/usr/share/pyshared/aafigure/aafigure.py is in python-aafigure 0.5-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 | #!/usr/bin/env python
"""\
ASCII art to image converter.
This is the main module that contains the parser.
See svg.py and aa.py for output modules, that can render the parsed structure.
(C) 2006-2009 Chris Liechti <cliechti@gmx.net>
This is open source software under the BSD license. See LICENSE.txt for more
details.
"""
import codecs
from error import UnsupportedFormatError
from shapes import *
from unicodedata import east_asian_width
import sys
NOMINAL_SIZE = 2
CLASS_LINE = 'line'
CLASS_STRING = 'str'
CLASS_RECTANGLE = 'rect'
CLASS_JOIN = 'join'
CLASS_FIXED = 'fixed'
DEFAULT_OPTIONS = dict(
background = '#ffffff',
foreground = '#000000',
line_width = 2.0,
scale = 1.0,
aspect = 1.0,
format = 'svg',
debug = False,
textual = False,
proportional = False,
encoding = 'utf-8',
widechars = 'F,W',
)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class AsciiArtImage:
"""This class hold a ASCII art figure and has methods to parse it.
The resulting list of shapes is also stored here.
The image is parsed in 2 steps:
1. horizontal string detection.
2. generic shape detection.
Each character that is used in a shape or string is tagged. So that
further searches don't include it again (e.g. text in a string touching
a fill), respectively can use it correctly (e.g. join characters when
two or more lines hit).
"""
QUOTATION_CHARACTERS = list('"\'`')
def __init__(self, text, aspect_ratio=1, textual=False, widechars='F,W'):
"""Take a ASCII art figure and store it, prepare for ``recognize``"""
self.aspect_ratio = float(aspect_ratio)
self.textual = textual
# XXX TODO tab expansion
# detect size of input image, store as list of lines
self.image = []
max_x = 0
y = 0
# define character widths map
charwidths = {}
for key in ['F', 'H', 'W', 'Na', 'A', 'N']:
if key in widechars.split(','):
charwidths[key] = 2
else:
charwidths[key] = 1
for line in text.splitlines():
# extend length by 1 for each wide glyph
line_len = sum(charwidths[east_asian_width(c)] for c in line)
max_x = max(max_x, line_len)
# pad a space for each wide glyph
padded_line = ''.join(c+' '*(charwidths[east_asian_width(c)]-1) for c in line)
self.image.append(padded_line)
y += 1
self.width = max_x
self.height = y
# make sure it's rectangular (extend short lines to max width)
for y, line in enumerate(self.image):
if len(line) < max_x:
self.image[y] = line + ' '*(max_x-len(line))
# initialize other data structures
self.classification = [[None]*self.width for y in range(self.height)]
self.shapes = []
self.nominal_size = NOMINAL_SIZE
def __str__(self):
"""Return the original image"""
return '\n'.join([self.image[y] for y in range(self.height)])
def get(self, x, y):
"""Get character from image. Gives no error for access out of
bounds, just returns a space. This simplifies the scanner
functions.
"""
if 0 <= x < self.width and 0 <= y < self.height:
return self.image[y][x]
else:
return ' '
def tag(self, coordinates, classification):
"""Tag coordinates as used, store classification"""
for x, y in coordinates:
self.classification[y][x] = classification
def cls(self, x, y):
"""get tag at coordinate"""
try:
return self.classification[y][x]
except IndexError:
return 'outside'
# Coordinate conversion and shifting
def left(self, x):
return x*NOMINAL_SIZE*self.aspect_ratio
def hcenter(self, x):
return (x + 0.5)*NOMINAL_SIZE*self.aspect_ratio
def right(self, x):
return (x + 1)*NOMINAL_SIZE*self.aspect_ratio
def top(self, y):
return y*NOMINAL_SIZE
def vcenter(self, y):
return (y + 0.5)*NOMINAL_SIZE
def bottom(self, y):
return (y + 1)*NOMINAL_SIZE
def recognize(self):
"""
Try to convert ASCII art to vector graphics. The result is stored in
``self.shapes``.
