This file is indexed.

/usr/share/doc/python-brian-doc/docs/reference-hears.html is in python-brian-doc 1.3.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Brian hears &mdash; Brian v1.3.1 documentation</title>
    <link rel="stylesheet" href="_static/default.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '',
        VERSION:     '1.3.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  false
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <link rel="top" title="Brian v1.3.1 documentation" href="index.html" />
    <link rel="up" title="Reference" href="reference.html" />
    <link rel="next" title="Magic in Brian" href="reference-magic.html" />
    <link rel="prev" title="Model fitting toolbox" href="reference-modelfitting.html" /> 
  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="reference-magic.html" title="Magic in Brian"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="reference-modelfitting.html" title="Model fitting toolbox"
             accesskey="P">previous</a> |</li>
        <li><a href="index.html">Brian v1.3.1 documentation</a> &raquo;</li>
          <li><a href="reference.html" accesskey="U">Reference</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="brian-hears">
<span id="brian-hears-reference"></span><h1>Brian hears<a class="headerlink" href="#brian-hears" title="Permalink to this headline"></a></h1>
<div class="admonition-see-also admonition seealso">
<p class="first admonition-title">See also</p>
<p class="last">User guide for <a class="reference internal" href="hears.html#brianhears"><em>Brian hears</em></a>.</p>
</div>
<dl class="function">
<dt id="brian.hears.set_default_samplerate">
<tt class="descclassname">brian.hears.</tt><tt class="descname">set_default_samplerate</tt><big>(</big><em>samplerate</em><big>)</big><a class="headerlink" href="#brian.hears.set_default_samplerate" title="Permalink to this definition"></a></dt>
<dd><p>Sets the default samplerate for Brian hears objects, by default 44.1 kHz.</p>
</dd></dl>

<div class="section" id="sounds">
<h2>Sounds<a class="headerlink" href="#sounds" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="brian.hears.Sound">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Sound</tt><a class="headerlink" href="#brian.hears.Sound" title="Permalink to this definition"></a></dt>
<dd><p>Class for working with sounds, including loading/saving, manipulating and playing.</p>
<p>For an overview, see <a class="reference internal" href="hears.html#sounds-overview"><em>Sounds</em></a>.</p>
<p><strong>Initialisation</strong></p>
<p>The following arguments are used to initialise a sound object</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">data</span></tt></dt>
<dd>Can be a filename, an array, a function or a sequence (list or tuple).
If its a filename, the sound file (WAV or AIFF) will be loaded. If its
an array, it should have shape <tt class="docutils literal"><span class="pre">(nsamples,</span> <span class="pre">nchannels)</span></tt>. If its a
function, it should be a function f(t). If its a sequence, the items
in the sequence can be filenames, functions, arrays or Sound objects.
The output will be a multi-channel sound with channels the corresponding
sound for each element of the sequence.</dd>
<dt><tt class="docutils literal"><span class="pre">samplerate=None</span></tt></dt>
<dd>The samplerate, if necessary, will use the default (for an array or
function) or the samplerate of the data (for a filename).</dd>
<dt><tt class="docutils literal"><span class="pre">duration=None</span></tt></dt>
<dd>The duration of the sound, if initialising with a function.</dd>
</dl>
<p><strong>Loading, saving and playing</strong></p>
<dl class="staticmethod">
<dt id="brian.hears.Sound.load">
<em class="property">static </em><tt class="descname">load</tt><big>(</big><em>filename</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.load" title="Permalink to this definition"></a></dt>
<dd><p>Load the file given by filename and returns a Sound object. 
Sound file can be either a .wav or a .aif file.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.save">
<tt class="descname">save</tt><big>(</big><em>filename</em>, <em>normalise=False</em>, <em>samplewidth=2</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.save" title="Permalink to this definition"></a></dt>
<dd><p>Save the sound as a WAV.</p>
<p>If the normalise keyword is set to True, the amplitude of the sound will be
normalised to 1. The samplewidth keyword can be 1 or 2 to save the data as
8 or 16 bit samples.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.play">
<tt class="descname">play</tt><big>(</big><em>normalise=False</em>, <em>sleep=False</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.play" title="Permalink to this definition"></a></dt>
<dd><p>Plays the sound (normalised to avoid clipping if required). If
sleep=True then the function will wait until the sound has finished
playing before returning.</p>
</dd></dl>

<p><strong>Properties</strong></p>
<dl class="attribute">
<dt id="brian.hears.Sound.duration">
<tt class="descname">duration</tt><a class="headerlink" href="#brian.hears.Sound.duration" title="Permalink to this definition"></a></dt>
<dd><p>The length of the sound in seconds.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Sound.nsamples">
<tt class="descname">nsamples</tt><a class="headerlink" href="#brian.hears.Sound.nsamples" title="Permalink to this definition"></a></dt>
<dd><p>The number of samples in the sound.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Sound.nchannels">
<tt class="descname">nchannels</tt><a class="headerlink" href="#brian.hears.Sound.nchannels" title="Permalink to this definition"></a></dt>
<dd><p>The number of channels in the sound.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Sound.times">
<tt class="descname">times</tt><a class="headerlink" href="#brian.hears.Sound.times" title="Permalink to this definition"></a></dt>
<dd><p>An array of times (in seconds) corresponding to each sample.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Sound.left">
<tt class="descname">left</tt><a class="headerlink" href="#brian.hears.Sound.left" title="Permalink to this definition"></a></dt>
<dd><p>The left channel for a stereo sound.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Sound.right">
<tt class="descname">right</tt><a class="headerlink" href="#brian.hears.Sound.right" title="Permalink to this definition"></a></dt>
<dd><p>The right channel for a stereo sound.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.channel">
<tt class="descname">channel</tt><big>(</big><em>n</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.channel" title="Permalink to this definition"></a></dt>
<dd><p>Returns the nth channel of the sound.</p>
</dd></dl>

<p><strong>Generating sounds</strong></p>
<p>All sound generating methods can be used with durations arguments in samples (int) or units (e.g. 500*ms). One can also set the number of channels by setting the keyword argument nchannels to the desired value. Notice that for noise the channels will be generated independantly.</p>
<dl class="staticmethod">
<dt id="brian.hears.Sound.tone">
<em class="property">static </em><tt class="descname">tone</tt><big>(</big><em>frequency</em>, <em>duration</em>, <em>phase=0</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.tone" title="Permalink to this definition"></a></dt>
<dd><p>Returns a pure tone at frequency for duration, using the default
samplerate or the given one. The <tt class="docutils literal"><span class="pre">frequency</span></tt> and <tt class="docutils literal"><span class="pre">phase</span></tt> parameters
can be single values, in which case multiple channels can be
specified with the <tt class="docutils literal"><span class="pre">nchannels</span></tt> argument, or they can be sequences
(lists/tuples/arrays) in which case there is one frequency or phase for
each channel.</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.whitenoise">
<em class="property">static </em><tt class="descname">whitenoise</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.whitenoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns a white noise. If the samplerate is not specified, the global
default value will be used.</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.powerlawnoise">
<em class="property">static </em><tt class="descname">powerlawnoise</tt><big>(</big><em>duration</em>, <em>alpha</em>, <em>samplerate=None</em>, <em>nchannels=1</em>, <em>normalise=False</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.powerlawnoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as 1/(f**alpha).</p>
<p>Sample usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">noise</span> <span class="o">=</span> <span class="n">powerlawnoise</span><span class="p">(</span><span class="mi">200</span><span class="o">*</span><span class="n">ms</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">samplerate</span><span class="o">=</span><span class="mi">44100</span><span class="o">*</span><span class="n">Hz</span><span class="p">)</span>
</pre></div>
</div>
<p>Arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">duration</span></tt> </dt>
<dd>Duration of the desired output.</dd>
<dt><tt class="docutils literal"><span class="pre">alpha</span></tt></dt>
<dd>Power law exponent.</dd>
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>Desired output samplerate</dd>
</dl>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.brownnoise">
<em class="property">static </em><tt class="descname">brownnoise</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em>, <em>normalise=False</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.brownnoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns brown noise, i.e <a class="reference internal" href="#brian.hears.powerlawnoise" title="brian.hears.powerlawnoise"><tt class="xref py py-func docutils literal"><span class="pre">powerlawnoise()</span></tt></a> with alpha=2</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.pinknoise">
<em class="property">static </em><tt class="descname">pinknoise</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em>, <em>normalise=False</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.pinknoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns pink noise, i.e <a class="reference internal" href="#brian.hears.powerlawnoise" title="brian.hears.powerlawnoise"><tt class="xref py py-func docutils literal"><span class="pre">powerlawnoise()</span></tt></a> with alpha=1</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.silence">
<em class="property">static </em><tt class="descname">silence</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.silence" title="Permalink to this definition"></a></dt>
<dd><p>Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.click">
<em class="property">static </em><tt class="descname">click</tt><big>(</big><em>duration</em>, <em>peak=None</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.click" title="Permalink to this definition"></a></dt>
<dd><p>Returns a click of the given duration.</p>
<p>If <tt class="docutils literal"><span class="pre">peak</span></tt> is not specified, the amplitude will be 1, otherwise
<tt class="docutils literal"><span class="pre">peak</span></tt> refers to the peak dB SPL of the click, according to the
formula <tt class="docutils literal"><span class="pre">28e-6*10**(peak/20.)</span></tt>.</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.clicks">
<em class="property">static </em><tt class="descname">clicks</tt><big>(</big><em>duration</em>, <em>n</em>, <em>interval</em>, <em>peak=None</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.clicks" title="Permalink to this definition"></a></dt>
<dd><p>Returns a series of n clicks (see <a class="reference internal" href="#brian.hears.click" title="brian.hears.click"><tt class="xref py py-func docutils literal"><span class="pre">click()</span></tt></a>) separated by interval.</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.harmoniccomplex">
<em class="property">static </em><tt class="descname">harmoniccomplex</tt><big>(</big><em>f0</em>, <em>duration</em>, <em>amplitude=1</em>, <em>phase=0</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.harmoniccomplex" title="Permalink to this definition"></a></dt>
<dd><p>Returns a harmonic complex composed of pure tones at integer multiples
of the fundamental frequency <tt class="docutils literal"><span class="pre">f0</span></tt>. 
The <tt class="docutils literal"><span class="pre">amplitude</span></tt> and
<tt class="docutils literal"><span class="pre">phase</span></tt> keywords can be set to either a single value or an
array of values. In the former case the value is set for all
harmonics, and harmonics up the the sampling frequency are
generated. In the latter each harmonic parameter is set
separately, and the number of harmonics generated corresponds
to the length of the array.</p>
</dd></dl>

<dl class="staticmethod">
<dt id="brian.hears.Sound.vowel">
<em class="property">static </em><tt class="descname">vowel</tt><big>(</big><em>vowel=None</em>, <em>formants=None</em>, <em>pitch=0.1 kHz</em>, <em>duration=1.0 s</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.vowel" title="Permalink to this definition"></a></dt>
<dd><p>Returns an artifically created spoken vowel sound (following the 
source-filter model of speech production) with a given <tt class="docutils literal"><span class="pre">pitch</span></tt>.</p>
<p>The vowel can be specified by either providing <tt class="docutils literal"><span class="pre">vowel</span></tt> as a string
(&#8216;a&#8217;, &#8216;i&#8217; or &#8216;u&#8217;) or by setting <tt class="docutils literal"><span class="pre">formants</span></tt> to a sequence of formant
frequencies.</p>
<p>The returned sound is normalized to a maximum amplitude of 1.</p>
<p>The implementation is based on the MakeVowel function written by Richard
O. Duda, part of the Auditory Toolbox for Matlab by Malcolm Slaney:
<a class="reference external" href="http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/">http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/</a></p>
</dd></dl>

<p><strong>Timing and sequencing</strong></p>
<dl class="staticmethod">
<dt id="brian.hears.Sound.sequence">
<em class="property">static </em><tt class="descname">sequence</tt><big>(</big><em>*sounds</em>, <em>samplerate=None</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.sequence" title="Permalink to this definition"></a></dt>
<dd><p>Returns the sequence of sounds in the list sounds joined together</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.repeat">
<tt class="descname">repeat</tt><big>(</big><em>n</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.repeat" title="Permalink to this definition"></a></dt>
<dd><p>Repeats the sound n times</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.extended">
<tt class="descname">extended</tt><big>(</big><em>duration</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.extended" title="Permalink to this definition"></a></dt>
<dd><p>Returns the Sound with length extended by the given duration, which
can be the number of samples or a length of time in seconds.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.shifted">
<tt class="descname">shifted</tt><big>(</big><em>duration</em>, <em>fractional=False</em>, <em>filter_length=2048</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.shifted" title="Permalink to this definition"></a></dt>
<dd><p>Returns the sound delayed by duration, which can be the number of
samples or a length of time in seconds. Normally, only integer
numbers of samples will be used, but if <tt class="docutils literal"><span class="pre">fractional=True</span></tt> then
the filtering method from
<a class="reference external" href="http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html">http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html</a>
will be used (introducing some small numerical errors). With this
method, you can specify the <tt class="docutils literal"><span class="pre">filter_length</span></tt>, larger values are
slower but more accurate, especially at higher frequencies. The large
default value of 2048 samples provides good accuracy for sounds with
frequencies above 20 Hz, but not for lower frequency sounds. If you are
restricted to high frequency sounds, a smaller value will be more
efficient. Note that if <tt class="docutils literal"><span class="pre">fractional=True</span></tt> then
<tt class="docutils literal"><span class="pre">duration</span></tt> is assumed to be a time not a number of samples.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.resized">
<tt class="descname">resized</tt><big>(</big><em>L</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.resized" title="Permalink to this definition"></a></dt>
<dd><p>Returns the Sound with length extended (or contracted) to have L samples.</p>
</dd></dl>

<p><strong>Slicing</strong></p>
<p>One can slice sound objects in various ways, for example <tt class="docutils literal"><span class="pre">sound[100*ms:200*ms]</span></tt>
returns the part of the sound between 100 ms and 200 ms (not including the
right hand end point). If the sound is less than 200 ms long it will be
zero padded. You can also set values using slicing, e.g.
<tt class="docutils literal"><span class="pre">sound[:50*ms]</span> <span class="pre">=</span> <span class="pre">0</span></tt> will silence the first 50 ms of the sound. The syntax
is the same as usual for Python slicing. In addition, you can select a
subset of the channels by doing, for example, <tt class="docutils literal"><span class="pre">sound[:,</span> <span class="pre">-5:]</span></tt> would be
the last 5 channels. For time indices, either times or samples can be given,
e.g. <tt class="docutils literal"><span class="pre">sound[:100]</span></tt> gives the first 100 samples. In addition, steps can
be used for example to reverse a sound as <tt class="docutils literal"><span class="pre">sound[::-1]</span></tt>.</p>
<p><strong>Arithmetic operations</strong></p>
<p>Standard arithemetical operations and numpy functions work as you would
expect with sounds, e.g. <tt class="docutils literal"><span class="pre">sound1+sound2</span></tt>, <tt class="docutils literal"><span class="pre">3*sound</span></tt> or <tt class="docutils literal"><span class="pre">abs(sound)</span></tt>.</p>
<p><strong>Level</strong></p>
<dl class="attribute">
<dt id="brian.hears.Sound.level">
<tt class="descname">level</tt><a class="headerlink" href="#brian.hears.Sound.level" title="Permalink to this definition"></a></dt>
<dd><p>Can be used to get or set the level of a sound, which should be in dB.
For single channel sounds a value in dB is used, for multiple channel
sounds a value in dB can be used for setting the level (all channels
will be set to the same level), or a list/tuple/array of levels. It
is assumed that the unit of the sound is Pascals.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.atlevel">
<tt class="descname">atlevel</tt><big>(</big><em>level</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.atlevel" title="Permalink to this definition"></a></dt>
<dd><p>Returns the sound at the given level in dB SPL (RMS) assuming array is
in Pascals. <tt class="docutils literal"><span class="pre">level</span></tt> should be a value in dB, or a tuple of levels,
one for each channel.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Sound.maxlevel">
<tt class="descname">maxlevel</tt><a class="headerlink" href="#brian.hears.Sound.maxlevel" title="Permalink to this definition"></a></dt>
<dd><p>Can be used to set or get the maximum level of a sound. For mono
sounds, this is the same as the level, but for multichannel sounds
it is the maximum level across the channels. Relative level differences
will be preserved. The specified level should be a value in dB, and it
is assumed that the unit of the sound is Pascals.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.atmaxlevel">
<tt class="descname">atmaxlevel</tt><big>(</big><em>level</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.atmaxlevel" title="Permalink to this definition"></a></dt>
<dd><p>Returns the sound with the maximum level across channels set to the
given level. Relative level differences will be preserved. The specified
level should be a value in dB and it is assumed that the unit of the
sound is Pascals.</p>
</dd></dl>

