This file is indexed.

/usr/share/doc/python-brian-doc/docs/developer-simulationprinciples.html is in python-brian-doc 1.3.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Simulation principles &mdash; Brian v1.3.1 documentation</title>
    <link rel="stylesheet" href="_static/default.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '',
        VERSION:     '1.3.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  false
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <link rel="top" title="Brian v1.3.1 documentation" href="index.html" />
    <link rel="up" title="Developer’s guide" href="developer.html" />
    <link rel="next" title="Main code structure" href="developer-codestructure.html" />
    <link rel="prev" title="Guidelines" href="developer-guidelines.html" /> 
  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="developer-codestructure.html" title="Main code structure"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="developer-guidelines.html" title="Guidelines"
             accesskey="P">previous</a> |</li>
        <li><a href="index.html">Brian v1.3.1 documentation</a> &raquo;</li>
          <li><a href="developer.html" accesskey="U">Developer&#8217;s guide</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="simulation-principles">
<h1>Simulation principles<a class="headerlink" href="#simulation-principles" title="Permalink to this headline"></a></h1>
<p>The following paper outlines the principles of Brian simulation: Goodman, D and
Brette R (2008),
<a class="reference external" href="http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/005.2008/">Brian: a simulator for spiking neural networks in Python</a>,
Front. Neuroinform. doi:10.3389/neuro.11.005.2008.</p>
<p>This one describes the simulation algorithms, which are based on vectorisation:
Brette R and Goodman, DF,
<a class="reference external" href="http://www.briansimulator.org/WordPress/wp-content/uploads/2010/10/algorithms-preprint.pdf">Vectorised algorithms for spiking neural network simulation</a>,
Neural Computation (in press).</p>
<div class="section" id="sample-script">
<h2>Sample script<a class="headerlink" href="#sample-script" title="Permalink to this headline"></a></h2>
<p>Below we present a Brian script, and a translation into pure Python to
illustrate the basic principles of Brian simulations.</p>
<div class="section" id="original-brian-script">
<h3>Original Brian script<a class="headerlink" href="#original-brian-script" title="Permalink to this headline"></a></h3>
<p>A script in Brian:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="sd">&#39;&#39;&#39;</span>
<span class="sd">Very short example program.</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="kn">from</span> <span class="nn">brian</span> <span class="kn">import</span> <span class="o">*</span>
<span class="kn">from</span> <span class="nn">time</span> <span class="kn">import</span> <span class="n">time</span>

<span class="n">N</span><span class="o">=</span><span class="mi">10000</span>        <span class="c"># number of neurons</span>
<span class="n">Ne</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">N</span><span class="o">*</span><span class="mf">0.8</span><span class="p">)</span> <span class="c"># excitatory neurons</span>
<span class="n">Ni</span><span class="o">=</span><span class="n">N</span><span class="o">-</span><span class="n">Ne</span>       <span class="c"># inhibitory neurons</span>
<span class="n">p</span><span class="o">=</span><span class="mf">80.</span><span class="o">/</span><span class="n">N</span>
<span class="n">duration</span><span class="o">=</span><span class="mi">1000</span><span class="o">*</span><span class="n">ms</span>

<span class="n">eqs</span><span class="o">=</span><span class="s">&#39;&#39;&#39;</span>
<span class="s">dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt</span>
<span class="s">dge/dt = -ge/(5*ms) : volt</span>
<span class="s">dgi/dt = -gi/(10*ms) : volt</span>
<span class="s">&#39;&#39;&#39;</span>

<span class="n">P</span><span class="o">=</span><span class="n">NeuronGroup</span><span class="p">(</span><span class="n">N</span><span class="p">,</span><span class="n">model</span><span class="o">=</span><span class="n">eqs</span><span class="p">,</span>
              <span class="n">threshold</span><span class="o">=-</span><span class="mi">50</span><span class="o">*</span><span class="n">mV</span><span class="p">,</span><span class="n">reset</span><span class="o">=-</span><span class="mi">60</span><span class="o">*</span><span class="n">mV</span><span class="p">)</span>
<span class="n">P</span><span class="o">.</span><span class="n">v</span><span class="o">=-</span><span class="mi">60</span><span class="o">*</span><span class="n">mV</span><span class="o">+</span><span class="mi">10</span><span class="o">*</span><span class="n">mV</span><span class="o">*</span><span class="n">rand</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">P</span><span class="p">))</span>
<span class="n">Pe</span><span class="o">=</span><span class="n">P</span><span class="o">.</span><span class="n">subgroup</span><span class="p">(</span><span class="n">Ne</span><span class="p">)</span>
<span class="n">Pi</span><span class="o">=</span><span class="n">P</span><span class="o">.</span><span class="n">subgroup</span><span class="p">(</span><span class="n">Ni</span><span class="p">)</span>