"""
# XXX search for symbols
#~ #search for long strings
#~ for y in range(self.height):
#~ for x in range(self.width):
#~ character = self.image[y][x]
#~ if self.classification[y][x] is None:
#~ if character.isalnum():
#~ self.shapes.extend(
#~ self._follow_horizontal_string(x, y)
#~ )
# search for quoted texts
for y in range(self.height):
for x in range(self.width):
#if not yet classified, check for a line
character = self.image[y][x]
if character in self.QUOTATION_CHARACTERS and self.classification[y][x] is None:
self.shapes.extend(
self._follow_horizontal_string(x, y, quoted=True))
# search for standard shapes
for y in range(self.height):
for x in range(self.width):
#if not yet classified, check for a line
character = self.image[y][x]
if self.classification[y][x] is None:
if character == '-':
self.shapes.extend(self._follow_horizontal_line(x, y))
elif character == '|':
self.shapes.extend(self._follow_vertical_line(x, y))
elif character == '_':
self.shapes.extend(self._follow_lower_horizontal_line(x, y))
elif character == '~':
self.shapes.extend(self._follow_upper_horizontal_line(x, y))
elif character == '=':
self.shapes.extend(self._follow_horizontal_line(x, y, thick=True))
elif character in '\\/':
self.shapes.extend(self._follow_rounded_edge(x, y))
elif character == '+':
self.shapes.extend(self._plus_joiner(x, y))
elif character in self.FIXED_CHARACTERS:
self.shapes.extend(self.get_fixed_character(character)(x, y))
self.tag([(x, y)], CLASS_FIXED)
elif character in self.FILL_CHARACTERS:
if self.textual:
if self.get(x, y+1) == character:
self.shapes.extend(self._follow_fill(character, x, y))
else:
if (self.get(x+1, y) == character or self.get(x, y+1) == character):
self.shapes.extend(self._follow_fill(character, x, y))
# search for short strings too
for y in range(self.height):
for x in range(self.width):
character = self.image[y][x]
if self.classification[y][x] is None:
if character != ' ':
self.shapes.extend(self._follow_horizontal_string(x, y, accept_anything=True))
# - - - - - - - - - helper function for some shapes - - - - - - - - -
# Arrow drawing functions return the (new) starting point of the line and a
# list of shapes that draw the arrow. The line itself is not included in
# the list of shapes. The stating point is p1, possibly modified to match
# the shape of the arrow head.
#
# Use complex numbers as 2D vectors as that means easy transformations like
# scaling, rotation and translation
# - - - - - - - - - arrows - - - - - - - - -
def _standard_arrow(self, p1, p2):
"""-->
return a possibly modified starting point and a list of shapes
"""
direction_vector = p1 - p2
direction_vector /= abs(direction_vector)
return p1, [
Line(p1, p1-direction_vector*1.5+direction_vector*0.5j),
Line(p1, p1-direction_vector*1.5+direction_vector*-0.5j)
]
def _reversed_arrow(self, p1, p2):
"""--<"""
direction_vector = p1 - p2
direction_vector /= abs(direction_vector)
return p1-direction_vector*2, [
Line(p1-direction_vector*2.0, p1+direction_vector*(-0.5+0.5j)),
Line(p1-direction_vector*2.0, p1+direction_vector*(-0.5-0.5j))
]
def _circle_head(self, p1, p2, radius=0.5):
"""--o"""
direction_vector = p1 - p2
direction_vector /= abs(direction_vector)
return p1-direction_vector, [Circle(p1-direction_vector, radius)]
def _large_circle_head(self, p1, p2):
"""--O"""
return self._circle_head(p1, p2, radius=0.9)
def _rectangular_head(self, p1, p2):
"""--#"""
direction_vector = p1 - p2
direction_vector /= abs(direction_vector)
#~ return p1-direction_vector*1.414, [
#~ Rectangle(p1-direction_vector-direction_vector*(0.707+0.707j),
#~ p1-direction_vector+direction_vector*(0.707+0.707j))
#~ ]
return p1-direction_vector*1.707, [