<p><strong>Ramping</strong></p>
<dl class="method">
<dt id="brian.hears.Sound.ramp">
<tt class="descname">ramp</tt><big>(</big><em>when='onset'</em>, <em>duration=10.0 ms</em>, <em>envelope=None</em>, <em>inplace=True</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.ramp" title="Permalink to this definition"></a></dt>
<dd><p>Adds a ramp on/off to the sound</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">when='onset'</span></tt></dt>
<dd>Can take values &#8216;onset&#8217;, &#8216;offset&#8217; or &#8216;both&#8217;</dd>
<dt><tt class="docutils literal"><span class="pre">duration=10*ms</span></tt></dt>
<dd>The time over which the ramping happens</dd>
<dt><tt class="docutils literal"><span class="pre">envelope</span></tt></dt>
<dd>A ramping function, if not specified uses <tt class="docutils literal"><span class="pre">sin(pi*t/2)**2</span></tt>. The
function should be a function of one variable <tt class="docutils literal"><span class="pre">t</span></tt> ranging from
0 to 1, and should increase from <tt class="docutils literal"><span class="pre">f(0)=0</span></tt> to <tt class="docutils literal"><span class="pre">f(0)=1</span></tt>. The
reverse is applied for the offset ramp.</dd>
<dt><tt class="docutils literal"><span class="pre">inplace</span></tt></dt>
<dd>Whether to apply ramping to current sound or return a new array.</dd>
</dl>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.ramped">
<tt class="descname">ramped</tt><big>(</big><em>when='onset'</em>, <em>duration=10.0 ms</em>, <em>envelope=None</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.ramped" title="Permalink to this definition"></a></dt>
<dd><p>Returns a ramped version of the sound (see <a class="reference internal" href="#brian.hears.Sound.ramp" title="brian.hears.Sound.ramp"><tt class="xref py py-meth docutils literal"><span class="pre">Sound.ramp()</span></tt></a>).</p>
</dd></dl>

<p><strong>Plotting</strong></p>
<dl class="method">
<dt id="brian.hears.Sound.spectrogram">
<tt class="descname">spectrogram</tt><big>(</big><em>low=None</em>, <em>high=None</em>, <em>log_power=True</em>, <em>other=None</em>, <em>**kwds</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.spectrogram" title="Permalink to this definition"></a></dt>
<dd><p>Plots a spectrogram of the sound</p>
<p>Arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">low=None</span></tt>, <tt class="docutils literal"><span class="pre">high=None</span></tt></dt>
<dd>If these are left unspecified, it shows the full spectrogram,
otherwise it shows only between <tt class="docutils literal"><span class="pre">low</span></tt> and <tt class="docutils literal"><span class="pre">high</span></tt> in Hz.</dd>
<dt><tt class="docutils literal"><span class="pre">log_power=True</span></tt></dt>
<dd>If True the colour represents the log of the power.</dd>
<dt><tt class="docutils literal"><span class="pre">**kwds</span></tt></dt>
<dd>Are passed to Pylab&#8217;s <tt class="docutils literal"><span class="pre">specgram</span></tt> command.</dd>
</dl>
<p>Returns the values returned by pylab&#8217;s <tt class="docutils literal"><span class="pre">specgram</span></tt>, namely
<tt class="docutils literal"><span class="pre">(pxx,</span> <span class="pre">freqs,</span> <span class="pre">bins,</span> <span class="pre">im)</span></tt> where <tt class="docutils literal"><span class="pre">pxx</span></tt> is a 2D array of powers,
<tt class="docutils literal"><span class="pre">freqs</span></tt> is the corresponding frequencies, <tt class="docutils literal"><span class="pre">bins</span></tt> are the time bins,
and <tt class="docutils literal"><span class="pre">im</span></tt> is the image axis.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.Sound.spectrum">
<tt class="descname">spectrum</tt><big>(</big><em>low=None</em>, <em>high=None</em>, <em>log_power=True</em>, <em>display=False</em><big>)</big><a class="headerlink" href="#brian.hears.Sound.spectrum" title="Permalink to this definition"></a></dt>
<dd><p>Returns the spectrum of the sound and optionally plots it.</p>
<p>Arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">low</span></tt>, <tt class="docutils literal"><span class="pre">high</span></tt> </dt>
<dd>If these are left unspecified, it shows the full spectrum,
otherwise it shows only between <tt class="docutils literal"><span class="pre">low</span></tt> and <tt class="docutils literal"><span class="pre">high</span></tt> in Hz.</dd>
<dt><tt class="docutils literal"><span class="pre">log_power=True</span></tt></dt>
<dd>If True it returns the log of the power.</dd>
<dt><tt class="docutils literal"><span class="pre">display=False</span></tt></dt>
<dd>Whether to plot the output.</dd>
</dl>
<p>Returns <tt class="docutils literal"><span class="pre">(Z,</span> <span class="pre">freqs,</span> <span class="pre">phase)</span></tt>
where <tt class="docutils literal"><span class="pre">Z</span></tt> is a 1D array of powers, <tt class="docutils literal"><span class="pre">freqs</span></tt> is the corresponding
frequencies, <tt class="docutils literal"><span class="pre">phase</span></tt> is the unwrapped phase of spectrum.</p>
</dd></dl>

</dd></dl>

<dl class="function">
<dt id="brian.hears.savesound">
<tt class="descclassname">brian.hears.</tt><tt class="descname">savesound</tt><big>(</big><em>sound</em>, <em>filename</em>, <em>normalise=False</em>, <em>samplewidth=2</em><big>)</big><a class="headerlink" href="#brian.hears.savesound" title="Permalink to this definition"></a></dt>
<dd><p>Save the sound as a WAV.</p>
<p>If the normalise keyword is set to True, the amplitude of the sound will be
normalised to 1. The samplewidth keyword can be 1 or 2 to save the data as
8 or 16 bit samples.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.loadsound">
<tt class="descclassname">brian.hears.</tt><tt class="descname">loadsound</tt><big>(</big><em>filename</em><big>)</big><a class="headerlink" href="#brian.hears.loadsound" title="Permalink to this definition"></a></dt>
<dd><p>Load the file given by filename and returns a Sound object. 
Sound file can be either a .wav or a .aif file.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.play">
<tt class="descclassname">brian.hears.</tt><tt class="descname">play</tt><big>(</big><em>*sounds</em>, <em>normalise=False</em>, <em>sleep=False</em><big>)</big><a class="headerlink" href="#brian.hears.play" title="Permalink to this definition"></a></dt>
<dd><p>Plays the sound (normalised to avoid clipping if required). If
sleep=True then the function will wait until the sound has finished
playing before returning.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.whitenoise">
<tt class="descclassname">brian.hears.</tt><tt class="descname">whitenoise</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.whitenoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns a white noise. If the samplerate is not specified, the global
default value will be used.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.powerlawnoise">
<tt class="descclassname">brian.hears.</tt><tt class="descname">powerlawnoise</tt><big>(</big><em>duration</em>, <em>alpha</em>, <em>samplerate=None</em>, <em>nchannels=1</em>, <em>normalise=False</em><big>)</big><a class="headerlink" href="#brian.hears.powerlawnoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as 1/(f**alpha).</p>
<p>Sample usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">noise</span> <span class="o">=</span> <span class="n">powerlawnoise</span><span class="p">(</span><span class="mi">200</span><span class="o">*</span><span class="n">ms</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">samplerate</span><span class="o">=</span><span class="mi">44100</span><span class="o">*</span><span class="n">Hz</span><span class="p">)</span>
</pre></div>
</div>
<p>Arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">duration</span></tt> </dt>
<dd>Duration of the desired output.</dd>
<dt><tt class="docutils literal"><span class="pre">alpha</span></tt></dt>
<dd>Power law exponent.</dd>
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>Desired output samplerate</dd>
</dl>
</dd></dl>

<dl class="function">
<dt id="brian.hears.brownnoise">
<tt class="descclassname">brian.hears.</tt><tt class="descname">brownnoise</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em>, <em>normalise=False</em><big>)</big><a class="headerlink" href="#brian.hears.brownnoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns brown noise, i.e <a class="reference internal" href="#brian.hears.powerlawnoise" title="brian.hears.powerlawnoise"><tt class="xref py py-func docutils literal"><span class="pre">powerlawnoise()</span></tt></a> with alpha=2</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.pinknoise">
<tt class="descclassname">brian.hears.</tt><tt class="descname">pinknoise</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em>, <em>normalise=False</em><big>)</big><a class="headerlink" href="#brian.hears.pinknoise" title="Permalink to this definition"></a></dt>
<dd><p>Returns pink noise, i.e <a class="reference internal" href="#brian.hears.powerlawnoise" title="brian.hears.powerlawnoise"><tt class="xref py py-func docutils literal"><span class="pre">powerlawnoise()</span></tt></a> with alpha=1</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.irns">
<tt class="descclassname">brian.hears.</tt><tt class="descname">irns</tt><big>(</big><em>delay</em>, <em>gain</em>, <em>niter</em>, <em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.irns" title="Permalink to this definition"></a></dt>
<dd><p>Returns an IRN_S noise. The iterated ripple noise is obtained trough
a cascade of gain and delay filtering. 
For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.irno">
<tt class="descclassname">brian.hears.</tt><tt class="descname">irno</tt><big>(</big><em>delay</em>, <em>gain</em>, <em>niter</em>, <em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.irno" title="Permalink to this definition"></a></dt>
<dd><p>Returns an IRN_O noise. The iterated ripple noise is obtained many attenuated and
delayed version of the original broadband noise. 
For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.tone">
<tt class="descclassname">brian.hears.</tt><tt class="descname">tone</tt><big>(</big><em>frequency</em>, <em>duration</em>, <em>phase=0</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.tone" title="Permalink to this definition"></a></dt>
<dd><p>Returns a pure tone at frequency for duration, using the default
samplerate or the given one. The <tt class="docutils literal"><span class="pre">frequency</span></tt> and <tt class="docutils literal"><span class="pre">phase</span></tt> parameters
can be single values, in which case multiple channels can be
specified with the <tt class="docutils literal"><span class="pre">nchannels</span></tt> argument, or they can be sequences
(lists/tuples/arrays) in which case there is one frequency or phase for
each channel.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.click">
<tt class="descclassname">brian.hears.</tt><tt class="descname">click</tt><big>(</big><em>duration</em>, <em>peak=None</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.click" title="Permalink to this definition"></a></dt>
<dd><p>Returns a click of the given duration.</p>
<p>If <tt class="docutils literal"><span class="pre">peak</span></tt> is not specified, the amplitude will be 1, otherwise
<tt class="docutils literal"><span class="pre">peak</span></tt> refers to the peak dB SPL of the click, according to the
formula <tt class="docutils literal"><span class="pre">28e-6*10**(peak/20.)</span></tt>.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.clicks">
<tt class="descclassname">brian.hears.</tt><tt class="descname">clicks</tt><big>(</big><em>duration</em>, <em>n</em>, <em>interval</em>, <em>peak=None</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.clicks" title="Permalink to this definition"></a></dt>
<dd><p>Returns a series of n clicks (see <a class="reference internal" href="#brian.hears.click" title="brian.hears.click"><tt class="xref py py-func docutils literal"><span class="pre">click()</span></tt></a>) separated by interval.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.harmoniccomplex">
<tt class="descclassname">brian.hears.</tt><tt class="descname">harmoniccomplex</tt><big>(</big><em>f0</em>, <em>duration</em>, <em>amplitude=1</em>, <em>phase=0</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.harmoniccomplex" title="Permalink to this definition"></a></dt>
<dd><p>Returns a harmonic complex composed of pure tones at integer multiples
of the fundamental frequency <tt class="docutils literal"><span class="pre">f0</span></tt>. 
The <tt class="docutils literal"><span class="pre">amplitude</span></tt> and
<tt class="docutils literal"><span class="pre">phase</span></tt> keywords can be set to either a single value or an
array of values. In the former case the value is set for all
harmonics, and harmonics up the the sampling frequency are
generated. In the latter each harmonic parameter is set
separately, and the number of harmonics generated corresponds
to the length of the array.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.silence">
<tt class="descclassname">brian.hears.</tt><tt class="descname">silence</tt><big>(</big><em>duration</em>, <em>samplerate=None</em>, <em>nchannels=1</em><big>)</big><a class="headerlink" href="#brian.hears.silence" title="Permalink to this definition"></a></dt>
<dd><p>Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.</p>
</dd></dl>

<dl class="function">
<dt id="brian.hears.sequence">
<tt class="descclassname">brian.hears.</tt><tt class="descname">sequence</tt><big>(</big><em>*sounds</em>, <em>samplerate=None</em><big>)</big><a class="headerlink" href="#brian.hears.sequence" title="Permalink to this definition"></a></dt>
<dd><p>Returns the sequence of sounds in the list sounds joined together</p>
</dd></dl>

<div class="section" id="db">
<span id="index-0"></span><span id="id1"></span><h3>dB<a class="headerlink" href="#db" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt id="brian.hears.dB_type">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">dB_type</tt><a class="headerlink" href="#brian.hears.dB_type" title="Permalink to this definition"></a></dt>
<dd><p>The type of values in dB.</p>
<p>dB values are assumed to be RMS dB SPL assuming that the sound source is
measured in Pascals.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.dB_error">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">dB_error</tt><a class="headerlink" href="#brian.hears.dB_error" title="Permalink to this definition"></a></dt>
<dd><p>Error raised when values in dB are used inconsistently with other units.</p>
</dd></dl>

