This file is indexed.

/usr/share/pyshared/ase/gui/images.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from math import sqrt

import numpy as np

from ase.data import covalent_radii
from ase.atoms import Atoms
from ase.calculators.singlepoint import SinglePointCalculator
from ase.io import read, write, string2index
from ase.constraints import FixAtoms
from ase.gui.defaults import read_defaults
from ase.quaternions import Quaternion

class Images:
    def __init__(self, images=None):

        if images is not None:
            self.initialize(images)
    
    def initialize(self, images, filenames=None, init_magmom=False):
        
        self.natoms = len(images[0])
        self.nimages = len(images)
        if hasattr(images[0], 'get_shapes'):
            self.shapes = images[0].get_shapes()
            self.Q = []
        else:
            self.shapes = None

        if filenames is None:
            filenames = [None] * self.nimages
        self.filenames = filenames
        self.P = np.empty((self.nimages, self.natoms, 3))
        self.V = np.empty((self.nimages, self.natoms, 3))
        self.E = np.empty(self.nimages)
        self.K = np.empty(self.nimages)
        self.F = np.empty((self.nimages, self.natoms, 3))
        self.M = np.empty((self.nimages, self.natoms))
        self.T = np.empty((self.nimages, self.natoms), int)
        self.A = np.empty((self.nimages, 3, 3))
        self.Z = images[0].get_atomic_numbers()
        self.pbc = images[0].get_pbc()
        self.covalent_radii = covalent_radii
        config = read_defaults()
        if config['covalent_radii'] is not None:
            for data in config['covalent_radii']:
                self.covalent_radii[data[0]] = data[1]
        warning = False
        for i, atoms in enumerate(images):
            natomsi = len(atoms)
            if (natomsi != self.natoms or
                (atoms.get_atomic_numbers() != self.Z).any()):
                raise RuntimeError('Can not handle different images with ' +
                                   'different numbers of atoms or different ' +
                                   'kinds of atoms!')
            self.P[i] = atoms.get_positions()
            self.V[i] = atoms.get_velocities()

            if hasattr(self, 'Q'):
                for q in atoms.get_quaternions():
                     self.Q.append(Quaternion(q))

            self.A[i] = atoms.get_cell()
            if (atoms.get_pbc() != self.pbc).any():
                warning = True
            try:
                self.E[i] = atoms.get_potential_energy()
            except RuntimeError:
                self.E[i] = np.nan
            self.K[i] = atoms.get_kinetic_energy()
            try:
                self.F[i] = atoms.get_forces(apply_constraint=False)
            except RuntimeError:
                self.F[i] = np.nan
            try:
                if init_magmom:
                    self.M[i] = atoms.get_initial_magnetic_moments()
                else:
                    self.M[i] = atoms.get_magnetic_moments()
            except (RuntimeError, AttributeError):
                self.M[i] = atoms.get_initial_magnetic_moments()
                
            # added support for tags
            try:
                self.T[i] = atoms.get_tags()
            except RuntimeError:
                self.T[i] = 0
                

        if warning:
            print('WARNING: Not all images have the same bondary conditions!')
            
        self.selected = np.zeros(self.natoms, bool)
        self.selected_ordered  = []
        self.atoms_to_rotate_0 = np.zeros(self.natoms, bool)
        self.visible = np.ones(self.natoms, bool)
        self.nselected = 0
        self.set_dynamic(constraints = images[0].constraints)
        self.repeat = np.ones(3, int)
        self.set_radii(0.89)
        
    def prepare_new_atoms(self):
        "Marks that the next call to append_atoms should clear the images."
        self.next_append_clears = True
        
    def append_atoms(self, atoms, filename=None):
        "Append an atoms object to the images already stored."
        assert len(atoms) == self.natoms
        if self.next_append_clears:
            i = 0
        else:
            i = self.nimages
        for name in ('P', 'V', 'E', 'K', 'F', 'M', 'A', 'T'):
            a = getattr(self, name)
            newa = np.empty( (i+1,) + a.shape[1:], a.dtype )
            if not self.next_append_clears:
                newa[:-1] = a
            setattr(self, name, newa)
        self.next_append_clears = False
        self.P[i] = atoms.get_positions()
        self.V[i] = atoms.get_velocities()
        self.A[i] = atoms.get_cell()
        try:
            self.E[i] = atoms.get_potential_energy()
        except RuntimeError:
            self.E[i] = np.nan
        self.K[i] = atoms.get_kinetic_energy()
        try:
            self.F[i] = atoms.get_forces(apply_constraint=False)
        except RuntimeError:
            self.F[i] = np.nan
        try:
            self.M[i] = atoms.get_magnetic_moments()
        except (RuntimeError, AttributeError):
            self.M[i] = np.nan
        try:
            self.T[i] = atoms.get_tags()
        except AttributeError:
            if i == 0:
                self.T[i] = 0
            else:
                self.T[i] = self.T[i-1]
        self.nimages = i + 1
        self.filenames.append(filename)
        self.set_dynamic()
        return self.nimages
        