<span class="n">Ce</span><span class="o">=</span><span class="n">Connection</span><span class="p">(</span><span class="n">Pe</span><span class="p">,</span><span class="n">P</span><span class="p">,</span><span class="s">&#39;ge&#39;</span><span class="p">,</span><span class="n">weight</span><span class="o">=</span><span class="mf">1.62</span><span class="o">*</span><span class="n">mV</span><span class="p">,</span><span class="n">sparseness</span><span class="o">=</span><span class="n">p</span><span class="p">)</span>
<span class="n">Ci</span><span class="o">=</span><span class="n">Connection</span><span class="p">(</span><span class="n">Pi</span><span class="p">,</span><span class="n">P</span><span class="p">,</span><span class="s">&#39;gi&#39;</span><span class="p">,</span><span class="n">weight</span><span class="o">=-</span><span class="mi">9</span><span class="o">*</span><span class="n">mV</span><span class="p">,</span><span class="n">sparseness</span><span class="o">=</span><span class="n">p</span><span class="p">)</span>

<span class="n">M</span><span class="o">=</span><span class="n">SpikeMonitor</span><span class="p">(</span><span class="n">P</span><span class="p">)</span>
<span class="n">trace</span><span class="o">=</span><span class="n">StateMonitor</span><span class="p">(</span><span class="n">P</span><span class="p">,</span><span class="s">&#39;v&#39;</span><span class="p">,</span><span class="n">record</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>

<span class="n">t1</span><span class="o">=</span><span class="n">time</span><span class="p">()</span>
<span class="n">run</span><span class="p">(</span><span class="mi">1</span><span class="o">*</span><span class="n">second</span><span class="p">)</span>
<span class="n">t2</span><span class="o">=</span><span class="n">time</span><span class="p">()</span>
<span class="k">print</span> <span class="s">&quot;Simulated in&quot;</span><span class="p">,</span><span class="n">t2</span><span class="o">-</span><span class="n">t1</span><span class="p">,</span><span class="s">&quot;s&quot;</span>
<span class="k">print</span> <span class="nb">len</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">spikes</span><span class="p">),</span><span class="s">&quot;spikes&quot;</span>

<span class="n">subplot</span><span class="p">(</span><span class="mi">211</span><span class="p">)</span>
<span class="n">raster_plot</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
<span class="n">subplot</span><span class="p">(</span><span class="mi">212</span><span class="p">)</span>
<span class="n">plot</span><span class="p">(</span><span class="n">trace</span><span class="o">.</span><span class="n">times</span><span class="o">/</span><span class="n">ms</span><span class="p">,</span><span class="n">trace</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">/</span><span class="n">mV</span><span class="p">)</span>
<span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="section" id="equivalent-in-pure-python">
<h3>Equivalent in pure Python<a class="headerlink" href="#equivalent-in-pure-python" title="Permalink to this headline"></a></h3>
<p>The script above translated into pure Python (no Brian):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="sd">&#39;&#39;&#39;</span>
<span class="sd">A pure Python version of the CUBA example, that reproduces basic Brian principles.</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="kn">from</span> <span class="nn">pylab</span> <span class="kn">import</span> <span class="o">*</span>
<span class="kn">from</span> <span class="nn">time</span> <span class="kn">import</span> <span class="n">time</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">sample</span>
<span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">random</span> <span class="k">as</span> <span class="n">scirandom</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Parameters</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">N</span><span class="o">=</span><span class="mi">10000</span>        <span class="c"># number of neurons</span>
<span class="n">Ne</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">N</span><span class="o">*</span><span class="mf">0.8</span><span class="p">)</span> <span class="c"># excitatory neurons</span>
<span class="n">Ni</span><span class="o">=</span><span class="n">N</span><span class="o">-</span><span class="n">Ne</span>       <span class="c"># inhibitory neurons</span>
<span class="n">mV</span><span class="o">=</span><span class="n">ms</span><span class="o">=</span><span class="mf">1e-3</span>    <span class="c"># units</span>
<span class="n">dt</span><span class="o">=</span><span class="mf">0.1</span><span class="o">*</span><span class="n">ms</span>     <span class="c"># timestep</span>
<span class="n">taum</span><span class="o">=</span><span class="mi">20</span><span class="o">*</span><span class="n">ms</span>    <span class="c"># membrane time constant</span>
<span class="n">taue</span><span class="o">=</span><span class="mi">5</span><span class="o">*</span><span class="n">ms</span>
<span class="n">taui</span><span class="o">=</span><span class="mi">10</span><span class="o">*</span><span class="n">ms</span>
<span class="n">p</span><span class="o">=</span><span class="mf">80.0</span><span class="o">/</span><span class="n">N</span> <span class="c"># connection probability (80 synapses per neuron)</span>
<span class="n">Vt</span><span class="o">=-</span><span class="mi">1</span><span class="o">*</span><span class="n">mV</span>      <span class="c"># threshold = -50+49</span>
<span class="n">Vr</span><span class="o">=-</span><span class="mi">11</span><span class="o">*</span><span class="n">mV</span>     <span class="c"># reset = -60+49</span>
<span class="n">we</span><span class="o">=</span><span class="mi">60</span><span class="o">*</span><span class="mf">0.27</span><span class="o">/</span><span class="mi">10</span> <span class="c"># excitatory weight</span>
<span class="n">wi</span><span class="o">=-</span><span class="mi">20</span><span class="o">*</span><span class="mf">4.5</span><span class="o">/</span><span class="mi">10</span> <span class="c"># inhibitory weight</span>
<span class="n">duration</span><span class="o">=</span><span class="mi">1000</span><span class="o">*</span><span class="n">ms</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Equations</span>
<span class="sd">---------</span>
<span class="sd">eqs=&#39;&#39;&#39;</span>
<span class="sd">dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt</span>
<span class="sd">dge/dt = -ge/(5*ms) : volt</span>
<span class="sd">dgi/dt = -gi/(10*ms) : volt</span>
<span class="sd">&#39;&#39;&#39;</span>