Line(p1-direction_vector-direction_vector*(0.707+0.707j),
p1-direction_vector-direction_vector*(0.707-0.707j)),
Line(p1-direction_vector+direction_vector*(0.707+0.707j),
p1-direction_vector+direction_vector*(0.707-0.707j)),
Line(p1-direction_vector-direction_vector*(0.707+0.707j),
p1-direction_vector+direction_vector*(0.707-0.707j)),
Line(p1-direction_vector-direction_vector*(0.707-0.707j),
p1-direction_vector+direction_vector*(0.707+0.707j)),
]
# the same character can mean a different thing, depending from where the
# line is coming. this table maps line direction (dx,dy) and the arrow
# character to a arrow drawing function
ARROW_TYPES = [
#chr dx dy arrow type
('>', 1, 0, '_standard_arrow'),
('<', -1, 0, '_standard_arrow'),
('^', 0, -1, '_standard_arrow'),
('A', 0, -1, '_standard_arrow'),
('V', 0, 1, '_standard_arrow'),
('v', 0, 1, '_standard_arrow'),
('>', -1, 0, '_reversed_arrow'),
('<', 1, 0, '_reversed_arrow'),
('^', 0, 1, '_reversed_arrow'),
('V', 0, -1, '_reversed_arrow'),
('v', 0, -1, '_reversed_arrow'),
('o', 1, 0, '_circle_head'),
('o', -1, 0, '_circle_head'),
('o', 0, -1, '_circle_head'),
('o', 0, 1, '_circle_head'),
('O', 1, 0, '_large_circle_head'),
('O', -1, 0, '_large_circle_head'),
('O', 0, -1, '_large_circle_head'),
('O', 0, 1, '_large_circle_head'),
('#', 1, 0, '_rectangular_head'),
('#', -1, 0, '_rectangular_head'),
('#', 0, -1, '_rectangular_head'),
('#', 0, 1, '_rectangular_head'),
]
ARROW_HEADS = list('<>AVv^oO#')
def get_arrow(self, character, dx, dy):
"""return arrow drawing function or None"""
for head, ddx, ddy, function_name in self.ARROW_TYPES:
if character == head and dx == ddx and dy == ddy:
return getattr(self, function_name)
# - - - - - - - - - fills - - - - - - - - -
# Fill functions return a list of shapes. Each one if covering one cell
# size.
def _hatch_left(self, x, y):
return self._n_hatch_diagonal(x, y, 1, True)
def _hatch_right(self, x, y):
return self._n_hatch_diagonal(x, y, 1, False)
def _cross_hatch(self, x, y):
return self._n_hatch_diagonal(x, y, 1, True) + \
self._n_hatch_diagonal(x, y, 1, False)
def _double_hatch_left(self, x, y):
return self._n_hatch_diagonal(x, y, 2, True)
def _double_hatch_right(self, x, y):
return self._n_hatch_diagonal(x, y, 2, False)
def _double_cross_hatch(self, x, y):
return self._n_hatch_diagonal(x, y, 2, True) + \
self._n_hatch_diagonal(x, y, 2, False)
def _triple_hatch_left(self, x, y):
return self._n_hatch_diagonal(x, y, 3, True)
def _triple_hatch_right(self, x, y):
return self._n_hatch_diagonal(x, y, 3, False)
def _triple_cross_hatch(self, x, y):
return self._n_hatch_diagonal(x, y, 3, True) + \
self._n_hatch_diagonal(x, y, 3, False)
def _n_hatch_diagonal(self, x, y, n, left=False):
"""hatch generator function"""
d = 1/float(n)
result = []
if left:
for i in range(n):
result.append(Line(
Point(self.left(x), self.top(y+d*i)),
Point(self.right(x-d*i), self.bottom(y))
))
if n:
result.append(Line(
Point(self.right(x-d*i), self.top(y)),
Point(self.right(x), self.top(y+d*i))
))
else:
for i in range(n):
result.append(Line(Point(self.left(x), self.top(y+d*i)), Point(self.left(x+d*i), self.top(y))))
if n:
result.append(Line(Point(self.left(x+d*i), self.bottom(y)), Point(self.right(x), self.top(y+d*i))))
return result
def _hatch_v(self, x, y):
return self._n_hatch_straight(x, y, 1, True)
def _hatch_h(self, x, y):
return self._n_hatch_straight(x, y, 1, False)
def _hv_hatch(self, x, y):
return self._n_hatch_straight(x, y, 1, True) + \
self._n_hatch_straight(x, y, 1, False)
def _double_hatch_v(self, x, y):
return self._n_hatch_straight(x, y, 2, True)
def _double_hatch_h(self, x, y):
return self._n_hatch_straight(x, y, 2, False)
def _double_hv_hatch(self, x, y):