</div>
</div>
<div class="section" id="filterbanks">
<h2>Filterbanks<a class="headerlink" href="#filterbanks" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="brian.hears.LinearFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">LinearFilterbank</tt><big>(</big><em>source</em>, <em>b</em>, <em>a</em><big>)</big><a class="headerlink" href="#brian.hears.LinearFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Generalised linear filterbank</p>
<p>Initialisation arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>The input to the filterbank, must have the same number of channels or
just a single channel. In the latter case, the channels will be
replicated.</dd>
<dt><tt class="docutils literal"><span class="pre">b</span></tt>, <tt class="docutils literal"><span class="pre">a</span></tt></dt>
<dd>The coeffs b, a must be of shape <tt class="docutils literal"><span class="pre">(nchannels,</span> <span class="pre">m)</span></tt> or
<tt class="docutils literal"><span class="pre">(nchannels,</span> <span class="pre">m,</span> <span class="pre">p)</span></tt>. Here <tt class="docutils literal"><span class="pre">m</span></tt> is
the order of the filters, and <tt class="docutils literal"><span class="pre">p</span></tt> is the number of filters in a
chain (first you apply <tt class="docutils literal"><span class="pre">[:,</span> <span class="pre">:,</span> <span class="pre">0]</span></tt>, then <tt class="docutils literal"><span class="pre">[:,</span> <span class="pre">:,</span> <span class="pre">1]</span></tt>, etc.).</dd>
</dl>
<p>The filter parameters are stored in the modifiable attributes <tt class="docutils literal"><span class="pre">filt_b</span></tt>,
<tt class="docutils literal"><span class="pre">filt_a</span></tt> and <tt class="docutils literal"><span class="pre">filt_state</span></tt> (the variable <tt class="docutils literal"><span class="pre">z</span></tt> in the section below).</p>
<p>Has one method:</p>
<dl class="method">
<dt id="brian.hears.LinearFilterbank.decascade">
<tt class="descname">decascade</tt><big>(</big><em>ncascade=1</em><big>)</big><a class="headerlink" href="#brian.hears.LinearFilterbank.decascade" title="Permalink to this definition"></a></dt>
<dd><p>Reduces cascades of low order filters into smaller cascades of high order filters.</p>
<p><tt class="docutils literal"><span class="pre">ncascade</span></tt> is the number of cascaded filters to use, which should be
a divisor of the original number.</p>
<p>Note that higher order filters are often numerically unstable.</p>
</dd></dl>

<p><strong>Notes</strong></p>
<p>These notes adapted from scipy&#8217;s <tt class="xref py py-func docutils literal"><span class="pre">lfilter()</span></tt> function.</p>
<p>The filterbank is implemented as a direct II transposed structure.
This means that for a single channel and element of the filter cascade,
the output y for an input x is defined by:</p>
<div class="highlight-python"><pre>a[0]*y[m] = b[0]*x[m] + b[1]*x[m-1] + ... + b[m]*x[0]
                      - a[1]*y[m-1] - ... - a[m]*y[0]</pre>
</div>
<p>using the following difference equations:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">y</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">b</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="n">z</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">z</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">b</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="n">z</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">y</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="o">...</span>
<span class="n">z</span><span class="p">[</span><span class="n">m</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">b</span><span class="p">[</span><span class="n">m</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="n">z</span><span class="p">[</span><span class="n">m</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="n">m</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span><span class="o">*</span><span class="n">y</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="n">z</span><span class="p">[</span><span class="n">m</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">b</span><span class="p">[</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">y</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
</pre></div>
</div>
<p>where i is the output sample number.</p>
<p>The rational transfer function describing this filter in the
z-transform domain is:</p>
<div class="highlight-python"><pre>                    -1              -nb
        b[0] + b[1]z  + ... + b[m] z
Y(z) = --------------------------------- X(z)
                    -1              -na
        a[0] + a[1]z  + ... + a[m] z</pre>
</div>
</dd></dl>

<dl class="class">
<dt id="brian.hears.FIRFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">FIRFilterbank</tt><big>(</big><em>source</em>, <em>impulse_response</em>, <em>use_linearfilterbank=False</em>, <em>minimum_buffer_size=None</em><big>)</big><a class="headerlink" href="#brian.hears.FIRFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Finite impulse response filterbank</p>
<p>Initialisation parameters:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source sound or filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">impulse_response</span></tt></dt>
<dd>Either a 1D array providing a single impulse response applied to every
input channel, or a 2D array of shape <tt class="docutils literal"><span class="pre">(nchannels,</span> <span class="pre">ir_length)</span></tt> for
<tt class="docutils literal"><span class="pre">ir_length</span></tt> the number of samples in the impulse response. Note that
if you are using a multichannel sound <tt class="docutils literal"><span class="pre">x</span></tt> as a set of impulse responses,
the array should be <tt class="docutils literal"><span class="pre">impulse_response=array(x.T)</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">minimum_buffer_size=None</span></tt></dt>
<dd>If specified, gives a minimum size to the buffer. By default, for the
FFT convolution based implementation of <tt class="docutils literal"><span class="pre">FIRFilterbank</span></tt>, the minimum
buffer size will be <tt class="docutils literal"><span class="pre">3*ir_length</span></tt>. For maximum efficiency with FFTs,
<tt class="docutils literal"><span class="pre">buffer_size+ir_length</span></tt> should be a power of 2 (otherwise there will
be some zero padding), and <tt class="docutils literal"><span class="pre">buffer_size</span></tt> should be as large as
possible.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.RestructureFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">RestructureFilterbank</tt><big>(</big><em>source</em>, <em>numrepeat=1</em>, <em>type='serial'</em>, <em>numtile=1</em>, <em>indexmapping=None</em><big>)</big><a class="headerlink" href="#brian.hears.RestructureFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank used to restructure channels, including repeating and interleaving.</p>
<p><strong>Standard forms of usage:</strong></p>
<p>Repeat mono source N times:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">RestructureFilterbank</span><span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
</pre></div>
</div>
<p>For a stereo source, N copies of the left channel followed by N copies of
the right channel:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">RestructureFilterbank</span><span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
</pre></div>
</div>
<p>For a stereo source, N copies of the channels tiled as LRLRLR...LR:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">RestructureFilterbank</span><span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">numtile</span><span class="o">=</span><span class="n">N</span><span class="p">)</span>
</pre></div>
</div>
<p>For two stereo sources AB and CD, join them together in serial to form the
output channels in order ABCD:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">RestructureFilterbank</span><span class="p">((</span><span class="n">AB</span><span class="p">,</span> <span class="n">CD</span><span class="p">))</span>
</pre></div>
</div>
<p>For two stereo sources AB and CD, join them together interleaved to form
the output channels in order ACBD:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">RestructureFilterbank</span><span class="p">((</span><span class="n">AB</span><span class="p">,</span> <span class="n">CD</span><span class="p">),</span> <span class="nb">type</span><span class="o">=</span><span class="s">&#39;interleave&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>These arguments can also be combined together, for example to AB and CD
into output channels AABBCCDDAABBCCDDAABBCCDD:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">RestructureFilterbank</span><span class="p">((</span><span class="n">AB</span><span class="p">,</span> <span class="n">CD</span><span class="p">),</span> <span class="mi">2</span><span class="p">,</span> <span class="s">&#39;serial&#39;</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<p>The three arguments are the number of repeats before joining, the joining
type (&#8216;serial&#8217; or &#8216;interleave&#8217;) and the number of tilings after joining.
See below for details.</p>
<p><strong>Initialise arguments:</strong></p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Input source or list of sources.</dd>
<dt><tt class="docutils literal"><span class="pre">numrepeat=1</span></tt></dt>
<dd>Number of times each channel in each of the input sources is repeated
before mixing the source channels. For example, with repeat=2 an input
source with channels <tt class="docutils literal"><span class="pre">AB</span></tt> will be repeated to form <tt class="docutils literal"><span class="pre">AABB</span></tt></dd>
<dt><tt class="docutils literal"><span class="pre">type='serial'</span></tt></dt>
<dd>The method for joining the source channels, the options are <tt class="docutils literal"><span class="pre">'serial'</span></tt>
to join the channels in series, or <tt class="docutils literal"><span class="pre">'interleave'</span></tt> to interleave them.
In the case of <tt class="docutils literal"><span class="pre">'interleave'</span></tt>, each source must have the same number
of channels. An example of serial, if the input sources are <tt class="docutils literal"><span class="pre">abc</span></tt>
and <tt class="docutils literal"><span class="pre">def</span></tt> the output would be <tt class="docutils literal"><span class="pre">abcdef</span></tt>. For interleave, the output
would be <tt class="docutils literal"><span class="pre">adbecf</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">numtile=1</span></tt></dt>
<dd>The number of times the joined channels are tiled, so if the joined
channels are <tt class="docutils literal"><span class="pre">ABC</span></tt> and <tt class="docutils literal"><span class="pre">numtile=3</span></tt> the output will be <tt class="docutils literal"><span class="pre">ABCABCABC</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">indexmapping=None</span></tt></dt>
<dd>Instead of specifying the restructuring via <tt class="docutils literal"><span class="pre">numrepeat,</span> <span class="pre">type,</span> <span class="pre">numtile</span></tt>
you can directly give the mapping of input indices to output indices.
So for a single stereo source input, <tt class="docutils literal"><span class="pre">indexmapping=[1,0]</span></tt> would
reverse left and right. Similarly, with two mono sources,
<tt class="docutils literal"><span class="pre">indexmapping=[1,0]</span></tt> would have channel 0 of the output correspond to
source 1 and channel 1 of the output corresponding to source 0. This is
because the indices are counted in order of channels starting from the
first source and continuing to the last. For example, suppose you had
two sources, each consisting of a stereo sound, say source 0 was
<tt class="docutils literal"><span class="pre">AB</span></tt> and source 1 was <tt class="docutils literal"><span class="pre">CD</span></tt> then <tt class="docutils literal"><span class="pre">indexmapping=[1,</span> <span class="pre">0,</span> <span class="pre">3,</span> <span class="pre">2]</span></tt> would
swap the left and right of each source, but leave the order of the
sources the same, i.e. the output would be <tt class="docutils literal"><span class="pre">BADC</span></tt>.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.Join">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Join</tt><big>(</big><em>*sources</em><big>)</big><a class="headerlink" href="#brian.hears.Join" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that joins the channels of its inputs in series, e.g. with two
input sources with channels AB and CD respectively, the output would have
channels ABCD. You can initialise with multiple sources separated by
commas, or by passing a list of sources.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.Interleave">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Interleave</tt><big>(</big><em>*sources</em><big>)</big><a class="headerlink" href="#brian.hears.Interleave" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that interleaves the channels of its inputs, e.g. with two
input sources with channels AB and CD respectively, the output would have
channels ACBD. You can initialise with multiple sources separated by
commas, or by passing a list of sources.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.Repeat">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Repeat</tt><big>(</big><em>source</em>, <em>numrepeat</em><big>)</big><a class="headerlink" href="#brian.hears.Repeat" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that repeats each channel from its input, e.g. with 3 repeats
channels ABC would map to AAABBBCCC.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.Tile">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Tile</tt><big>(</big><em>source</em>, <em>numtile</em><big>)</big><a class="headerlink" href="#brian.hears.Tile" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that tiles the channels from its input, e.g. with 3 tiles
channels ABC would map to ABCABCABC.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.FunctionFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">FunctionFilterbank</tt><big>(</big><em>source</em>, <em>func</em>, <em>nchannels=None</em>, <em>**params</em><big>)</big><a class="headerlink" href="#brian.hears.FunctionFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that just applies a given function. The function should take
as many arguments as there are sources.</p>
<p>For example, to half-wave rectify inputs:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">FunctionFilterbank</span><span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">clip</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">Inf</span><span class="p">))</span>
</pre></div>
</div>
<p>The syntax <tt class="docutils literal"><span class="pre">lambda</span> <span class="pre">x:</span> <span class="pre">clip(x,</span> <span class="pre">0,</span> <span class="pre">Inf)</span></tt> defines a function object that
takes a single argument <tt class="docutils literal"><span class="pre">x</span></tt> and returns <tt class="docutils literal"><span class="pre">clip(x,</span> <span class="pre">0,</span> <span class="pre">Inf)</span></tt>. The numpy
function <tt class="docutils literal"><span class="pre">clip(x,</span> <span class="pre">low,</span> <span class="pre">high)</span></tt> returns the values of <tt class="docutils literal"><span class="pre">x</span></tt> clipped between
<tt class="docutils literal"><span class="pre">low</span></tt> and <tt class="docutils literal"><span class="pre">high</span></tt> (so if <tt class="docutils literal"><span class="pre">x&lt;low</span></tt> it returns <tt class="docutils literal"><span class="pre">low</span></tt>, if <tt class="docutils literal"><span class="pre">x&gt;high</span></tt> it
returns <tt class="docutils literal"><span class="pre">high</span></tt>, otherwise it returns <tt class="docutils literal"><span class="pre">x</span></tt>). The symbol <tt class="docutils literal"><span class="pre">Inf</span></tt> means
infinity, i.e. no clipping of positive values.</p>
<p><strong>Technical details</strong></p>
<p>Note that functions should operate on arrays, in particular on 2D buffered
segments, which are arrays of shape <tt class="docutils literal"><span class="pre">(bufsize,</span> <span class="pre">nchannels)</span></tt>. Typically,
most standard functions from numpy will work element-wise.</p>
<p>If you want a filterbank that changes the shape of the input (e.g. changes
the number of channels), set the <tt class="docutils literal"><span class="pre">nchannels</span></tt> keyword argument to the
number of output channels.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.SumFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">SumFilterbank</tt><big>(</big><em>source</em>, <em>weights=None</em><big>)</big><a class="headerlink" href="#brian.hears.SumFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Sum filterbanks together with given weight vectors.</p>
<p>For example, to take the sum of two filterbanks:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">SumFilterbank</span><span class="p">((</span><span class="n">fb1</span><span class="p">,</span> <span class="n">fb2</span><span class="p">))</span>
</pre></div>
</div>
<p>To take the difference:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">SumFilterbank</span><span class="p">((</span><span class="n">fb1</span><span class="p">,</span> <span class="n">fb2</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">))</span>
</pre></div>
</div>
</dd></dl>

<dl class="class">
<dt id="brian.hears.DoNothingFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">DoNothingFilterbank</tt><big>(</big><em>source</em><big>)</big><a class="headerlink" href="#brian.hears.DoNothingFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that does nothing to its input.</p>
<p>Useful for removing a set of filters without having to rewrite your code.
Can also be used for simply writing compound derived classes. For example,
if you want a compound Filterbank that does AFilterbank and then
BFilterbank, but you want to encapsulate that into a single class, you
could do:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="k">class</span> <span class="nc">ABFilterbank</span><span class="p">(</span><span class="n">DoNothingFilterbank</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">):</span>
        <span class="n">a</span> <span class="o">=</span> <span class="n">AFilterbank</span><span class="p">(</span><span class="n">source</span><span class="p">)</span>
        <span class="n">b</span> <span class="o">=</span> <span class="n">BFilterbank</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
        <span class="n">DoNothingFilterbank</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
</pre></div>
</div>
<p>However, a more general way of writing compound filterbanks is to use
<a class="reference internal" href="#brian.hears.CombinedFilterbank" title="brian.hears.CombinedFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">CombinedFilterbank</span></tt></a>.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.ControlFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">ControlFilterbank</tt><big>(</big><em>source</em>, <em>inputs</em>, <em>targets</em>, <em>updater</em>, <em>max_interval=None</em><big>)</big><a class="headerlink" href="#brian.hears.ControlFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that can be used for controlling behaviour at runtime</p>
<p>Typically, this class is used to implement a control path in an auditory
model, modifying some filterbank parameters based on the output of other
filterbanks (or the same ones).</p>
<p>The controller has a set of input filterbanks whose output values are used
to modify a set of output filterbanks. The update is done by a user specified
function or class which is passed these output values. The controller should
be inserted as the last bank in a chain.</p>
<p>Initialisation arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>The source filterbank, the values from this are used unmodified as the
output of this filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">inputs</span></tt></dt>
<dd>Either a single filterbank, or sequence of filterbanks which are used
as inputs to the <tt class="docutils literal"><span class="pre">updater</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">targets</span></tt></dt>
<dd>The filterbank or sequence of filterbanks that are modified by the
updater.</dd>
<dt><tt class="docutils literal"><span class="pre">updater</span></tt></dt>
<dd>The function or class which does the updating, see below.</dd>
<dt><tt class="docutils literal"><span class="pre">max_interval</span></tt></dt>
<dd>If specified, ensures that the updater is called at least as often
as this interval (but it may be called more often). Can be specified
as a time or a number of samples.</dd>
</dl>
<p><strong>The updater</strong></p>
<p>The <tt class="docutils literal"><span class="pre">updater</span></tt> argument can be either a function or class instance. If it
is a function, it should have a form like:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="c"># A single input</span>
<span class="k">def</span> <span class="nf">updater</span><span class="p">(</span><span class="nb">input</span><span class="p">):</span>
    <span class="o">...</span>