<span class="sd">This is a linear system, so each update corresponds to</span>
<span class="sd">multiplying the state matrix by a (3,3) &#39;update matrix&#39;</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="c"># Update matrix</span>
<span class="n">A</span><span class="o">=</span><span class="n">array</span><span class="p">([[</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">dt</span><span class="o">/</span><span class="n">taum</span><span class="p">),</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span>
         <span class="p">[</span><span class="n">taue</span><span class="o">/</span><span class="p">(</span><span class="n">taum</span><span class="o">-</span><span class="n">taue</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">dt</span><span class="o">/</span><span class="n">taum</span><span class="p">)</span><span class="o">-</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">dt</span><span class="o">/</span><span class="n">taue</span><span class="p">)),</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">dt</span><span class="o">/</span><span class="n">taue</span><span class="p">),</span><span class="mi">0</span><span class="p">],</span>
         <span class="p">[</span><span class="n">taui</span><span class="o">/</span><span class="p">(</span><span class="n">taum</span><span class="o">-</span><span class="n">taui</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">dt</span><span class="o">/</span><span class="n">taum</span><span class="p">)</span><span class="o">-</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">dt</span><span class="o">/</span><span class="n">taui</span><span class="p">)),</span><span class="mi">0</span><span class="p">,</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">dt</span><span class="o">/</span><span class="n">taui</span><span class="p">)]])</span><span class="o">.</span><span class="n">T</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">State variables</span>
<span class="sd">---------------</span>
<span class="sd">P=NeuronGroup(4000,model=eqs,</span>
<span class="sd">              threshold=-50*mV,reset=-60*mV)</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">S</span><span class="o">=</span><span class="n">zeros</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span><span class="n">N</span><span class="p">))</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Initialisation</span>
<span class="sd">--------------</span>
<span class="sd">P.v=-60*mV+10*mV*rand(len(P))</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">S</span><span class="p">[</span><span class="mi">0</span><span class="p">,:]</span><span class="o">=</span><span class="n">rand</span><span class="p">(</span><span class="n">N</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">Vt</span><span class="o">-</span><span class="n">Vr</span><span class="p">)</span><span class="o">+</span><span class="n">Vr</span> <span class="c"># Potential: uniform between reset and threshold</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Connectivity matrices</span>
<span class="sd">---------------------</span>
<span class="sd">Pe=P.subgroup(3200) # excitatory group</span>
<span class="sd">Pi=P.subgroup(800)  # inhibitory group</span>
<span class="sd">Ce=Connection(Pe,P,&#39;ge&#39;,weight=1.62*mV,sparseness=p)</span>
<span class="sd">Ci=Connection(Pi,P,&#39;gi&#39;,weight=-9*mV,sparseness=p)</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">We_target</span><span class="o">=</span><span class="p">[]</span>
<span class="n">We_weight</span><span class="o">=</span><span class="p">[]</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">Ne</span><span class="p">):</span>
    <span class="n">k</span><span class="o">=</span><span class="n">scirandom</span><span class="o">.</span><span class="n">binomial</span><span class="p">(</span><span class="n">N</span><span class="p">,</span><span class="n">p</span><span class="p">,</span><span class="mi">1</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
    <span class="n">target</span><span class="o">=</span><span class="n">sample</span><span class="p">(</span><span class="nb">xrange</span><span class="p">(</span><span class="n">N</span><span class="p">),</span><span class="n">k</span><span class="p">)</span>
    <span class="n">target</span><span class="o">.</span><span class="n">sort</span><span class="p">()</span>
    <span class="n">We_target</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">target</span><span class="p">)</span>
    <span class="n">We_weight</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="mf">1.62</span><span class="o">*</span><span class="n">mV</span><span class="p">]</span><span class="o">*</span><span class="n">k</span><span class="p">)</span>
<span class="n">Wi_target</span><span class="o">=</span><span class="p">[]</span>
<span class="n">Wi_weight</span><span class="o">=</span><span class="p">[]</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">Ni</span><span class="p">):</span>
    <span class="n">k</span><span class="o">=</span><span class="n">scirandom</span><span class="o">.</span><span class="n">binomial</span><span class="p">(</span><span class="n">N</span><span class="p">,</span><span class="n">p</span><span class="p">,</span><span class="mi">1</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
    <span class="n">target</span><span class="o">=</span><span class="n">sample</span><span class="p">(</span><span class="nb">xrange</span><span class="p">(</span><span class="n">N</span><span class="p">),</span><span class="n">k</span><span class="p">)</span>
    <span class="n">target</span><span class="o">.</span><span class="n">sort</span><span class="p">()</span>
    <span class="n">Wi_target</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">target</span><span class="p">)</span>
    <span class="n">Wi_weight</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="o">-</span><span class="mi">9</span><span class="o">*</span><span class="n">mV</span><span class="p">]</span><span class="o">*</span><span class="n">k</span><span class="p">)</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Spike monitor</span>
<span class="sd">-------------</span>
<span class="sd">M=SpikeMonitor(P)</span>

