euler (overrides implicit and order
keywords).
``unit_checking=True``
Set to ``False`` to bypass unit-checking.
**Methods**
.. method:: subgroup(N)
Returns the next sequential subgroup of ``N`` neurons. See
the section on subgroups below.
.. method:: state(var)
Returns the array of values for state
variable ``var``, with length the number of neurons in the
group.
.. method:: rest()
Sets the neuron state values at rest for their differential
equations.
The following usages are also possible for a group ``G``:
``G[i:j]``
Returns the subgroup of neurons from ``i`` to ``j``.
``len(G)``
Returns the number of neurons in ``G``.
``G.x``
For any valid Python variable name ``x`` corresponding to
a state variable of the the :class:`NeuronGroup`, this
returns the array of values for the state
variable ``x``, as for the :meth:`state` method
above. Writing ``G.x = arr`` for ``arr`` a :class:`TimedArray`
will set the values of variable x to be ``arr(t)`` at time t.
See :class:`TimedArraySetter` for details.
**Subgroups**
A subgroup is a view on a group. It isn't a new group, it's just
a convenient way of referring to a subset of the neurons in an
already defined group. The subset has to be a continguous set of
neurons. They can be overlapping if defined with the slice
notation, or consecutive if defined with the :meth:`subgroup` method.
Subgroups can themselves be subgrouped. Subgroups can be used in
almost all situations exactly as if they were groups, except that
they cannot be passed to the :class:`Network` object.
**Details**
TODO: details of other methods and properties for people
wanting to write extensions?
"""
@check_units(max_delay=second)
def __init__(self, N, model=None, threshold=None, reset=NoReset(),
init=None, refractory=0 * msecond, level=0,
clock=None, order=1, implicit=False, unit_checking=True,
max_delay=0 * msecond, compile=False, freeze=False, method=None,
max_refractory=None,
):#**args): # any reason why **args was included here?
'''
Initializes the group.
'''
self._spiking = True # by default, produces spikes
if bup.use_units: # one additional frame level induced by the decorator
level += 1
# If it is a string, convert to Equations object
if isinstance(model, (str, list, tuple)):
model = Equations(model, level=level + 1)
if isinstance(threshold, str):
if isinstance(model, Equations):
threshold = select_threshold(threshold, model, level=level + 1)
else:
threshold = StringThreshold(threshold, level=level + 1)
if isinstance(reset, str):
if isinstance(model, Equations):
reset = select_reset(reset, model, level=level + 1)
else:
reset = StringReset(reset, level=level + 1)
# Clock
clock = guess_clock(clock)#not needed with protocol checking
self.clock = clock
# Initial state
self._S0 = init
self.staticvars = []
# StateUpdater
if isinstance(model, StateUpdater):
self._state_updater = model # Update mechanism
self._all_units = defaultdict()
elif isinstance(model, Equations):
self._eqs = model
if (init == None) and (model._units == {}):
raise AttributeError, "The group must be initialized."
self._state_updater, var_names = magic_state_updater(model, clock=clock, order=order,
check_units=unit_checking, implicit=implicit,
compile=compile, freeze=freeze,
method=method)
Group.__init__(self, model, N, unit_checking=unit_checking)
self._all_units = model._units
# Converts S0 from dictionary to tuple
if self._S0 == None: # No initialization: 0 with units
S0 = {}
else:
S0 = self._S0.copy()
# Fill missing units
for key, value in model._units.iteritems():
if not key in S0:
S0[key] = 0 * value
self._S0 = [0] * len(var_names)
for var, i in zip(var_names, count()):
self._S0[i] = S0[var]
else:
raise TypeError, "StateUpdater must be specified at initialization."
# TODO: remove temporary unit hack, this makes all state variables dimensionless if no units are specified
# What is this??
if self._S0 is None:
self._S0 = dict((i, 1.) for i in range(len(self._state_updater)))
# Threshold
if isinstance(threshold, Threshold):
self._threshold = threshold
elif type(threshold) == types.FunctionType:
if threshold.func_code.co_argcount == 1:
self._threshold = SimpleFunThreshold(threshold)
else:
self._threshold = FunThreshold(threshold)
elif is_scalar_type(threshold):
# Check unit
if self._S0 != None:
try:
threshold + self._S0[0]
except DimensionMismatchError, inst:
raise DimensionMismatchError("The threshold does not have correct units.", *inst._dims)
self._threshold = Threshold(threshold=threshold)
else: # maybe raise an error?