<span class="c"># Two inputs</span>
<span class="k">def</span> <span class="nf">updater</span><span class="p">(</span><span class="n">input1</span><span class="p">,</span> <span class="n">input2</span><span class="p">):</span>
    <span class="o">...</span>

<span class="c"># Arbitrary number of inputs</span>
<span class="k">def</span> <span class="nf">updater</span><span class="p">(</span><span class="o">*</span><span class="n">inputs</span><span class="p">):</span>
    <span class="o">...</span>
</pre></div>
</div>
<p>Each argument <tt class="docutils literal"><span class="pre">input</span></tt> to the function is a numpy array of shape
<tt class="docutils literal"><span class="pre">(numsamples,</span> <span class="pre">numchannels)</span></tt> where <tt class="docutils literal"><span class="pre">numsamples</span></tt> is the number of samples
just computed, and <tt class="docutils literal"><span class="pre">numchannels</span></tt> is the number of channels in the
corresponding filterbank. The function is not restricted in what it can
do with these inputs.</p>
<p>Functions can be used to implement relatively simple controllers, but for
more complicated situations you may want to maintain some state variables
for example, and in this case you can use a class. The object <tt class="docutils literal"><span class="pre">updater</span></tt>
should be an instance of a class that defines the <tt class="docutils literal"><span class="pre">__call__</span></tt> method
(with the same syntax as above for functions). In addition, you can
define a reinitialisation method <tt class="docutils literal"><span class="pre">reinit()</span></tt> which will be called when
the <tt class="docutils literal"><span class="pre">buffer_init()</span></tt> method is called on the filterbank, although this is
entirely optional.</p>
<p><strong>Example</strong></p>
<p>The following will do a simple form of gain control, where the gain
parameter will drift exponentially towards target_rms/rms with a given time
constant:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="c"># This class implements the gain (see Filterbank for details)</span>
<span class="k">class</span> <span class="nc">GainFilterbank</span><span class="p">(</span><span class="n">Filterbank</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">gain</span><span class="o">=</span><span class="mf">1.0</span><span class="p">):</span>
        <span class="n">Filterbank</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">gain</span> <span class="o">=</span> <span class="n">gain</span>
    <span class="k">def</span> <span class="nf">buffer_apply</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">gain</span><span class="o">*</span><span class="nb">input</span>

<span class="c"># This is the class for the updater object</span>
<span class="k">class</span> <span class="nc">GainController</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">target_rms</span><span class="p">,</span> <span class="n">time_constant</span><span class="p">):</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">target</span> <span class="o">=</span> <span class="n">target</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">target_rms</span> <span class="o">=</span> <span class="n">target_rms</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">time_constant</span> <span class="o">=</span> <span class="n">time_constant</span>
    <span class="k">def</span> <span class="nf">reinit</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">sumsquare</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">numsamples</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
        <span class="n">T</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">/</span><span class="bp">self</span><span class="o">.</span><span class="n">target</span><span class="o">.</span><span class="n">samplerate</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">sumsquare</span> <span class="o">+=</span> <span class="nb">sum</span><span class="p">(</span><span class="nb">input</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">numsamples</span> <span class="o">+=</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span>
        <span class="n">rms</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sumsquare</span><span class="o">/</span><span class="bp">self</span><span class="o">.</span><span class="n">numsamples</span><span class="p">)</span>
        <span class="n">g</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">target</span><span class="o">.</span><span class="n">gain</span>
        <span class="n">g_tgt</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">target_rms</span><span class="o">/</span><span class="n">rms</span>
        <span class="n">tau</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">time_constant</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">target</span><span class="o">.</span><span class="n">gain</span> <span class="o">=</span> <span class="n">g_tgt</span><span class="o">+</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">T</span><span class="o">/</span><span class="n">tau</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">g</span><span class="o">-</span><span class="n">g_tgt</span><span class="p">)</span>
</pre></div>
</div>
<p>And an example of using this with an input <tt class="docutils literal"><span class="pre">source</span></tt>, a target RMS of 0.2
and a time constant of 50 ms, updating every 10 ms:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">gain_fb</span> <span class="o">=</span> <span class="n">GainFilterbank</span><span class="p">(</span><span class="n">source</span><span class="p">)</span>
<span class="n">updater</span> <span class="o">=</span> <span class="n">GainController</span><span class="p">(</span><span class="n">gain_fb</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mi">50</span><span class="o">*</span><span class="n">ms</span><span class="p">)</span>
<span class="n">control</span> <span class="o">=</span> <span class="n">ControlFilterbank</span><span class="p">(</span><span class="n">gain_fb</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">gain_fb</span><span class="p">,</span> <span class="n">updater</span><span class="p">,</span> <span class="mi">10</span><span class="o">*</span><span class="n">ms</span><span class="p">)</span>            
</pre></div>
</div>
</dd></dl>

<dl class="class">
<dt id="brian.hears.CombinedFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">CombinedFilterbank</tt><big>(</big><em>source</em><big>)</big><a class="headerlink" href="#brian.hears.CombinedFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank that encapsulates a chain of filterbanks internally.</p>
<p>This class should mostly be used by people writing extensions to Brian hears
rather than by users directly. The purpose is to take an existing chain of
filterbanks and wrap them up so they appear to the user as a single
filterbank which can be used exactly as any other filterbank.</p>
<p>In order to do this, derive from this class and in your initialisation
follow this pattern:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="k">class</span> <span class="nc">RectifiedGammatone</span><span class="p">(</span><span class="n">CombinedFilterbank</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">cf</span><span class="p">):</span>
        <span class="n">CombinedFilterbank</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">)</span>
        <span class="n">source</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_modified_source</span><span class="p">()</span>
        <span class="c"># At this point, insert your chain of filterbanks acting on</span>
        <span class="c"># the modified source object</span>
        <span class="n">gfb</span> <span class="o">=</span> <span class="n">Gammatone</span><span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">cf</span><span class="p">)</span>
        <span class="n">rectified</span> <span class="o">=</span> <span class="n">FunctionFilterbank</span><span class="p">(</span><span class="n">gfb</span><span class="p">,</span>
                        <span class="k">lambda</span> <span class="nb">input</span><span class="p">:</span> <span class="n">clip</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">Inf</span><span class="p">))</span>
        <span class="c"># Finally, set the output filterbank to be the last in your chain</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">set_output</span><span class="p">(</span><span class="n">fb</span><span class="p">)</span>
</pre></div>
</div>
<p>This combination of a <a class="reference internal" href="#brian.hears.Gammatone" title="brian.hears.Gammatone"><tt class="xref py py-class docutils literal"><span class="pre">Gammatone</span></tt></a> and a rectification via a
<a class="reference internal" href="#brian.hears.FunctionFilterbank" title="brian.hears.FunctionFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">FunctionFilterbank</span></tt></a> can now be used as a single filterbank, for
example:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">x</span> <span class="o">=</span> <span class="n">whitenoise</span><span class="p">(</span><span class="mi">100</span><span class="o">*</span><span class="n">ms</span><span class="p">)</span>
<span class="n">fb</span> <span class="o">=</span> <span class="n">RectifiedGammatone</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="o">*</span><span class="n">kHz</span><span class="p">,</span> <span class="mf">1.5</span><span class="o">*</span><span class="n">kHz</span><span class="p">])</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fb</span><span class="o">.</span><span class="n">process</span><span class="p">()</span>
</pre></div>
</div>
<p><strong>Details</strong></p>
<p>The reason for the <tt class="docutils literal"><span class="pre">get_modified_source()</span></tt> call is that the source
attribute of a filterbank can be changed after creation. The modified source
provides a buffer (in fact, a <a class="reference internal" href="#brian.hears.DoNothingFilterbank" title="brian.hears.DoNothingFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">DoNothingFilterbank</span></tt></a>) so that the
input to the chain of filters defined by the derived class doesn&#8217;t need to
be changed.</p>
</dd></dl>