<span class="sd">will contain a list of (i,t), where neuron i spiked at time t.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">spike_monitor</span><span class="o">=</span><span class="p">[]</span> <span class="c"># Empty list of spikes</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">State monitor</span>
<span class="sd">-------------</span>
<span class="sd">trace=StateMonitor(P,&#39;v&#39;,record=0) # record only neuron 0</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">trace</span><span class="o">=</span><span class="p">[]</span> <span class="c"># Will contain v(t) for each t (for neuron 0)</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Simulation</span>
<span class="sd">----------</span>
<span class="sd">run(duration)</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">t1</span><span class="o">=</span><span class="n">time</span><span class="p">()</span>
<span class="n">t</span><span class="o">=</span><span class="mi">0</span><span class="o">*</span><span class="n">ms</span>
<span class="k">while</span> <span class="n">t</span><span class="o">&lt;</span><span class="n">duration</span><span class="p">:</span>
    <span class="c"># STATE UPDATES</span>
    <span class="n">S</span><span class="p">[:]</span><span class="o">=</span><span class="n">dot</span><span class="p">(</span><span class="n">A</span><span class="p">,</span><span class="n">S</span><span class="p">)</span>

    <span class="c"># Threshold</span>
    <span class="n">all_spikes</span><span class="o">=</span><span class="p">(</span><span class="n">S</span><span class="p">[</span><span class="mi">0</span><span class="p">,:]</span><span class="o">&gt;</span><span class="n">Vt</span><span class="p">)</span><span class="o">.</span><span class="n">nonzero</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>     <span class="c"># List of neurons that meet threshold condition</span>

    <span class="c"># PROPAGATION OF SPIKES</span>
    <span class="c"># Excitatory neurons</span>
    <span class="n">spikes</span><span class="o">=</span><span class="p">(</span><span class="n">S</span><span class="p">[</span><span class="mi">0</span><span class="p">,:</span><span class="n">Ne</span><span class="p">]</span><span class="o">&gt;</span><span class="n">Vt</span><span class="p">)</span><span class="o">.</span><span class="n">nonzero</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>       <span class="c"># In Brian we actually use bisection to speed it up</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">spikes</span><span class="p">:</span>
        <span class="n">S</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="n">We_target</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span><span class="o">+=</span><span class="n">We_weight</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>