self._threshold = NoThreshold()
self._spiking = False
# Initialization of the state matrix
if not hasattr(self, '_S'):
self._S = zeros((len(self._state_updater), N))
if self._S0 != None:
for i in range(len(self._state_updater)):
self._S[i, :] = self._S0[i]
# Reset and refractory period
self._variable_refractory_time = False
period_max = 0
if is_scalar_type(reset) or reset.__class__ is Reset:
if reset.__class__ is Reset:
if isinstance(reset.state, str):
numstate = self.get_var_index(reset.state)
else:
numstate = reset.state
reset = reset.resetvalue
else:
numstate = 0
# Check unit
if self._S0 != None:
try:
reset + self._S0[numstate]
except DimensionMismatchError, inst:
raise DimensionMismatchError("The reset does not have correct units.", *inst._dims)
if isinstance(refractory, float):
max_refractory = refractory
else:
if isinstance(refractory, str):
if max_refractory is None:
raise ValueError('Must specify max_refractory if using variable refractoriness.')
self._refractory_variable = refractory
self._refractory_array = None
else:
max_refractory = amax(refractory) * second
self._refractory_variable = None
self._refractory_array = refractory
self._variable_refractory_time = True
# What is this 0.9 ?!! Answer: it's just to check that the refractory period is at least clock.dt otherwise don't bother
if max_refractory > 0.9 * clock.dt: # Refractory period - unit checking is done here
self._resetfun = Refractoriness(period=max_refractory, resetvalue=reset, state=numstate)
period_max = int(max_refractory / clock.dt) + 1
else: # Simple reset
self._resetfun = Reset(reset, state=numstate)
elif type(reset) == types.FunctionType:
self._resetfun = FunReset(reset)
if refractory > 0.9 * clock.dt:
raise ValueError('Refractoriness for custom reset functions not yet implemented, see http://groups.google.fr/group/briansupport/browse_thread/thread/182aaf1af3499a63?hl=en for some options.')
elif hasattr(reset, 'period'): # A reset with refractoriness
# TODO: check unit (in Reset())
self._resetfun = reset # reset function
period_max = int(reset.period / clock.dt) + 1
else: # No reset?
self._resetfun = reset
if hasattr(threshold, 'refractory'): # A threshold with refractoriness
period_max = max(period_max, threshold.refractory + 1)
if max_refractory is None:
max_refractory = refractory
if max_delay < period_max * clock.dt:
max_delay = period_max * clock.dt
self._max_delay = 0
self.set_max_delay(max_delay)
self._next_allowed_spiketime = -ones(N)
self._refractory_time = float(max_refractory) - 0.5 * clock._dt
if not self._variable_refractory_time and max_refractory < 0.9 * clock.dt:
self._use_next_allowed_spiketime_refractoriness = False
else:
self._use_next_allowed_spiketime_refractoriness = True
self._owner = self # owner (for subgroups)
self._subgroup_set = magic.WeakSet()
self._origin = 0 # start index from owner if subgroup
self._next_subgroup = 0 # start index of next subgroup
# ensure that var_index has all the 0,...,N-1 integers as names
if not hasattr(self, 'var_index'):
self.var_index = {}
for i in range(self.num_states()):
self.var_index[i] = i
# these are here for the weave accelerated version of the threshold
# call mechanism.
self._spikesarray = zeros(N, dtype=int)
# various things for optimising
self.__t = TArray(zeros(N))
self._var_array = {}
for i in range(self.num_states()):
self._var_array[i] = self._S[i]
for kk, i in self.var_index.iteritems():
sv = self.state_(i)
if sv.base is self._S:
self._var_array[kk] = sv
# todo: should we have a guarantee that var_index exists (even if it just
# consists of mappings i->i)?
def set_max_delay(self, max_delay):
if hasattr(self, '_owner') and self._owner is not self:
self._owner.set_max_delay(max_delay)
return
_max_delay = int(max_delay / self.clock.dt) + 2 # in time bins
if _max_delay > self._max_delay:
self._max_delay = _max_delay
self.LS = SpikeContainer(self._max_delay,
useweave=get_global_preference('useweave'),
compiler=get_global_preference('weavecompiler')) # Spike storage
# update all subgroups if any exist
if hasattr(self, '_subgroup_set'): # the first time set_max_delay is called this is false
for G in self._owner._subgroup_set.get():
G._max_delay = self._max_delay
G.LS = self.LS
def rest(self):
'''
Sets the variables at rest.
'''
self._state_updater.rest(self)
def reinit(self, states=True):
'''
Resets the variables.
'''
if self._owner is self:
if states:
if self._S0 is not None:
for i in range(len(self._state_updater)):
self._S[i, :] = self._S0[i]
else:
self._S[:] = 0 # State matrix
self._next_allowed_spiketime[:] = -1
self.LS.reinit()
def update(self):
'''
Updates the state variables.
'''
self._state_updater(self) # update the variables
if self._spiking:
spikes = self._threshold(self) # get spikes
if not isinstance(spikes, numpy.ndarray):
spikes = array(spikes, dtype=int)
if self._use_next_allowed_spiketime_refractoriness:
spikes = spikes[self._next_allowed_spiketime[spikes] <= self.clock._t]
if self._variable_refractory_time:
if self._refractory_variable is not None:
refractime = self.state_(self._refractory_variable)
else:
refractime = self._refractory_array
self._next_allowed_spiketime[spikes] = self.clock._t + refractime[spikes]
else:
self._next_allowed_spiketime[spikes] = self.clock._t + self._refractory_time
self.LS.push(spikes) # Store spikes
def get_refractory_indices(self):
return (self._next_allowed_spiketime > self.clock._t).nonzero()[0]
def get_spikes(self, delay=0):
'''
Returns indexes of neurons that spiked at time t-delay*dt.