</div>
<div class="section" id="filterbank-library">
<h2>Filterbank library<a class="headerlink" href="#filterbank-library" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="brian.hears.Gammatone">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Gammatone</tt><big>(</big><em>source</em>, <em>cf</em>, <em>b=1.019</em>, <em>erb_order=1</em>, <em>ear_Q=9.26449</em>, <em>min_bw=24.7</em><big>)</big><a class="headerlink" href="#brian.hears.Gammatone" title="Permalink to this definition"></a></dt>
<dd><p>Bank of gammatone filters.</p>
<p>They are implemented as cascades of four 2nd-order IIR filters (this
8th-order digital filter corresponds to a 4th-order gammatone filter).</p>
<p>The approximated impulse response <img class="math" src="_images/math/f840ba73c6ca23bd7adf3c1541dc317311a801e8.png" alt="\mathrm{IR}"/> is defined as follow
<img class="math" src="_images/math/18ba3453fdaaa13948c0010b65618d9db398171e.png" alt="\mathrm{IR}(t)=t^3\exp(-2\pi b \mathrm{ERB}(f)t)\cos(2\pi f t)"/>
where <img class="math" src="_images/math/2aab6ff8cc839bc6507d1d1fd4fae84fb5ff4405.png" alt="\mathrm{ERB}(f)=24.7+0.108 f"/> [Hz] is the equivalent
rectangular bandwidth of the filter centered at <img class="math" src="_images/math/bb2c93730dbb48558bb3c4738c956c4e8f816437.png" alt="f"/>.</p>
<p>It comes from Slaney&#8217;s exact gammatone implementation (Slaney, M., 1993,
&#8220;An Efficient Implementation of the Patterson-Holdsworth 
Auditory Filter Bank&#8221;. Apple Computer Technical Report #35). The code is
based on
<a class="reference external" href="http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/">Slaney&#8217;s Matlab implementation</a>.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">cf</span></tt></dt>
<dd>List or array of center frequencies.</dd>
<dt><tt class="docutils literal"><span class="pre">b=1.019</span></tt></dt>
<dd>parameter which determines the bandwidth of the filters (and
reciprocally the duration of its impulse response). In particular, the
bandwidth = b.ERB(cf), where ERB(cf) is the equivalent bandwidth at
frequency <tt class="docutils literal"><span class="pre">cf</span></tt>. The default value of <tt class="docutils literal"><span class="pre">b</span></tt> to a best fit
(Patterson et al., 1992). <tt class="docutils literal"><span class="pre">b</span></tt> can either be a scalar and will be the
same for every channel or an array of the same length as <tt class="docutils literal"><span class="pre">cf</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">erb_order=1</span></tt>, <tt class="docutils literal"><span class="pre">ear_Q=9.26449</span></tt>, <tt class="docutils literal"><span class="pre">min_bw=24.7</span></tt></dt>
<dd>Parameters used to compute the ERB bandwidth.
<img class="math" src="_images/math/c9919b5c0227ce7d734c042a4eb0d179e011740c.png" alt="\mathrm{ERB} = ((\mathrm{cf}/\mathrm{ear\_Q})^{\mathrm{erb}\_\mathrm{order}} + \mathrm{min\_bw}^{\mathrm{erb}\_\mathrm{order}})^{(1/\mathrm{erb}\_\mathrm{order})}"/>.
Their default values are the ones recommended in
Glasberg and Moore, 1990.</dd>
<dt><tt class="docutils literal"><span class="pre">cascade=None</span></tt></dt>
<dd>Specify 1 or 2 to use a cascade of 1 or 2 order 8 or 4 filters instead
of 4 2nd order filters. Note that this is more efficient but may
induce numerical stability issues.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.ApproximateGammatone">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">ApproximateGammatone</tt><big>(</big><em>source</em>, <em>cf</em>, <em>bandwidth</em>, <em>order=4</em><big>)</big><a class="headerlink" href="#brian.hears.ApproximateGammatone" title="Permalink to this definition"></a></dt>
<dd><p>Bank of approximate gammatone filters implemented as a cascade of <tt class="docutils literal"><span class="pre">order</span></tt> IIR gammatone filters.</p>
<p>The filter is derived from the sampled version of the complex analog
gammatone impulse response
<img class="math" src="_images/math/6620d34158148bc6af6caa93b53f65f28d1aa9ec.png" alt="g_{\gamma}(t)=t^{\gamma-1} (\lambda e^{i \eta t})^{\gamma}"/> 
where <img class="math" src="_images/math/66981fa3920210c6ad8dbe5e968783d5dd7520c3.png" alt="\gamma"/> corresponds to <tt class="docutils literal"><span class="pre">order</span></tt>, <img class="math" src="_images/math/03a45952f8115322d2879f7d090126f059757ba0.png" alt="\eta"/> defines the
oscillation frequency <tt class="docutils literal"><span class="pre">cf</span></tt>, and <img class="math" src="_images/math/ce4588fd900d02afcbd260bc07f54cce49a7dc4a.png" alt="\lambda"/> defines the bandwidth
parameter.</p>
<p>The design is based on the Hohmann implementation as described in
Hohmann, V., 2002, &#8220;Frequency analysis and synthesis using a Gammatone
filterbank&#8221;, Acta Acustica United with Acustica. The code is based on the
Matlab gammatone implementation from
<a class="reference external" href="http://www.essex.ac.uk/psychology/psy/PEOPLE/meddis/webFolder08/WebIntro.htm">Meddis&#8217; toolbox</a>.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">cf</span></tt></dt>
<dd>List or array of center frequencies.</dd>
<dt><tt class="docutils literal"><span class="pre">bandwidth</span></tt></dt>
<dd>List or array of filters bandwidth corresponding, one for each cf.</dd>
<dt><tt class="docutils literal"><span class="pre">order=4</span></tt></dt>
<dd>The number of 1st-order gammatone filters put in cascade, and therefore
the order the resulting gammatone filters.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.LogGammachirp">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">LogGammachirp</tt><big>(</big><em>source</em>, <em>f</em>, <em>b=1.019</em>, <em>c=1</em>, <em>ncascades=4</em><big>)</big><a class="headerlink" href="#brian.hears.LogGammachirp" title="Permalink to this definition"></a></dt>
<dd><p>Bank of gammachirp filters with a logarithmic frequency sweep.</p>
<p>The approximated impulse response <img class="math" src="_images/math/f840ba73c6ca23bd7adf3c1541dc317311a801e8.png" alt="\mathrm{IR}"/> is defined as follows:
<img class="math" src="_images/math/b85b940c4ccf53665c42ca32212767e083cefa97.png" alt="\mathrm{IR}(t)=t^3e^{-2\pi b \mathrm{ERB}(f)t}\cos(2\pi (f t +c\cdot\ln(t))"/>
where <img class="math" src="_images/math/2aab6ff8cc839bc6507d1d1fd4fae84fb5ff4405.png" alt="\mathrm{ERB}(f)=24.7+0.108 f"/> [Hz] is the equivalent
rectangular bandwidth of the filter centered at <img class="math" src="_images/math/bb2c93730dbb48558bb3c4738c956c4e8f816437.png" alt="f"/>.</p>
<p>The implementation is a cascade of 4 2nd-order IIR gammatone filters 
followed by a cascade of ncascades 2nd-order asymmetric compensation filters
as introduced in Unoki et al. 2001, &#8220;Improvement of an IIR asymmetric 
compensation gammachirp filter&#8221;.</p>
<p>Initialisation parameters:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source sound or filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">f</span></tt></dt>
<dd>List or array of the sweep ending frequencies
(<img class="math" src="_images/math/9c295b5e6997b195a34fa882b13b5306d5472356.png" alt="f_{\mathrm{instantaneous}}=f+c/t"/>).</dd>
<dt><tt class="docutils literal"><span class="pre">b=1.019</span></tt></dt>
<dd>Parameters which determine the duration of the impulse response.
<tt class="docutils literal"><span class="pre">b</span></tt> can either be a scalar and will be the same for every channel or
an array with the same length as <tt class="docutils literal"><span class="pre">f</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">c=1</span></tt></dt>
<dd>The glide slope (or sweep rate) given in Hz/second. The trajectory of
the instantaneous frequency towards f is an upchirp when c&lt;0 and a 
downchirp when c&gt;0.
<tt class="docutils literal"><span class="pre">c</span></tt> can either be a scalar and will be the same for every channel or
an array with the same length as <tt class="docutils literal"><span class="pre">f</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">ncascades=4</span></tt></dt>
<dd>Number of times the asymmetric compensation filter is put in cascade.
The default value comes from Unoki et al. 2001.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.LinearGammachirp">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">LinearGammachirp</tt><big>(</big><em>source</em>, <em>f</em>, <em>time_constant</em>, <em>c</em>, <em>phase=0</em><big>)</big><a class="headerlink" href="#brian.hears.LinearGammachirp" title="Permalink to this definition"></a></dt>
<dd><p>Bank of gammachirp filters with linear frequency sweeps and gamma envelope
as described in Wagner et al. 2009, &#8220;Auditory responses in the barn owl&#8217;s
nucleus laminaris to clicks: impulse response and signal analysis of
neurophonic potential&#8221;, J. Neurophysiol.</p>
<p>The impulse response <img class="math" src="_images/math/f840ba73c6ca23bd7adf3c1541dc317311a801e8.png" alt="\mathrm{IR}"/> is defined as follow
<img class="math" src="_images/math/4067299d3528f51cc5e581c4f6298a7dfaf8d233.png" alt="\mathrm{IR}(t)=t^3e^{-t/\sigma}\cos(2\pi (f t +c/2 t^2)+\phi)"/>
where <img class="math" src="_images/math/fa35d9fc104207e09a712110ac81612c5b279a6c.png" alt="\sigma"/> corresponds to <tt class="docutils literal"><span class="pre">time_constant</span></tt> and <img class="math" src="_images/math/2c175f60eecef1de7560c3bdea495d69f26f719d.png" alt="\phi"/> to
<tt class="docutils literal"><span class="pre">phase</span></tt> (see definition of parameters).</p>
<p>Those filters are implemented as FIR filters using truncated time
representations of gammachirp functions as the impulse response. The impulse
responses, which need to have the same length for every channel, have a
duration of 15 times the biggest time constant. The length of the impulse
response is therefore <tt class="docutils literal"><span class="pre">15*max(time_constant)*sampling_rate</span></tt>.  The impulse
responses are normalized with respect to the transmitted power, i.e.
the rms of the filter taps is 1.</p>
<p>Initialisation parameters:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source sound or filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">f</span></tt></dt>
<dd>List or array of the sweep starting frequencies
(<img class="math" src="_images/math/f5b36086aa267d69c2448eed90c52e1b7adc7db6.png" alt="f_{\mathrm{instantaneous}}=f+ct"/>).</dd>
<dt><tt class="docutils literal"><span class="pre">time_constant</span></tt></dt>
<dd>Determines the duration of the envelope and consequently the length of
the impulse response.</dd>
<dt><tt class="docutils literal"><span class="pre">c=1</span></tt></dt>
<dd>The glide slope (or sweep rate) given in Hz/second. The time-dependent
instantaneous frequency is <tt class="docutils literal"><span class="pre">f+c*t</span></tt> and is therefore going upward when
c&gt;0 and downward when c&lt;0. <tt class="docutils literal"><span class="pre">c</span></tt> can either be a scalar and will be the
same for every channel or an array with the same length as <tt class="docutils literal"><span class="pre">f</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">phase=0</span></tt></dt>
<dd>Phase shift of the carrier.</dd>
</dl>
<p>Has attributes:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">length_impulse_response</span></tt> </dt>
<dd>Number of samples in the impulse responses.</dd>
<dt><tt class="docutils literal"><span class="pre">impulse_response</span></tt></dt>
<dd>Array of shape <tt class="docutils literal"><span class="pre">(nchannels,</span> <span class="pre">length_impulse_response)</span></tt> with each row
being an impulse response for the corresponding channel.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.LinearGaborchirp">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">LinearGaborchirp</tt><big>(</big><em>source</em>, <em>f</em>, <em>time_constant</em>, <em>c</em>, <em>phase=0</em><big>)</big><a class="headerlink" href="#brian.hears.LinearGaborchirp" title="Permalink to this definition"></a></dt>
<dd><p>Bank of gammachirp filters with linear frequency sweeps and gaussian envelope
as described in Wagner et al. 2009, &#8220;Auditory responses in the barn owl&#8217;s 
nucleus laminaris to clicks: impulse response and signal analysis of
neurophonic potential&#8221;, J. Neurophysiol.</p>
<p>The impulse response <img class="math" src="_images/math/f840ba73c6ca23bd7adf3c1541dc317311a801e8.png" alt="\mathrm{IR}"/> is defined as follows:
<img class="math" src="_images/math/2302f659d0447c66c6d023c5f9a4cfc2ec07de9f.png" alt="\mathrm{IR}(t)=e^{-t/2\sigma^2}\cos(2\pi (f t +c/2 t^2)+\phi)"/>,
where <img class="math" src="_images/math/fa35d9fc104207e09a712110ac81612c5b279a6c.png" alt="\sigma"/> corresponds to <tt class="docutils literal"><span class="pre">time_constant</span></tt> and <img class="math" src="_images/math/2c175f60eecef1de7560c3bdea495d69f26f719d.png" alt="\phi"/> to
<tt class="docutils literal"><span class="pre">phase</span></tt> (see definition of parameters).</p>
<p>These filters are implemented as FIR filters using truncated time
representations of gammachirp functions as the impulse response. The impulse
responses, which need to have the same length for every channel, have a
duration of 12 times the biggest time constant. The length of the impulse
response is therefore <tt class="docutils literal"><span class="pre">12*max(time_constant)*sampling_rate</span></tt>. The envelope
is a gaussian function (Gabor filter).  The impulse responses are normalized
with respect to the transmitted  power, i.e. the rms of the filter taps is
1.</p>
<p>Initialisation parameters:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source sound or filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">f</span></tt></dt>
<dd>List or array of the sweep starting frequencies
(<img class="math" src="_images/math/885a4cac7ed354cf7187a3563376228313bd8c75.png" alt="f_{\mathrm{instantaneous}}=f+c*t"/>).</dd>
<dt><tt class="docutils literal"><span class="pre">time_constant</span></tt></dt>
<dd>Determines the duration of the envelope and consequently the length of
the impluse response.</dd>
<dt><tt class="docutils literal"><span class="pre">c=1</span></tt></dt>
<dd>The glide slope (or sweep rate) given ins Hz/second. The time-dependent
instantaneous frequency is <tt class="docutils literal"><span class="pre">f+c*t</span></tt> and is therefore going upward when
c&gt;0 and downward when c&lt;0. <tt class="docutils literal"><span class="pre">c</span></tt> can either be a scalar and will be the
same for every channel or an array with the same length as <tt class="docutils literal"><span class="pre">f</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">phase=0</span></tt></dt>
<dd>Phase shift of the carrier.</dd>
</dl>
<p>Has attributes:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">length_impulse_response</span></tt> </dt>
<dd>Number of sample in the impulse responses.</dd>
<dt><tt class="docutils literal"><span class="pre">impulse_response</span></tt></dt>
<dd>Array of shape <tt class="docutils literal"><span class="pre">(nchannels,</span> <span class="pre">length_impulse_response)</span></tt> with each row
being an impulse response for the corresponding channel.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.IIRFilterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">IIRFilterbank</tt><big>(</big><em>source</em>, <em>nchannels</em>, <em>passband</em>, <em>stopband</em>, <em>gpass</em>, <em>gstop</em>, <em>btype</em>, <em>ftype</em><big>)</big><a class="headerlink" href="#brian.hears.IIRFilterbank" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank of IIR filters. The filters can be low, high, bandstop or
bandpass and be of type Elliptic, Butterworth, Chebyshev etc. The
<tt class="docutils literal"><span class="pre">passband</span></tt>  and <tt class="docutils literal"><span class="pre">stopband</span></tt> can be scalars (for low or high pass) or
pairs of parameters (for stopband and passband) yielding similar filters for
every channel. They can also be arrays of shape <tt class="docutils literal"><span class="pre">(1,</span> <span class="pre">nchannels)</span></tt> for low
and high pass or <tt class="docutils literal"><span class="pre">(2,</span> <span class="pre">nchannels)</span></tt> for stopband and passband yielding
different filters along channels. This class uses the scipy iirdesign
function to generate filter coefficients for every channel.</p>
<p>See the documentation for scipy.signal.iirdesign for more details.</p>
<p>Initialisation parameters:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>The sample rate in Hz.</dd>
<dt><tt class="docutils literal"><span class="pre">nchannels</span></tt></dt>
<dd>The number of channels in the bank</dd>
<dt><tt class="docutils literal"><span class="pre">passband</span></tt>, <tt class="docutils literal"><span class="pre">stopband</span></tt></dt>
<dd>The edges of the pass and stop bands in Hz. For lowpass and highpass
filters, in the case of similar filters for each channel, they are
scalars and passband&lt;stopband for low pass or stopband&gt;passband for a
highpass. For a bandpass or bandstop filter, in the case of similar
filters for each channel, make passband and stopband a list with two
elements, e.g. for a bandpass have <tt class="docutils literal"><span class="pre">passband=[200*Hz,</span> <span class="pre">500*Hz]</span></tt> and
<tt class="docutils literal"><span class="pre">stopband=[100*Hz,</span> <span class="pre">600*Hz]</span></tt>. <tt class="docutils literal"><span class="pre">passband</span></tt> and <tt class="docutils literal"><span class="pre">stopband</span></tt> can also be
arrays of shape <tt class="docutils literal"><span class="pre">(1,</span> <span class="pre">nchannels)</span></tt> for low and high pass or
<tt class="docutils literal"><span class="pre">(2,</span> <span class="pre">nchannels)</span></tt> for stopband and passband yielding different filters
along channels.</dd>
<dt><tt class="docutils literal"><span class="pre">gpass</span></tt></dt>
<dd>The maximum loss in the passband in dB. Can be a scalar or an array of
length <tt class="docutils literal"><span class="pre">nchannels</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">gstop</span></tt></dt>
<dd>The minimum attenuation in the stopband in dB. Can be a scalar or an
array of length <tt class="docutils literal"><span class="pre">nchannels</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">btype</span></tt></dt>
<dd>One of &#8216;low&#8217;, &#8216;high&#8217;, &#8216;bandpass&#8217; or &#8216;bandstop&#8217;.</dd>
<dt><tt class="docutils literal"><span class="pre">ftype</span></tt></dt>
<dd>The type of IIR filter to design:
&#8216;ellip&#8217; (elliptic),
&#8216;butter&#8217; (Butterworth),
&#8216;cheby1&#8217; (Chebyshev I),
&#8216;cheby2&#8217; (Chebyshev II),
&#8216;bessel&#8217; (Bessel).</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.Butterworth">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Butterworth</tt><big>(</big><em>source</em>, <em>nchannels</em>, <em>order</em>, <em>fc</em>, <em>btype='low'</em><big>)</big><a class="headerlink" href="#brian.hears.Butterworth" title="Permalink to this definition"></a></dt>
<dd><p>Filterbank of  low, high, bandstop or bandpass  Butterworth filters. 
The cut-off frequencies or the band frequencies can either be the same for
each channel or different along channels.</p>
<p>Initialisation parameters:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>Sample rate.</dd>
<dt><tt class="docutils literal"><span class="pre">nchannels</span></tt></dt>
<dd>Number of filters in the bank.</dd>
<dt><tt class="docutils literal"><span class="pre">order</span></tt></dt>
<dd>Order of the filters.</dd>
<dt><tt class="docutils literal"><span class="pre">fc</span></tt></dt>
<dd>Cutoff parameter(s) in Hz. For the case of a lowpass or highpass
filterbank, <tt class="docutils literal"><span class="pre">fc</span></tt> is either a scalar (thus the same value for all of
the channels) or an array  of length <tt class="docutils literal"><span class="pre">nchannels</span></tt>. For the case of a
bandpass or bandstop, <tt class="docutils literal"><span class="pre">fc</span></tt> is either a pair of scalar defining the
bandpass or bandstop (thus the same values for all of the channels) or
an array of shape <tt class="docutils literal"><span class="pre">(2,</span> <span class="pre">nchannels)</span></tt> to define a pair for every channel.</dd>
<dt><tt class="docutils literal"><span class="pre">btype</span></tt></dt>
<dd>One of &#8216;low&#8217;, &#8216;high&#8217;, &#8216;bandpass&#8217; or &#8216;bandstop&#8217;.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.Cascade">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Cascade</tt><big>(</big><em>source</em>, <em>filterbank</em>, <em>n</em><big>)</big><a class="headerlink" href="#brian.hears.Cascade" title="Permalink to this definition"></a></dt>
<dd><p>Cascade of <tt class="docutils literal"><span class="pre">n</span></tt> times a linear filterbank.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the new filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">filterbank</span></tt></dt>
<dd>Filterbank object to be put in cascade</dd>
<dt><tt class="docutils literal"><span class="pre">n</span></tt></dt>
<dd>Number of cascades</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.LowPass">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">LowPass</tt><big>(</big><em>source</em>, <em>fc</em><big>)</big><a class="headerlink" href="#brian.hears.LowPass" title="Permalink to this definition"></a></dt>
<dd><p>Bank of 1st-order lowpass filters</p>
<p>The code is based on the code found in the
<a class="reference external" href="http://www.essex.ac.uk/psychology/psy/PEOPLE/meddis/webFolder08/WebIntro.htm">Meddis toolbox</a>. 
It was implemented here to be used in the DRNL cochlear model implementation.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">fc</span></tt></dt>
<dd>Value, list or array (with length = number of channels) of cutoff
frequencies.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.AsymmetricCompensation">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">AsymmetricCompensation</tt><big>(</big><em>source</em>, <em>f</em>, <em>b=1.019</em>, <em>c=1</em>, <em>ncascades=4</em><big>)</big><a class="headerlink" href="#brian.hears.AsymmetricCompensation" title="Permalink to this definition"></a></dt>
<dd><p>Bank of asymmetric compensation filters.</p>
<p>Those filters are meant to be used in cascade with gammatone filters to
approximate gammachirp filters (Unoki et al., 2001, Improvement of
an IIR asymmetric compensation gammachirp filter, Acoust. Sci. &amp; Tech.).
They are implemented a a cascade of low order filters. The code 
is based on the implementation found in the
<a class="reference external" href="http://www.pdn.cam.ac.uk/groups/cnbh/aimmanual/index.html">AIM-MAT toolbox</a>.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the filterbank.</dd>
<dt><tt class="docutils literal"><span class="pre">f</span></tt></dt>
<dd>List or array of the cut off frequencies.</dd>
<dt><tt class="docutils literal"><span class="pre">b=1.019</span></tt></dt>
<dd>Determines the duration of the impulse response.
Can either be a scalar and will be the same for every channel or
an array with the same length as <tt class="docutils literal"><span class="pre">cf</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">c=1</span></tt></dt>
<dd>The glide slope when this filter is used to implement a gammachirp.
Can either be a scalar and will be the same for every channel or
an array with the same length as <tt class="docutils literal"><span class="pre">cf</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">ncascades=4</span></tt></dt>
<dd>The number of time the basic filter is put in cascade.</dd>
</dl>
</dd></dl>