    def set_radii(self, scale):
        if self.shapes == None:
            self.r = self.covalent_radii[self.Z] * scale
        else:
            self.r = np.sqrt(np.sum(self.shapes**2, axis=1)) * scale
                
    def read(self, filenames, index=-1, filetype=None):
        images = []
        names = []
        for filename in filenames:
            i = read(filename, index,filetype)
            
            if not isinstance(i, list):
                i = [i]
            images.extend(i)
            names.extend([filename] * len(i))
            
        self.initialize(images, names)
    
    def import_atoms(self, filename, cur_frame):
        if filename:
            filename = filename[0]
            old_a = self.get_atoms(cur_frame)
            imp_a = read(filename, -1)
            new_a = old_a + imp_a
            self.initialize([new_a], [filename])
    
    def repeat_images(self, repeat):
        n = self.repeat.prod()
        repeat = np.array(repeat)
        self.repeat = repeat
        N = repeat.prod()
        natoms = self.natoms // n
        P = np.empty((self.nimages, natoms * N, 3))
        V = np.empty((self.nimages, natoms * N, 3))
        M = np.empty((self.nimages, natoms * N))
        T = np.empty((self.nimages, natoms * N), int)
        F = np.empty((self.nimages, natoms * N, 3))
        Z = np.empty(natoms * N, int)
        r = np.empty(natoms * N)
        dynamic = np.empty(natoms * N, bool)
        a0 = 0
        for i0 in range(repeat[0]):
            for i1 in range(repeat[1]):
                for i2 in range(repeat[2]):
                    a1 = a0 + natoms
                    for i in range(self.nimages):
                        P[i, a0:a1] = (self.P[i, :natoms] +
                                       np.dot((i0, i1, i2), self.A[i]))
                    V[:, a0:a1] = self.V[:, :natoms]
                    F[:, a0:a1] = self.F[:, :natoms]
                    M[:, a0:a1] = self.M[:, :natoms]
                    T[:, a0:a1] = self.T[:, :natoms]
                    Z[a0:a1] = self.Z[:natoms]
                    r[a0:a1] = self.r[:natoms]
                    dynamic[a0:a1] = self.dynamic[:natoms]
                    a0 = a1
        self.P = P
        self.V = V
        self.F = F
        self.Z = Z
        self.T = T
        self.M = M
        self.r = r
        self.dynamic = dynamic
        self.natoms = natoms * N
        self.selected = np.zeros(natoms * N, bool)
        self.atoms_to_rotate_0 = np.zeros(self.natoms, bool)
        self.visible = np.ones(natoms * N, bool)
        self.nselected = 0

    def center(self):
        """ center each image in the existing unit cell, keeping the cell constant. """
        c = self.A.sum(axis=1) / 2.0 - self.P.mean(axis=1)
        self.P += c[:, np.newaxis, :]
            
    def graph(self, expr):
        """ routine to create the data in ag graphs, defined by the string expr.  """
        import ase.units as units
        code = compile(expr + ',', 'atoms.py', 'eval')

        n = self.nimages
        def d(n1, n2):
            return sqrt(((R[n1] - R[n2])**2).sum())
        def a(n1, n2, n3):
            v1 = R[n1]-R[n2]
            v2 = R[n3]-R[n2]
            arg = np.vdot(v1,v2)/(sqrt((v1**2).sum()*(v2**2).sum()))
            if arg > 1.0: arg = 1.0
            if arg < -1.0: arg = -1.0
            return 180.0*np.arccos(arg)/np.pi
        def dih(n1, n2, n3, n4):
            # vector 0->1, 1->2, 2->3 and their normalized cross products:
            a    = R[n2]-R[n1]
            b    = R[n3]-R[n2]
            c    = R[n4]-R[n3]
            bxa  = np.cross(b,a)
            bxa /= np.sqrt(np.vdot(bxa,bxa))
            cxb  = np.cross(c,b)
            cxb /= np.sqrt(np.vdot(cxb,cxb))
            angle = np.vdot(bxa,cxb)
            # check for numerical trouble due to finite precision:
            if angle < -1: angle = -1
            if angle >  1: angle =  1
            angle = np.arccos(angle)
            if (np.vdot(bxa,c)) > 0: angle = 2*np.pi-angle
            return angle*180.0/np.pi
        # get number of mobile atoms for temperature calculation
        ndynamic = 0
        for dyn in self.dynamic: 
            if dyn: ndynamic += 1
        S = self.selected
        D = self.dynamic[:, np.newaxis]
        E = self.E
        s = 0.0
        data = []
        for i in range(n):
            R = self.P[i]
            V = self.V[i]
            F = self.F[i]
            A = self.A[i]
            M = self.M[i]
            f = ((F * D)**2).sum(1)**.5
            fmax = max(f)
            fave = f.mean()
            epot = E[i]
            ekin = self.K[i]
            e = epot + ekin
            T = 2.0 * ekin / (3.0 * ndynamic * units.kB)
            data = eval(code)
            if i == 0:
                m = len(data)
                xy = np.empty((m, n))
            xy[:, i] = data
            if i + 1 < n:
                s += sqrt(((self.P[i + 1] - R)**2).sum())
        return xy