'''
if self._owner == self:
# Group
# if delay==0:
# return self.LS.lastspikes()
#return self.LS[delay] # last spikes
return self.LS.get_spikes(delay, 0, len(self))
else:
# Subgroup
return self.LS.get_spikes(delay, self._origin, len(self))
# if delay==0:
# ls = self.LS.lastspikes()
# else:
# ls = self.LS[delay]
#ls = self.LS[delay]
# spikes = ls-self._origin
# return spikes[bisect.bisect_left(spikes,0):\
# bisect.bisect_left(spikes,len(self))]
# return ls[bisect.bisect_left(ls,self._origin):\
# bisect.bisect_left(ls,len(self)+self._origin)]-self._origin
def reset(self):
'''
Resets the neurons.
'''
self._resetfun(self)
def subgroup(self, N):
if self._next_subgroup + N > len(self):
raise IndexError, "Subgroup is too large."
P = self[self._next_subgroup:self._next_subgroup + N]
self._next_subgroup += N;
return P
def unit(self, name):
'''
Returns the unit of variable name
'''
if name in self._all_units:
return self._all_units[name]
elif name in self.staticvars:
f = self.staticvars[name]
print f.func_code.co_varnames
print [(var, self.unit(var)) for var in f.func_code.co_varnames]
return get_unit(f(*[1. * self.unit(var) for var in f.func_code.co_varnames]))
elif name == 't': # time
return second
else:
return get_unit(self._S0[self.get_var_index(name)])
def state_(self, name):
if name == 't':
self.__t[:] = self.clock._t
return self.__t
else:
return Group.state_(self, name)
state = state_
def __getitem__(self, i):
if i == -1:
return self[self._S.shape[1] - 1:]
else:
return self[i:i + 1]
def __getslice__(self, i, j):
'''
Creates subgroup (view).
TODO: views for all arrays.
'''
Q = copy.copy(self)
Q._S = self._S[:, i:j]
Q.N = Q._S.shape[1]
Q._origin = self._origin + i
Q._next_subgroup = 0
self._subgroup_set.add(Q)
return Q
def same(self, Q):
'''
Tests if the two groups (subgroups) are of the same kind,
i.e., if they can be added.
This is not used at the moment.
OBSOLETE
'''
# Same class?
if self.__class__ != Q.__class__:
return False
# Check all variables except arrays and a few ones
exceptvar = ['owner', 'nextsubgroup', 'origin']
for v, val in self.__dict__.iteritems():
if not(v in Q.__dict__):
return False
if (not(isinstance(val, ndarray)) and (not v in exceptvar) and (val != Q.__dict__[v])):
return False
for v in Q.__dict__.iterkeys():
if not(v in self.__dict__):
return False
return True
def __repr__(self):
if self._owner == self:
return 'Group of ' + str(len(self)) + ' neurons'
else:
return 'Subgroup of ' + str(len(self)) + ' neurons'
def __setattr__(self, name, val):
global timedarray
if timedarray is None:
import timedarray
if isinstance(val, timedarray.TimedArray):
self.set_var_by_array(name, val)
elif isinstance(val, LinkedVar):
self.link_var(name, val.source, val.var, val.func, val.when, val.clock)
else:
Group.__setattr__(self, name, val)
def link_var(self, var, source, sourcevar, func=None, when='start', clock=None):
global network
if network is None:
import network
if clock is None:
clock = self.clock
# check that var is not an equation (it really should only be a parameter
# but not sure how to make this generic and still work with neurongroups
# that aren't defined by Equations objects)
if hasattr(self, 'staticvars') and var in self.staticvars:
raise ValueError("Cannot set a static variable (equation) with a linked variable.")
selfarr = self.state_(var)
if hasattr(source, 'staticvars') and sourcevar in source.staticvars:
if func is None: func = lambda x: x
@network.network_operation(when=when, clock=clock)
def update_link_var():
selfarr[:] = func(getattr(source, sourcevar))
else:
sourcearr = source.state_(sourcevar)
if func is None:
@network.network_operation(when=when, clock=clock)
def update_link_var():
selfarr[:] = sourcearr
else:
@network.network_operation(when=when, clock=clock)
def update_link_var():
selfarr[:] = func(sourcearr)
self._owner.contained_objects.append(update_link_var)
def set_var_by_array(self, var, arr, times=None, clock=None, start=None, dt=None):
# ugly hack, have to import this here because otherwise the order of imports
# is messed up.
import timedarray
timedarray.set_group_var_by_array(self, var, arr, times=times, clock=clock, start=start, dt=dt)
|