</div>
<div class="section" id="cochlear-model-library">
<h2>Cochlear model library<a class="headerlink" href="#cochlear-model-library" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="brian.hears.DRNL">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">DRNL</tt><big>(</big><em>source</em>, <em>cf</em>, <em>type='human'</em>, <em>param={}</em><big>)</big><a class="headerlink" href="#brian.hears.DRNL" title="Permalink to this definition"></a></dt>
<dd><p>Implementation of the dual resonance nonlinear (DRNL) filter
as described in Lopez-Paveda, E. and Meddis, R.,
&#8220;A human nonlinear cochlear filterbank&#8221;, JASA 2001.</p>
<p>The entire pathway consists of the sum of a linear and a nonlinear pathway.</p>
<p>The linear path consists of a bank of bandpass filters (second order
gammatone), a low pass function, and a gain/attenuation factor, g, in a
cascade.</p>
<p>The nonlinear path is a cascade consisting of a bank of gammatone filters, a
compression function, a second bank of gammatone filters, and a low
pass function, in that order.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the cochlear model.</dd>
<dt><tt class="docutils literal"><span class="pre">cf</span></tt></dt>
<dd>List or array of center frequencies.</dd>
<dt><tt class="docutils literal"><span class="pre">type</span></tt></dt>
<dd><p class="first">defines the parameters set corresponding to a certain fit. It can be
either:</p>
<dl class="last docutils">
<dt><tt class="docutils literal"><span class="pre">type='human'</span></tt> </dt>
<dd>The parameters come from Lopez-Paveda, E. and Meddis, R.., &#8220;A human
nonlinear cochlear filterbank&#8221;, JASA 2001.</dd>
<dt><tt class="docutils literal"><span class="pre">type</span> <span class="pre">='guinea</span> <span class="pre">pig'</span></tt></dt>
<dd>The parameters come from Summer et al., &#8220;A nonlinear filter-bank
model of the guinea-pig cochlear nerve: Rate responses&#8221;, JASA 2003.</dd>
</dl>
</dd>
<dt><tt class="docutils literal"><span class="pre">param</span></tt></dt>
<dd>Dictionary used to overwrite the default parameters given in the
original papers.</dd>
</dl>
<p>The possible parameters to change and their default values for humans (see 
Lopez-Paveda, E. and Meddis, R.,&#8221;A human nonlinear cochlear filterbank&#8221;,
JASA 2001. for notation) are:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">param</span><span class="p">[</span><span class="s">&#39;stape_scale&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">0.00014</span> 
<span class="n">param</span><span class="p">[</span><span class="s">&#39;order_linear&#39;</span><span class="p">]</span><span class="o">=</span><span class="mi">3</span> 
<span class="n">param</span><span class="p">[</span><span class="s">&#39;order_nonlinear&#39;</span><span class="p">]</span><span class="o">=</span><span class="mi">3</span> 
</pre></div>
</div>
<p>from there on the parameters are given in the form
<img class="math" src="_images/math/fd47b7f3eef082b988858ea4d2c6532ea74905ae.png" alt="x=10^{\mathrm{p0}+m\log_{10}(\mathrm{cf})}"/> where
<tt class="docutils literal"><span class="pre">cf</span></tt> is the center frequency:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">param</span><span class="p">[</span><span class="s">&#39;cf_lin_p0&#39;</span><span class="p">]</span><span class="o">=-</span><span class="mf">0.067</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;cf_lin_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">1.016</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;bw_lin_p0&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">0.037</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;bw_lin_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">0.785</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;cf_nl_p0&#39;</span><span class="p">]</span><span class="o">=-</span><span class="mf">0.052</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;cf_nl_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">1.016</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;bw_nl_p0&#39;</span><span class="p">]</span><span class="o">=-</span><span class="mf">0.031</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;bw_nl_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">0.774</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;a_p0&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">1.402</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;a_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">0.819</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;b_p0&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">1.619</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;b_m&#39;</span><span class="p">]</span><span class="o">=-</span><span class="mf">0.818</span>  
<span class="n">param</span><span class="p">[</span><span class="s">&#39;c_p0&#39;</span><span class="p">]</span><span class="o">=-</span><span class="mf">0.602</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;c_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mi">0</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;g_p0&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">4.2</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;g_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">0.48</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;lp_lin_cutoff_p0&#39;</span><span class="p">]</span><span class="o">=-</span><span class="mf">0.067</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;lp_lin_cutoff_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">1.016</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;lp_nl_cutoff_p0&#39;</span><span class="p">]</span><span class="o">=-</span><span class="mf">0.052</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;lp_nl_cutoff_m&#39;</span><span class="p">]</span><span class="o">=</span><span class="mf">1.016</span>   
</pre></div>
</div>
</dd></dl>

<dl class="class">
<dt id="brian.hears.DCGC">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">DCGC</tt><big>(</big><em>source</em>, <em>cf</em>, <em>update_interval</em>, <em>param={}</em><big>)</big><a class="headerlink" href="#brian.hears.DCGC" title="Permalink to this definition"></a></dt>
<dd><p>The compressive gammachirp auditory filter as described in Irino, T. and
Patterson R., &#8220;A compressive gammachirp auditory filter for both
physiological and psychophysical data&#8221;, JASA 2001.</p>
<p>Technical implementation details and notation can be found in Irino, T. and
Patterson R., &#8220;A Dynamic Compressive Gammachirp Auditory Filterbank&#8221;,
IEEE Trans Audio Speech Lang Processing.</p>
<p>The model consists of a control pathway and a signal pathway in parallel.</p>
<p>The control pathway consists of a bank of bandpass filters followed by a
bank of highpass filters (this chain yields a bank of gammachirp filters).</p>
<p>The signal pathway consist of a bank of fix bandpass filters followed by a
bank of highpass filters with variable cutoff frequencies  (this chain
yields a bank of gammachirp filters with a level-dependent bandwidth). The
highpass filters of the signal pathway are controlled 
by the output levels of the two stages of the control pathway.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the cochlear model.</dd>
<dt><tt class="docutils literal"><span class="pre">cf</span></tt></dt>
<dd>List or array of center frequencies.</dd>
<dt><tt class="docutils literal"><span class="pre">update_interval</span></tt></dt>
<dd>Interval in samples controlling how often the band pass filter of the
signal pathway is updated. Smaller values are more accurate, but give
longer computation times.</dd>
<dt><tt class="docutils literal"><span class="pre">param</span></tt></dt>
<dd>Dictionary used to overwrite the default parameters given in the
original paper.</dd>
</dl>
<p>The possible parameters to change and their default values (see Irino, T.
and Patterson R., &#8220;A Dynamic Compressive Gammachirp 
Auditory Filterbank&#8221;, IEEE Trans Audio Speech Lang Processing) are:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">param</span><span class="p">[</span><span class="s">&#39;b1&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1.81</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;c1&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="mf">2.96</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;b2&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">2.17</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;c2&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">2.2</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;decay_tcst&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="o">.</span><span class="mi">5</span><span class="o">*</span><span class="n">ms</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;lev_weight&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="o">.</span><span class="mi">5</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;level_ref&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">50.</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;level_pwr1&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1.5</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;level_pwr2&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="o">.</span><span class="mi">5</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;RMStoSPL&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">30.</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;frat0&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="o">.</span><span class="mi">2330</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;frat1&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="o">.</span><span class="mo">005</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;lct_ERB&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1.5</span>  <span class="c">#value of the shift in ERB frequencies</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;frat_control&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1.08</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;order_gc&#39;</span><span class="p">]</span><span class="o">=</span><span class="mi">4</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;ERBrate&#39;</span><span class="p">]</span><span class="o">=</span> <span class="mf">21.4</span><span class="o">*</span><span class="n">log10</span><span class="p">(</span><span class="mf">4.37</span><span class="o">*</span><span class="n">cf</span><span class="o">/</span><span class="mi">1000</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span> <span class="c"># cf is the center frequency</span>
<span class="n">param</span><span class="p">[</span><span class="s">&#39;ERBwidth&#39;</span><span class="p">]</span><span class="o">=</span> <span class="mf">24.7</span><span class="o">*</span><span class="p">(</span><span class="mf">4.37</span><span class="o">*</span><span class="n">cf</span><span class="o">/</span><span class="mi">1000</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

<dl class="class">
<dt id="brian.hears.TanCarney">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">TanCarney</tt><big>(</big><em>source</em>, <em>cf</em>, <em>update_interval</em>, <em>param={}</em><big>)</big><a class="headerlink" href="#brian.hears.TanCarney" title="Permalink to this definition"></a></dt>
<dd><p>Class implementing the nonlinear auditory filterbank model as described in
Tan, G. and Carney, L., 
&#8220;A phenomenological model for the responses of auditory-nerve
fibers. II. Nonlinear tuning with a frequency glide&#8221;, JASA 2003.</p>
<p>The model consists of a control path and a signal path. The control path
controls both its own bandwidth via a feedback
loop and also the bandwidth of the signal path.</p>
<p>Initialised with arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">source</span></tt></dt>
<dd>Source of the cochlear model.</dd>
<dt><tt class="docutils literal"><span class="pre">cf</span></tt></dt>
<dd>List or array of center frequencies.</dd>
<dt><tt class="docutils literal"><span class="pre">update_interval</span></tt></dt>
<dd>Interval in samples controlling how often the band pass filter of the
signal pathway is updated. Smaller values are more accurate but
increase the computation time.</dd>
<dt><tt class="docutils literal"><span class="pre">param</span></tt></dt>
<dd>Dictionary used to overwrite the default parameters given in the
original paper.</dd>
</dl>
</dd></dl>

</div>
<div class="section" id="filterbank-group">
<h2>Filterbank group<a class="headerlink" href="#filterbank-group" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="brian.hears.FilterbankGroup">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">FilterbankGroup</tt><big>(</big><em>filterbank</em>, <em>targetvar</em>, <em>*args</em>, <em>**kwds</em><big>)</big><a class="headerlink" href="#brian.hears.FilterbankGroup" title="Permalink to this definition"></a></dt>
<dd><p>Allows a Filterbank object to be used as a NeuronGroup</p>
<p>Initialised as a standard <tt class="xref py py-class docutils literal"><span class="pre">NeuronGroup</span></tt> object, but with two
additional arguments at the beginning, and no <tt class="docutils literal"><span class="pre">N</span></tt> (number of neurons)
argument.  The number of neurons in the group will be the number of
channels in the filterbank. (TODO: add reference to interleave/serial
channel stuff here.)</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">filterbank</span></tt></dt>
<dd>The Filterbank object to be used by the group. In fact, any Bufferable
object can be used.</dd>
<dt><tt class="docutils literal"><span class="pre">targetvar</span></tt></dt>
<dd>The target variable to put the filterbank output into.</dd>
</dl>
<p>One additional keyword is available beyond that of <tt class="xref py py-class docutils literal"><span class="pre">NeuronGroup</span></tt>:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">buffersize=32</span></tt></dt>
<dd>The size of the buffered segments to fetch each time. The efficiency
depends on this in an unpredictable way, larger values mean more time
spent in optimised code, but are worse for the cache. In many cases,
the default value is a good tradeoff. Values can be given as a number
of samples, or a length of time in seconds.</dd>
</dl>
<p>Note that if you specify your own <tt class="xref py py-class docutils literal"><span class="pre">Clock</span></tt>, it should have
1/dt=samplerate.</p>
</dd></dl>

</div>
<div class="section" id="functions">
<h2>Functions<a class="headerlink" href="#functions" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt id="brian.hears.erbspace">
<tt class="descclassname">brian.hears.</tt><tt class="descname">erbspace</tt><big>(</big><em>*args</em>, <em>**kwds</em><big>)</big><a class="headerlink" href="#brian.hears.erbspace" title="Permalink to this definition"></a></dt>
<dd><p>Returns the centre frequencies on an ERB scale.</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">low</span></tt>, <tt class="docutils literal"><span class="pre">high</span></tt></dt>
<dd>Lower and upper frequencies</dd>
<dt><tt class="docutils literal"><span class="pre">N</span></tt></dt>
<dd>Number of channels</dd>
<dt><tt class="docutils literal"><span class="pre">earQ=9.26449</span></tt>, <tt class="docutils literal"><span class="pre">minBW=24.7</span></tt>, <tt class="docutils literal"><span class="pre">order=1</span></tt></dt>
<dd>Default Glasberg and Moore parameters.</dd>
</dl>
</dd></dl>

<dl class="function">
<dt id="brian.hears.asymmetric_compensation_coeffs">
<tt class="descclassname">brian.hears.</tt><tt class="descname">asymmetric_compensation_coeffs</tt><big>(</big><em>samplerate</em>, <em>fr</em>, <em>filt_b</em>, <em>filt_a</em>, <em>b</em>, <em>c</em>, <em>p0</em>, <em>p1</em>, <em>p2</em>, <em>p3</em>, <em>p4</em><big>)</big><a class="headerlink" href="#brian.hears.asymmetric_compensation_coeffs" title="Permalink to this definition"></a></dt>
<dd><p>This function is used to generated the coefficient of the asymmetric
compensation filter used for the gammachirp implementation.</p>
</dd></dl>