    def set_dynamic(self, constraints = None):
        self.dynamic = np.ones(self.natoms, bool)
        if constraints is not None:
            for con in constraints: 
                if isinstance(con,FixAtoms):
                    self.dynamic[con.index] = False

    def write(self, filename, rotations='', show_unit_cell=False, bbox=None, **kwargs):
        indices = range(self.nimages)
        p = filename.rfind('@')
        if p != -1:
            try:
                slice = string2index(filename[p + 1:])
            except ValueError:
                pass
            else:
                indices = indices[slice]
                filename = filename[:p]
                if isinstance(indices, int):
                    indices = [indices]

        images = [self.get_atoms(i) for i in indices]
        if len(filename) > 4 and filename[-4:] in ['.eps', '.png', '.pov']:
            write(filename, images, 
                  rotation=rotations, show_unit_cell=show_unit_cell,
                  bbox=bbox, **kwargs)
        else:
            write(filename, images, **kwargs)

    def get_atoms(self, frame):
        atoms = Atoms(positions=self.P[frame],
                      numbers=self.Z,
                      magmoms=self.M[0],
                      tags=self.T[frame],
                      cell=self.A[frame],
                      pbc=self.pbc)

        if not np.isnan(self.V).any():
            atoms.set_velocities(self.V[frame])
        
        # check for constrained atoms and add them accordingly:
        if not self.dynamic.all():
            atoms.set_constraint(FixAtoms(mask=1-self.dynamic))
        
        atoms.set_calculator(SinglePointCalculator(self.E[frame],
                                                   self.F[frame],
                                                   None, None, atoms))
        return atoms
                           
    def delete(self, i):
        self.nimages -= 1
        P = np.empty((self.nimages, self.natoms, 3))
        V = np.empty((self.nimages, self.natoms, 3))
        F = np.empty((self.nimages, self.natoms, 3))
        A = np.empty((self.nimages, 3, 3))
        E = np.empty(self.nimages)
        P[:i] = self.P[:i]
        P[i:] = self.P[i + 1:]
        self.P = P
        V[:i] = self.V[:i]
        V[i:] = self.V[i + 1:]
        self.V = V
        F[:i] = self.F[:i]
        F[i:] = self.F[i + 1:]
        self.F = F
        A[:i] = self.A[:i]
        A[i:] = self.A[i + 1:]
        self.A = A
        E[:i] = self.E[:i]
        E[i:] = self.E[i + 1:]
        self.E = E
        del self.filenames[i]

    def aneb(self):
        n = self.nimages
        assert n % 5 == 0
        levels = n // 5
        n = self.nimages = 2 * levels + 3
        P = np.empty((self.nimages, self.natoms, 3))
        V = np.empty((self.nimages, self.natoms, 3))
        F = np.empty((self.nimages, self.natoms, 3))
        E = np.empty(self.nimages)
        for L in range(levels):
            P[L] = self.P[L * 5]
            P[n - L - 1] = self.P[L * 5 + 4]
            V[L] = self.V[L * 5]
            V[n - L - 1] = self.V[L * 5 + 4]
            F[L] = self.F[L * 5]
            F[n - L - 1] = self.F[L * 5 + 4]
            E[L] = self.E[L * 5]
            E[n - L - 1] = self.E[L * 5 + 4]
        for i in range(3):
            P[levels + i] = self.P[levels * 5 - 4 + i]
            V[levels + i] = self.V[levels * 5 - 4 + i]
            F[levels + i] = self.F[levels * 5 - 4 + i]
            E[levels + i] = self.E[levels * 5 - 4 + i]
        self.P = P
        self.V = V
        self.F = F
        self.E = E

    def interpolate(self, m):
        assert self.nimages == 2
        self.nimages = 2 + m
        P = np.empty((self.nimages, self.natoms, 3))
        V = np.empty((self.nimages, self.natoms, 3))
        F = np.empty((self.nimages, self.natoms, 3))
        A = np.empty((self.nimages, 3, 3))
        E = np.empty(self.nimages)
        P[0] = self.P[0]
        V[0] = self.V[0]
        F[0] = self.F[0]
        A[0] = self.A[0]
        E[0] = self.E[0]
        for i in range(1, m + 1):
            x = i / (m + 1.0)
            y = 1 - x
            P[i] = y * self.P[0] + x * self.P[1]
            V[i] = y * self.V[0] + x * self.V[1]
            F[i] = y * self.F[0] + x * self.F[1]
            A[i] = y * self.A[0] + x * self.A[1]
            E[i] = y * self.E[0] + x * self.E[1]
        P[-1] = self.P[1]
        V[-1] = self.V[1]
        F[-1] = self.F[1]
        A[-1] = self.A[1]
        E[-1] = self.E[1]
        self.P = P
        self.V = V
        self.F = F
        self.A = A
        self.E = E
        self.filenames[1:1] = [None] * m

if __name__ == '__main__':
    import os
    os.system('python gui.py')