    <span class="c"># Inhibitory neurons</span>
    <span class="n">spikes</span><span class="o">=</span><span class="p">(</span><span class="n">S</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="n">Ne</span><span class="p">:</span><span class="n">N</span><span class="p">]</span><span class="o">&gt;</span><span class="n">Vt</span><span class="p">)</span><span class="o">.</span><span class="n">nonzero</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">spikes</span><span class="p">:</span>
        <span class="n">S</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="n">Wi_target</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span><span class="o">+=</span><span class="n">Wi_weight</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>

    <span class="c"># Reset neurons after spiking</span>
    <span class="n">S</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="n">all_spikes</span><span class="p">]</span><span class="o">=</span><span class="n">Vr</span>                       <span class="c"># Reset membrane potential</span>

    <span class="c"># Spike monitor</span>
    <span class="n">spike_monitor</span><span class="o">+=</span><span class="p">[(</span><span class="n">i</span><span class="p">,</span><span class="n">t</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">all_spikes</span><span class="p">]</span>

    <span class="c"># State monitor</span>
    <span class="n">trace</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">S</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">])</span>

    <span class="n">t</span><span class="o">+=</span><span class="n">dt</span>

<span class="n">t2</span><span class="o">=</span><span class="n">time</span><span class="p">()</span>
<span class="k">print</span> <span class="s">&quot;Simulated in&quot;</span><span class="p">,</span><span class="n">t2</span><span class="o">-</span><span class="n">t1</span><span class="p">,</span><span class="s">&quot;s&quot;</span>
<span class="k">print</span> <span class="nb">len</span><span class="p">(</span><span class="n">spike_monitor</span><span class="p">),</span><span class="s">&quot;spikes&quot;</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Plot</span>
<span class="sd">----</span>
<span class="sd">subplot(211)</span>
<span class="sd">raster_plot(M)</span>
<span class="sd">subplot(212)</span>
<span class="sd">plot(trace.times/ms,trace[0]/mV)</span>
<span class="sd">show()</span>

<span class="sd">Here we cheat a little.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">brian</span> <span class="kn">import</span> <span class="n">raster_plot</span>
<span class="k">class</span> <span class="nc">M</span><span class="p">:</span>
    <span class="k">pass</span>
<span class="n">M</span><span class="o">.</span><span class="n">spikes</span><span class="o">=</span><span class="n">spike_monitor</span>
<span class="n">subplot</span><span class="p">(</span><span class="mi">211</span><span class="p">)</span>
<span class="n">raster_plot</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
<span class="n">subplot</span><span class="p">(</span><span class="mi">212</span><span class="p">)</span>
<span class="n">plot</span><span class="p">(</span><span class="n">arange</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">trace</span><span class="p">))</span><span class="o">*</span><span class="n">dt</span><span class="o">/</span><span class="n">ms</span><span class="p">,</span><span class="n">array</span><span class="p">(</span><span class="n">trace</span><span class="p">)</span><span class="o">/</span><span class="n">mV</span><span class="p">)</span>
<span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="index.html">
              <img class="logo" src="_static/brian-logo.png" alt="Logo"/>
            </a></p>
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">Simulation principles</a><ul>
<li><a class="reference internal" href="#sample-script">Sample script</a><ul>
<li><a class="reference internal" href="#original-brian-script">Original Brian script</a></li>
<li><a class="reference internal" href="#equivalent-in-pure-python">Equivalent in pure Python</a></li>
</ul>
</li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="developer-guidelines.html"
                        title="previous chapter">Guidelines</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="developer-codestructure.html"
                        title="next chapter">Main code structure</a></p>
<div id="searchbox" style="display: none">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="developer-codestructure.html" title="Main code structure"
             >next</a> |</li>
        <li class="right" >
          <a href="developer-guidelines.html" title="Guidelines"
             >previous</a> |</li>
        <li><a href="index.html">Brian v1.3.1 documentation</a> &raquo;</li>
          <li><a href="developer.html" >Developer&#8217;s guide</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2008, Romain Brette, Dan Goodman.
      Last updated on Feb 19, 2012.
      Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.0.8.
    </div>
  </body>
</html>