</div>
<div class="section" id="hrtfs">
<h2>HRTFs<a class="headerlink" href="#hrtfs" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="brian.hears.HRTF">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">HRTF</tt><big>(</big><em>hrir_l</em>, <em>hrir_r=None</em><big>)</big><a class="headerlink" href="#brian.hears.HRTF" title="Permalink to this definition"></a></dt>
<dd><p>Head related transfer function.</p>
<p><strong>Attributes</strong></p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">impulse_response</span></tt></dt>
<dd>The pair of impulse responses (as stereo <a class="reference internal" href="#brian.hears.Sound" title="brian.hears.Sound"><tt class="xref py py-class docutils literal"><span class="pre">Sound</span></tt></a> objects)</dd>
<dt><tt class="docutils literal"><span class="pre">fir</span></tt></dt>
<dd>The impulse responses in a format suitable for using with
<a class="reference internal" href="#brian.hears.FIRFilterbank" title="brian.hears.FIRFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">FIRFilterbank</span></tt></a> (the transpose of <tt class="docutils literal"><span class="pre">impulse_response</span></tt>).</dd>
<dt><tt class="docutils literal"><span class="pre">left</span></tt>, <tt class="docutils literal"><span class="pre">right</span></tt></dt>
<dd>The two HRTFs (mono <a class="reference internal" href="#brian.hears.Sound" title="brian.hears.Sound"><tt class="xref py py-class docutils literal"><span class="pre">Sound</span></tt></a> objects)</dd>
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>The sample rate of the HRTFs.</dd>
</dl>
<p><strong>Methods</strong></p>
<dl class="method">
<dt id="brian.hears.HRTF.apply">
<tt class="descname">apply</tt><big>(</big><em>sound</em><big>)</big><a class="headerlink" href="#brian.hears.HRTF.apply" title="Permalink to this definition"></a></dt>
<dd><p>Returns a stereo <a class="reference internal" href="#brian.hears.Sound" title="brian.hears.Sound"><tt class="xref py py-class docutils literal"><span class="pre">Sound</span></tt></a> object formed by applying the pair of
HRTFs to the mono <tt class="docutils literal"><span class="pre">sound</span></tt> input. Equivalently, you can write
<tt class="docutils literal"><span class="pre">hrtf(sound)</span></tt> for <tt class="docutils literal"><span class="pre">hrtf</span></tt> an <a class="reference internal" href="#brian.hears.HRTF" title="brian.hears.HRTF"><tt class="xref py py-class docutils literal"><span class="pre">HRTF</span></tt></a> object.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.HRTF.filterbank">
<tt class="descname">filterbank</tt><big>(</big><em>source</em>, <em>**kwds</em><big>)</big><a class="headerlink" href="#brian.hears.HRTF.filterbank" title="Permalink to this definition"></a></dt>
<dd><p>Returns an <a class="reference internal" href="#brian.hears.FIRFilterbank" title="brian.hears.FIRFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">FIRFilterbank</span></tt></a> object that can be used to apply
the HRTF as part of a chain of filterbanks.</p>
</dd></dl>

<p>You can get the number of samples in the impulse response with <tt class="docutils literal"><span class="pre">len(hrtf)</span></tt>.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.HRTFSet">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">HRTFSet</tt><big>(</big><em>data</em>, <em>samplerate</em>, <em>coordinates</em><big>)</big><a class="headerlink" href="#brian.hears.HRTFSet" title="Permalink to this definition"></a></dt>
<dd><p>A collection of HRTFs, typically for a single individual.</p>
<p>Normally this object is created automatically by an <a class="reference internal" href="#brian.hears.HRTFDatabase" title="brian.hears.HRTFDatabase"><tt class="xref py py-class docutils literal"><span class="pre">HRTFDatabase</span></tt></a>.</p>
<p><strong>Attributes</strong></p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">hrtf</span></tt></dt>
<dd>A list of <tt class="docutils literal"><span class="pre">HRTF</span></tt> objects for each index.</dd>
<dt><tt class="docutils literal"><span class="pre">num_indices</span></tt></dt>
<dd>The number of HRTF locations. You can also use <tt class="docutils literal"><span class="pre">len(hrtfset)</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">num_samples</span></tt></dt>
<dd>The sample length of each HRTF.</dd>
<dt><tt class="docutils literal"><span class="pre">fir_serial</span></tt>, <tt class="docutils literal"><span class="pre">fir_interleaved</span></tt></dt>
<dd>The impulse responses in a format suitable for using with
<a class="reference internal" href="#brian.hears.FIRFilterbank" title="brian.hears.FIRFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">FIRFilterbank</span></tt></a>, in serial (LLLLL...RRRRR....) or interleaved
(LRLRLR...).</dd>
</dl>
<p><strong>Methods</strong></p>
<dl class="method">
<dt id="brian.hears.HRTFSet.subset">
<tt class="descname">subset</tt><big>(</big><em>condition</em><big>)</big><a class="headerlink" href="#brian.hears.HRTFSet.subset" title="Permalink to this definition"></a></dt>
<dd><p>Generates the subset of the set of HRTFs whose coordinates satisfy
the <tt class="docutils literal"><span class="pre">condition</span></tt>. This should be one of: a boolean array of
length the number of HRTFs in the set, with values
of True/False to indicate if the corresponding HRTF should be included
or not; an integer array with the indices of the HRTFs to keep; or a
function whose argument names are
names of the parameters of the coordinate system, e.g.
<tt class="docutils literal"><span class="pre">condition=lambda</span> <span class="pre">azim:azim&lt;pi/2</span></tt>.</p>
</dd></dl>

<dl class="method">
<dt id="brian.hears.HRTFSet.filterbank">
<tt class="descname">filterbank</tt><big>(</big><em>source</em>, <em>interleaved=False</em>, <em>**kwds</em><big>)</big><a class="headerlink" href="#brian.hears.HRTFSet.filterbank" title="Permalink to this definition"></a></dt>
<dd><p>Returns an <a class="reference internal" href="#brian.hears.FIRFilterbank" title="brian.hears.FIRFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">FIRFilterbank</span></tt></a> object which applies all of the HRTFs
in the set. If <tt class="docutils literal"><span class="pre">interleaved=False</span></tt> then
the channels are arranged in the order LLLL...RRRR..., otherwise they
are arranged in the order LRLRLR....</p>
</dd></dl>

<p>You can access an HRTF by index via <tt class="docutils literal"><span class="pre">hrtfset[index]</span></tt>, or
by its coordinates via <tt class="docutils literal"><span class="pre">hrtfset(coord1=val1,</span> <span class="pre">coord2=val2)</span></tt>.</p>
<p><strong>Initialisation</strong></p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">data</span></tt></dt>
<dd>An array of shape (2, num_indices, num_samples) where data[0,:,:] is
the left ear and data[1,:,:] is the right ear, num_indices is the number
of HRTFs for each ear, and num_samples is the length of the HRTF.</dd>
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>The sample rate for the HRTFs (should have units of Hz).</dd>
<dt><tt class="docutils literal"><span class="pre">coordinates</span></tt></dt>
<dd>A record array of length <tt class="docutils literal"><span class="pre">num_indices</span></tt> giving the coordinates of each
HRTF. You can use <a class="reference internal" href="#brian.hears.make_coordinates" title="brian.hears.make_coordinates"><tt class="xref py py-func docutils literal"><span class="pre">make_coordinates()</span></tt></a> to help with this.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.HRTFDatabase">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">HRTFDatabase</tt><big>(</big><em>samplerate=None</em><big>)</big><a class="headerlink" href="#brian.hears.HRTFDatabase" title="Permalink to this definition"></a></dt>
<dd><p>Base class for databases of HRTFs</p>
<p>Should have an attribute &#8216;subjects&#8217; giving a list of available subjects,
and a method <tt class="docutils literal"><span class="pre">load_subject(subject)</span></tt> which returns an <tt class="docutils literal"><span class="pre">HRTFSet</span></tt> for that
subject.</p>
<p>The initialiser should take (optional) keywords:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>The intended samplerate (resampling will be used if it is wrong). If
left unset, the natural samplerate of the data set will be used.</dd>
</dl>
</dd></dl>

<dl class="function">
<dt id="brian.hears.make_coordinates">
<tt class="descclassname">brian.hears.</tt><tt class="descname">make_coordinates</tt><big>(</big><em>**kwds</em><big>)</big><a class="headerlink" href="#brian.hears.make_coordinates" title="Permalink to this definition"></a></dt>
<dd><p>Creates a numpy record array from the keywords passed to the function.
Each keyword/value pair should be the name of the coordinate the array of
values of that coordinate for each location.
Returns a numpy record array. For example:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">coords</span> <span class="o">=</span> <span class="n">make_coordinates</span><span class="p">(</span><span class="n">azimuth</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">60</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">60</span><span class="p">],</span>
                          <span class="n">elevation</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">30</span><span class="p">])</span>
<span class="k">print</span> <span class="n">coords</span><span class="p">[</span><span class="s">&#39;azimuth&#39;</span><span class="p">]</span>
</pre></div>
</div>
</dd></dl>

<dl class="class">
<dt id="brian.hears.IRCAM_LISTEN">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">IRCAM_LISTEN</tt><big>(</big><em>basedir</em>, <em>compensated=False</em>, <em>samplerate=None</em><big>)</big><a class="headerlink" href="#brian.hears.IRCAM_LISTEN" title="Permalink to this definition"></a></dt>
<dd><p><a class="reference internal" href="#brian.hears.HRTFDatabase" title="brian.hears.HRTFDatabase"><tt class="xref py py-class docutils literal"><span class="pre">HRTFDatabase</span></tt></a> for the IRCAM LISTEN public HRTF database.</p>
<p>For details on the database, see the
<a class="reference external" href="http://recherche.ircam.fr/equipes/salles/listen/">website</a>.</p>
<p>The database object can be initialised with the following arguments:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">basedir</span></tt></dt>
<dd>The directory where the database has been downloaded and extracted,
e.g. <tt class="docutils literal"><span class="pre">r'D:\HRTF\IRCAM'</span></tt>. Multiple directories in a list can be provided as well (e.g IRCAM and IRCAM New).</dd>
<dt><tt class="docutils literal"><span class="pre">compensated=False</span></tt></dt>
<dd>Whether to use the raw or compensated impulse responses.</dd>
<dt><tt class="docutils literal"><span class="pre">samplerate=None</span></tt></dt>
<dd>If specified, you can resample the impulse responses to a different
samplerate, otherwise uses the default 44.1 kHz.</dd>
</dl>
<p>The coordinates are pairs <tt class="docutils literal"><span class="pre">(azim,</span> <span class="pre">elev)</span></tt> where <tt class="docutils literal"><span class="pre">azim</span></tt> ranges from 0
to 345 degrees in steps of 15 degrees, and elev ranges from -45 to 90 in
steps of 15 degrees. After loading the database, the attribute &#8216;subjects&#8217; gives all the subjects number that were detected as installed.</p>
<p><strong>Obtaining the database</strong></p>
<p>The database can be downloaded
<a class="reference external" href="http://recherche.ircam.fr/equipes/salles/listen/download.html">here</a>.
Each subject archive should be extracted to a folder (e.g. IRCAM) with the
names of the subject, e.g. IRCAM/IRC_1002, etc.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.HeadlessDatabase">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">HeadlessDatabase</tt><big>(</big><em>n=None</em>, <em>azim_max=1.5707963267948966</em>, <em>diameter=0.22308 m</em>, <em>itd=None</em>, <em>samplerate=None</em>, <em>fractional_itds=False</em><big>)</big><a class="headerlink" href="#brian.hears.HeadlessDatabase" title="Permalink to this definition"></a></dt>
<dd><p>Database for creating HRTFSet with artificial interaural time-differences</p>
<p>Initialisation keywords:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">n</span></tt>, <tt class="docutils literal"><span class="pre">azim_max</span></tt>, <tt class="docutils literal"><span class="pre">diameter</span></tt></dt>
<dd>Specify the ITDs for two ears separated by distance <tt class="docutils literal"><span class="pre">diameter</span></tt> with
no head. ITDs corresponding to <tt class="docutils literal"><span class="pre">n</span></tt> angles equally spaced between
<tt class="docutils literal"><span class="pre">-azim_max</span></tt> and <tt class="docutils literal"><span class="pre">azim_max</span></tt> are used. The default diameter is that
which gives the maximum ITD as 650 microseconds. The ITDs are computed
with the formula <tt class="docutils literal"><span class="pre">diameter*sin(azim)/speed_of_sound_in_air</span></tt>. In this
case, the generated <a class="reference internal" href="#brian.hears.HRTFSet" title="brian.hears.HRTFSet"><tt class="xref py py-class docutils literal"><span class="pre">HRTFSet</span></tt></a> will have coordinates of <tt class="docutils literal"><span class="pre">azim</span></tt>
and <tt class="docutils literal"><span class="pre">itd</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">itd</span></tt></dt>
<dd>Instead of specifying the keywords above, just give the ITDs directly.
In this case, the generated <a class="reference internal" href="#brian.hears.HRTFSet" title="brian.hears.HRTFSet"><tt class="xref py py-class docutils literal"><span class="pre">HRTFSet</span></tt></a> will have coordinates of
<tt class="docutils literal"><span class="pre">itd</span></tt> only.</dd>
<dt><tt class="docutils literal"><span class="pre">fractional_itds=False</span></tt></dt>
<dd>Set this to <tt class="xref docutils literal"><span class="pre">True</span></tt> to allow ITDs with a fractional multiple of the
timestep <tt class="docutils literal"><span class="pre">1/samplerate</span></tt>. Note that the filters used to do this are
not perfect and so this will introduce a small amount of numerical
error, and so shouldn&#8217;t be used unless this level of timing precision
is required. See <tt class="xref py py-class docutils literal"><span class="pre">FractionalDelay</span></tt> for more details.</dd>
</dl>
<p>To get the HRTFSet, the simplest thing to do is just:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">hrtfset</span> <span class="o">=</span> <span class="n">HeadlessDatabase</span><span class="p">(</span><span class="mi">13</span><span class="p">)</span><span class="o">.</span><span class="n">load_subject</span><span class="p">()</span>
</pre></div>
</div>
<p>The generated ITDs can be returned using the <tt class="docutils literal"><span class="pre">itd</span></tt> attribute of the
<a class="reference internal" href="#brian.hears.HeadlessDatabase" title="brian.hears.HeadlessDatabase"><tt class="xref py py-class docutils literal"><span class="pre">HeadlessDatabase</span></tt></a> object.</p>
<p>If <tt class="docutils literal"><span class="pre">fractional_itds=False</span></tt> then    
Note that the delays induced in the left and right channels are not
symmetric as making them so wastes half the samplerate (if the delay to
the left channel is itd/2 and the delay to the right channel is -itd/2).
Instead, for each channel either the left channel delay is 0 and the right
channel delay is -itd (if itd&lt;0) or the left channel delay is itd and the
right channel delay is 0 (if itd&gt;0).</p>
<p>If <tt class="docutils literal"><span class="pre">fractional_itds=True</span></tt> then delays in the left and right channels will
be symmetric around a global offset of <tt class="docutils literal"><span class="pre">delay_offset</span></tt>.</p>
</dd></dl>