return self._n_hatch_straight(x, y, 2, True) + \
self._n_hatch_straight(x, y, 2, False)
def _triple_hatch_v(self, x, y):
return self._n_hatch_straight(x, y, 3, True)
def _triple_hatch_h(self, x, y):
return self._n_hatch_straight(x, y, 3, False)
def _triple_hv_hatch(self, x, y):
return self._n_hatch_straight(x, y, 3, True) + \
self._n_hatch_straight(x, y, 3, False)
def _n_hatch_straight(self, x, y, n, vertical=False):
"""hatch generator function"""
d = 1/float(n)
offset = 1.0/(n+1)
result = []
if vertical:
for i in range(n):
i = i + offset
result.append(Line(
Point(self.left(x+d*i), self.top(y)),
Point(self.left(x+d*i), self.bottom(y))
))
#~ if n:
#~ result.append(Line(Point(self.right(x-d*i), self.top(y)), Point(self.right(x), self.top(y+d*i))))
else:
for i in range(n):
i = i + offset
result.append(Line(
Point(self.left(x), self.top(y+d*i)),
Point(self.right(x), self.top(y+d*i))
))
#~ if n:
#~ result.append(Line(Point(self.left(x+d*i), self.bottom(y)), Point(self.right(x), self.top(y+d*i))))
return result
def _fill_trail(self, x, y):
return [
Line(
Point(self.left(x+0.707), self.top(y)),
Point(self.right(x), self.bottom(y-0.707))
),
Line(
Point(self.left(x), self.top(y+0.707)),
Point(self.right(x-0.707), self.bottom(y))
)
]
def _fill_foreground(self, x, y):
return [
Rectangle(
Point(self.left(x), self.top(y)),
Point(self.right(x), self.bottom(y))
)
]
def _fill_background(self, x, y):
return []
def _fill_small_circle(self, x, y):
return [
Circle(Point(self.left(x+0.5), self.top(y+0.5)), 0.2)
]
def _fill_medium_circle(self, x, y):
return [
Circle(Point(self.left(x+0.5), self.top(y+0.5)), 0.4)
]
def _fill_large_circle(self, x, y):
return [
Circle(Point(self.left(x+0.5), self.top(y+0.5)), 0.9)
]
def _fill_qmark(self, x, y):
return [
Label(Point(self.left(x), self.bottom(y)), '?')
]
def _fill_triangles(self, x, y):
return [
Line(Point(self.left(x+0.5), self.top(y+0.2)), Point(self.left(x+0.75), self.top(y+0.807))),
Line(Point(self.left(x+0.7), self.top(y+0.807)), Point(self.left(x+0.25), self.top(y+0.807))),
Line(Point(self.left(x+0.25), self.top(y+0.807)), Point(self.left(x+0.5), self.top(y+0.2))),
]
FILL_TYPES = [
('A', '_hatch_left'),
('B', '_hatch_right'),
('C', '_cross_hatch'),
('D', '_double_hatch_left'),
('E', '_double_hatch_right'),
('F', '_double_cross_hatch'),
('G', '_triple_hatch_left'),
('H', '_triple_hatch_right'),
('I', '_triple_cross_hatch'),
('J', '_hatch_v'),
('K', '_hatch_h'),
('L', '_hv_hatch'),
('M', '_double_hatch_v'),
('N', '_double_hatch_h'),
('O', '_double_hv_hatch'),
('P', '_triple_hatch_v'),
('Q', '_triple_hatch_h'),
('R', '_triple_hv_hatch'),
('S', '_fill_qmark'),
('T', '_fill_trail'),
('U', '_fill_small_circle'),
('V', '_fill_medium_circle'),
('W', '_fill_large_circle'),
('X', '_fill_foreground'),
('Y', '_fill_triangles'),
('Z', '_fill_background'),
]
FILL_CHARACTERS = ''.join([t+t.lower() for (t, f) in FILL_TYPES])
def get_fill(self, character):
"""return fill function"""
for head, function_name in self.FILL_TYPES:
if character == head:
return getattr(self, function_name)
raise ValueError('no such fill type')
# - - - - - - - - - fixed characters and their shapes - - - - - - - - -
def _open_triangle_left(self, x, y):
return [
Line(
Point(self.left(x), self.vcenter(y)),
Point(self.right(x), self.top(y))
),
Line(
Point(self.left(x), self.vcenter(y)),
Point(self.right(x), self.bottom(y))
)
]
def _open_triangle_right(self, x, y):
return [
Line(
Point(self.right(x), self.vcenter(y)),
Point(self.left(x), self.top(y))
),
Line(
Point(self.right(x), self.vcenter(y)),
Point(self.left(x), self.bottom(y))
)
]
def _circle(self, x, y):
return [
Circle(Point(self.hcenter(x), self.vcenter(y)), NOMINAL_SIZE/2.0)
]
FIXED_TYPES = [