</div>
<div class="section" id="base-classes">
<h2>Base classes<a class="headerlink" href="#base-classes" title="Permalink to this headline"></a></h2>
<p>Useful for understanding more about the internals.</p>
<dl class="class">
<dt id="brian.hears.Bufferable">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Bufferable</tt><a class="headerlink" href="#brian.hears.Bufferable" title="Permalink to this definition"></a></dt>
<dd><p>Base class for Brian.hears classes</p>
<p>Defines a buffering interface of two methods:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">buffer_init()</span></tt></dt>
<dd>Initialise the buffer, should set the time pointer to zero and do
any other initialisation that the object needs.</dd>
<dt><tt class="docutils literal"><span class="pre">buffer_fetch(start,</span> <span class="pre">end)</span></tt></dt>
<dd>Fetch the next samples <tt class="docutils literal"><span class="pre">start:end</span></tt> from the buffer. Value returned
should be an array of shape <tt class="docutils literal"><span class="pre">(end-start,</span> <span class="pre">nchannels)</span></tt>. Can throw an
<tt class="docutils literal"><span class="pre">IndexError</span></tt> exception if it is outside the possible range.</dd>
</dl>
<p>In addition, bufferable objects should define attributes:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">nchannels</span></tt></dt>
<dd>The number of channels in the buffer.</dd>
<dt><tt class="docutils literal"><span class="pre">samplerate</span></tt></dt>
<dd>The sample rate in Hz.</dd>
</dl>
<p>By default, the class will define a default buffering mechanism which can
easily be extended. To extend the default buffering mechanism, simply
implement the method:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">buffer_fetch_next(samples)</span></tt></dt>
<dd>Returns the next <tt class="docutils literal"><span class="pre">samples</span></tt> from the buffer.</dd>
</dl>
<p>The default methods for <tt class="docutils literal"><span class="pre">buffer_init()</span></tt> and <tt class="docutils literal"><span class="pre">buffer_fetch()</span></tt> will
define a buffer cache which will get larger if it needs to to accommodate
a <tt class="docutils literal"><span class="pre">buffer_fetch(start,</span> <span class="pre">end)</span></tt> where <tt class="docutils literal"><span class="pre">end-start</span></tt> is larger than the
current cache. If the filterbank has a <tt class="docutils literal"><span class="pre">minimum_buffer_size</span></tt> attribute,
the internal cache will always have at least this size, and the
<tt class="docutils literal"><span class="pre">buffer_fetch_next(samples)</span></tt> method will always get called with
<tt class="docutils literal"><span class="pre">samples&gt;=minimum_buffer_size</span></tt>. This can be useful to ensure that the
buffering is done efficiently internally, even if the user request
buffered chunks that are too small. If the filterbank has a
<tt class="docutils literal"><span class="pre">maximum_buffer_size</span></tt> attribute then <tt class="docutils literal"><span class="pre">buffer_fetch_next(samples)</span></tt> will
always be called with <tt class="docutils literal"><span class="pre">samples&lt;=maximum_buffer_size</span></tt> - this can be useful
for either memory consumption reasons or for implementing time varying
filters that need to update on a shorter time window than the overall
buffer size.</p>
<p>The following attributes will automatically be maintained:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">self.cached_buffer_start</span></tt>, <tt class="docutils literal"><span class="pre">self.cached_buffer_end</span></tt></dt>
<dd>The start and end of the cached segment of the buffer</dd>
<dt><tt class="docutils literal"><span class="pre">self.cached_buffer_output</span></tt></dt>
<dd>An array of shape <tt class="docutils literal"><span class="pre">((cached_buffer_end-cached_buffer_start,</span> <span class="pre">nchannels)</span></tt>
with the current cached segment of the buffer. Note that this array can
change size.</dd>
</dl>
</dd></dl>

<dl class="class">
<dt id="brian.hears.Filterbank">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">Filterbank</tt><big>(</big><em>source</em><big>)</big><a class="headerlink" href="#brian.hears.Filterbank" title="Permalink to this definition"></a></dt>
<dd><p>Generalised filterbank object</p>
<p><strong>Documentation common to all filterbanks</strong></p>
<p>Filterbanks all share a few basic attributes:</p>
<dl class="attribute">
<dt id="brian.hears.Filterbank.source">
<tt class="descname">source</tt><a class="headerlink" href="#brian.hears.Filterbank.source" title="Permalink to this definition"></a></dt>
<dd><p>The source of the filterbank, a <a class="reference internal" href="#brian.hears.Bufferable" title="brian.hears.Bufferable"><tt class="xref py py-class docutils literal"><span class="pre">Bufferable</span></tt></a> object, e.g. another
<a class="reference internal" href="#brian.hears.Filterbank" title="brian.hears.Filterbank"><tt class="xref py py-class docutils literal"><span class="pre">Filterbank</span></tt></a> or a <a class="reference internal" href="#brian.hears.Sound" title="brian.hears.Sound"><tt class="xref py py-class docutils literal"><span class="pre">Sound</span></tt></a>. It can also be a tuple of 
sources. Can be changed after the object
is created, although note that for some filterbanks this may cause
problems if they do make assumptions about the input based on the first
source object they were passed. If this is causing problems, you can
insert a dummy filterbank (<a class="reference internal" href="#brian.hears.DoNothingFilterbank" title="brian.hears.DoNothingFilterbank"><tt class="xref py py-class docutils literal"><span class="pre">DoNothingFilterbank</span></tt></a>) which is
guaranteed to work if you change the source.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Filterbank.nchannels">
<tt class="descname">nchannels</tt><a class="headerlink" href="#brian.hears.Filterbank.nchannels" title="Permalink to this definition"></a></dt>
<dd><p>The number of channels.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Filterbank.samplerate">
<tt class="descname">samplerate</tt><a class="headerlink" href="#brian.hears.Filterbank.samplerate" title="Permalink to this definition"></a></dt>
<dd><p>The sample rate.</p>
</dd></dl>

<dl class="attribute">
<dt id="brian.hears.Filterbank.duration">
<tt class="descname">duration</tt><a class="headerlink" href="#brian.hears.Filterbank.duration" title="Permalink to this definition"></a></dt>
<dd><p>The duration of the filterbank. If it is not specified by the user, it
is computed by finding the maximum of its source durations. If these are
not specified a <tt class="xref py py-class docutils literal"><span class="pre">KeyError</span></tt> will be raised (for example, using
<a class="reference internal" href="#brian.hears.OnlineSound" title="brian.hears.OnlineSound"><tt class="xref py py-class docutils literal"><span class="pre">OnlineSound</span></tt></a> as a source).</p>
</dd></dl>

<p>To process the output of a filterbank, the following method can be used:</p>
<dl class="method">
<dt id="brian.hears.Filterbank.process">
<tt class="descname">process</tt><big>(</big><em>func=None</em>, <em>duration=None</em>, <em>buffersize=32</em><big>)</big><a class="headerlink" href="#brian.hears.Filterbank.process" title="Permalink to this definition"></a></dt>
<dd><p>Returns the output of the filterbank for the given duration.</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">func</span></tt></dt>
<dd>If a function is specified, it should be a function of one or two
arguments that will be called on each filtered buffered segment
(of shape <tt class="docutils literal"><span class="pre">(buffersize,</span> <span class="pre">nchannels)</span></tt> in order. If the function has
one argument, the argument should be buffered segment. If it has
two arguments, the second argument is the value returned by the
previous application of the function (or 0 for the first
application). In this case, the method will return the final
value returned by the function. See example below.</dd>
<dt><tt class="docutils literal"><span class="pre">duration=None</span></tt></dt>
<dd>The length of time (in seconds) or number of samples to process.
If no <tt class="docutils literal"><span class="pre">func</span></tt> is specified, the method will return an array of shape
<tt class="docutils literal"><span class="pre">(duration,</span> <span class="pre">nchannels)</span></tt> with the filtered outputs. Note that in
many cases, this will be too large to fit in memory, in which you
will want to process the filtered outputs online, by providing
a function <tt class="docutils literal"><span class="pre">func</span></tt> (see example below). If no duration is specified,
the maximum duration of the inputs to the filterbank will be used,
or an error raised if they do not have durations (e.g. in the case
of <a class="reference internal" href="#brian.hears.OnlineSound" title="brian.hears.OnlineSound"><tt class="xref py py-class docutils literal"><span class="pre">OnlineSound</span></tt></a>).</dd>
<dt><tt class="docutils literal"><span class="pre">buffersize=32</span></tt></dt>
<dd>The size of the buffered segments to fetch, as a length of time or
number of samples. 32 samples typically gives reasonably good
performance.</dd>
</dl>
<p>For example, to compute the RMS of each channel in a filterbank, you
would do:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="k">def</span> <span class="nf">sum_of_squares</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">running_sum_of_squares</span><span class="p">):</span>
    <span class="k">return</span> <span class="n">running_sum_of_squares</span><span class="o">+</span><span class="nb">sum</span><span class="p">(</span><span class="nb">input</span><span class="o">**</span><span class="mi">2</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">rms</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">fb</span><span class="o">.</span><span class="n">process</span><span class="p">(</span><span class="n">sum_of_squares</span><span class="p">)</span><span class="o">/</span><span class="n">nsamples</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

<p>Alternatively, the buffer interface can be used, which is described in
more detail below.</p>
<p>Filterbank also defines arithmetical operations for +, -, <tt class="docutils literal"><span class="pre">*</span></tt>, / where the other
operand can be a filterbank or scalar.</p>
<p><strong>Details on the class</strong></p>
<p>This class is a base class not designed to be instantiated. A Filterbank
object should define the interface of <a class="reference internal" href="#brian.hears.Bufferable" title="brian.hears.Bufferable"><tt class="xref py py-class docutils literal"><span class="pre">Bufferable</span></tt></a>, as well as
defining a <tt class="docutils literal"><span class="pre">source</span></tt> attribute. This is normally a <a class="reference internal" href="#brian.hears.Bufferable" title="brian.hears.Bufferable"><tt class="xref py py-class docutils literal"><span class="pre">Bufferable</span></tt></a>
object, but could be an iterable of sources (for example, for filterbanks
that mix or add multiple inputs).</p>
<p>The <tt class="docutils literal"><span class="pre">buffer_fetch_next(samples)</span></tt> method has a default implementation
that fetches the next input, and calls the <tt class="docutils literal"><span class="pre">buffer_apply(input)</span></tt>
method on it, which can be overridden by a derived class. This is typically
the easiest way to implement a new filterbank. Filterbanks with multiple
sources will need to override this default implementation.</p>
<p>There is a default <tt class="docutils literal"><span class="pre">__init__</span></tt> method that can be called by a derived class
that sets the <tt class="docutils literal"><span class="pre">source</span></tt>, <tt class="docutils literal"><span class="pre">nchannels</span></tt> and <tt class="docutils literal"><span class="pre">samplerate</span></tt> from that of the
<tt class="docutils literal"><span class="pre">source</span></tt> object. For multiple sources, the default implementation will
check that each source has the same number of channels and samplerate and
will raise an error if not.</p>
<p>There is a default <tt class="docutils literal"><span class="pre">buffer_init()</span></tt> method that calls <tt class="docutils literal"><span class="pre">buffer_init()</span></tt> on
the <tt class="docutils literal"><span class="pre">source</span></tt> (or list of sources).</p>
<p><strong>Example of deriving a class</strong></p>
<p>The following class takes N input channels and sums them to a single output
channel:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="k">class</span> <span class="nc">AccumulateFilterbank</span><span class="p">(</span><span class="n">Filterbank</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">):</span>
        <span class="n">Filterbank</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">source</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">nchannels</span> <span class="o">=</span> <span class="mi">1</span>
    <span class="k">def</span> <span class="nf">buffer_apply</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
        <span class="k">return</span> <span class="n">reshape</span><span class="p">(</span><span class="nb">sum</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">1</span><span class="p">))</span>
</pre></div>
</div>
<p>Note that the default <tt class="docutils literal"><span class="pre">Filterbank.__init__</span></tt> will set the number of
channels equal to the number of source channels, but we want to change it
to have a single output channel. We use the <tt class="docutils literal"><span class="pre">buffer_apply</span></tt> method which
automatically handles the efficient cacheing of the buffer for us. The
method receives the array <tt class="docutils literal"><span class="pre">input</span></tt> which has shape <tt class="docutils literal"><span class="pre">(bufsize,</span> <span class="pre">nchannels)</span></tt>
and sums over the channels (<tt class="docutils literal"><span class="pre">axis=1</span></tt>). It&#8217;s important to reshape the
output so that it has shape <tt class="docutils literal"><span class="pre">(bufsize,</span> <span class="pre">outputnchannels)</span></tt> so that it can
be used as the input to subsequent filterbanks.</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.BaseSound">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">BaseSound</tt><a class="headerlink" href="#brian.hears.BaseSound" title="Permalink to this definition"></a></dt>
<dd><p>Base class for Sound and OnlineSound</p>
</dd></dl>

<dl class="class">
<dt id="brian.hears.OnlineSound">
<em class="property">class </em><tt class="descclassname">brian.hears.</tt><tt class="descname">OnlineSound</tt><a class="headerlink" href="#brian.hears.OnlineSound" title="Permalink to this definition"></a></dt>
<dd></dd></dl>

</div>
<div class="section" id="options">
<span id="brian-hears-class-diagram"></span><h2>Options<a class="headerlink" href="#options" title="Permalink to this headline"></a></h2>
<p>There are several relevant global options for Brian hears. In particular,
activating scipy Weave support with the <tt class="docutils literal"><span class="pre">useweave=True</span></tt> will give considerably
faster linear filtering. See <a class="reference internal" href="reference-preferences.html#preferences"><em>Preferences</em></a> and <a class="reference internal" href="compiledcode.html#compiled-code"><em>Compiled code</em></a> for
more details.</p>
</div>
<div class="section" id="class-diagram">
<h2>Class diagram<a class="headerlink" href="#class-diagram" title="Permalink to this headline"></a></h2>
<p class="graphviz">
<img src="_images/inheritance-36b9ee188aea274972f9b8bbb356b32597e0fdaa.png" alt="Inheritance diagram of Sound, OnlineSound, Filterbank, LinearFilterbank, Gammatone, ApproximateGammatone, LogGammachirp, LinearGammachirp, LinearGaborchirp, Cascade, IIRFilterbank, Butterworth, LowPass, FIRFilterbank, RestructureFilterbank, Join, Interleave, Repeat, Tile, FunctionFilterbank, SumFilterbank, DoNothingFilterbank, ControlFilterbank, CombinedFilterbank, DRNL, DCGC, TanCarney, AsymmetricCompensation, HRTFDatabase, IRCAM_LISTEN, HeadlessDatabase" class="inheritance"/>
</p>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="index.html">
              <img class="logo" src="_static/brian-logo.png" alt="Logo"/>
            </a></p>
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">Brian hears</a><ul>
<li><a class="reference internal" href="#sounds">Sounds</a><ul>
<li><a class="reference internal" href="#db">dB</a></li>
</ul>
</li>
<li><a class="reference internal" href="#filterbanks">Filterbanks</a></li>
<li><a class="reference internal" href="#filterbank-library">Filterbank library</a></li>
<li><a class="reference internal" href="#cochlear-model-library">Cochlear model library</a></li>
<li><a class="reference internal" href="#filterbank-group">Filterbank group</a></li>
<li><a class="reference internal" href="#functions">Functions</a></li>
<li><a class="reference internal" href="#hrtfs">HRTFs</a></li>
<li><a class="reference internal" href="#base-classes">Base classes</a></li>
<li><a class="reference internal" href="#options">Options</a></li>
<li><a class="reference internal" href="#class-diagram">Class diagram</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="reference-modelfitting.html"
                        title="previous chapter">Model fitting toolbox</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="reference-magic.html"
                        title="next chapter">Magic in Brian</a></p>
<div id="searchbox" style="display: none">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="reference-magic.html" title="Magic in Brian"
             >next</a> |</li>
        <li class="right" >
          <a href="reference-modelfitting.html" title="Model fitting toolbox"
             >previous</a> |</li>
        <li><a href="index.html">Brian v1.3.1 documentation</a> &raquo;</li>
          <li><a href="reference.html" >Reference</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2008, Romain Brette, Dan Goodman.
      Last updated on Feb 19, 2012.
      Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.0.8.
    </div>
  </body>
</html>