('{', '_open_triangle_left'),
('}', '_open_triangle_right'),
('*', '_circle'),
]
FIXED_CHARACTERS = ''.join([t for (t, f) in FIXED_TYPES])
def get_fixed_character(self, character):
"""return fill function"""
for head, function_name in self.FIXED_TYPES:
if character == head:
return getattr(self, function_name)
raise ValueError('no such character')
# - - - - - - - - - helper function for shape recognition - - - - - - - - -
def _follow_vertical_line(self, x, y):
"""find a vertical line with optional arrow heads"""
# follow line to the bottom
_, end_y, line_end_style = self._follow_line(x, y, dy=1, line_character='|')
# follow line to the top
_, start_y, line_start_style = self._follow_line(x, y, dy=-1, line_character='|')
# if a '+' follows a line, then the line is stretched to hit the '+' center
start_y_fix = end_y_fix = 0
if self.get(x, start_y - 1) == '+':
start_y_fix = -0.5
if self.get(x, end_y + 1) == '+':
end_y_fix = 0.5
# tag characters as used (not the arrow heads)
self.tag([(x, y) for y in range(start_y, end_y + 1)], CLASS_LINE)
# return the new shape object with arrows etc.
p1 = complex(self.hcenter(x), self.top(start_y + start_y_fix))
p2 = complex(self.hcenter(x), self.bottom(end_y + end_y_fix))
shapes = []
if line_start_style:
p1, arrow_shapes = line_start_style(p1, p2)
shapes.extend(arrow_shapes)
if line_end_style:
p2, arrow_shapes = line_end_style(p2, p1)
shapes.extend(arrow_shapes)
shapes.append(Line(p1, p2))
return group(shapes)
def _follow_horizontal_line(self, x, y, thick=False):
"""find a horizontal line with optional arrow heads"""
if thick:
line_character = '='
else:
line_character = '-'
# follow line to the right
end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character=line_character)
# follow line to the left
start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character=line_character)
start_x_fix = end_x_fix = 0
if self.get(start_x - 1, y) == '+':
start_x_fix = -0.5
if self.get(end_x + 1, y) == '+':
end_x_fix = 0.5
self.tag([(x, y) for x in range(start_x, end_x+1)], CLASS_LINE)
# return the new shape object with arrows etc.
p1 = complex(self.left(start_x + start_x_fix), self.vcenter(y))
p2 = complex(self.right(end_x + end_x_fix), self.vcenter(y))
shapes = []
if line_start_style:
p1, arrow_shapes = line_start_style(p1, p2)
shapes.extend(arrow_shapes)
if line_end_style:
p2, arrow_shapes = line_end_style(p2, p1)
shapes.extend(arrow_shapes)
shapes.append(Line(p1, p2, thick=thick))
return group(shapes)
def _follow_lower_horizontal_line(self, x, y):
"""find a horizontal line, the line is aligned to the bottom and a bit
wider, so that it can be used for shapes like this:
___
__| |___
"""
# follow line to the right
end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character='_', arrows=False)
# follow line to the left
start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character='_', arrows=False)
self.tag([(x, y) for x in range(start_x, end_x+1)], CLASS_LINE)
# return the new shape object with arrows etc.
p1 = complex(self.hcenter(start_x-1), self.bottom(y))
p2 = complex(self.hcenter(end_x+1), self.bottom(y))
return [Line(p1, p2)]
def _follow_upper_horizontal_line(self, x, y):
"""find a horizontal line, the line is aligned to the bottom and a bit
wider, so that it can be used for shapes like this:
|~~~|
~~ ~~~
"""
# follow line to the right
end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character='~', arrows=False)
# follow line to the left
start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character='~', arrows=False)
self.tag([(x, y) for x in range(start_x, end_x+1)], CLASS_LINE)
# return the new shape object with arrows etc.
p1 = complex(self.hcenter(start_x-1), self.top(y))
p2 = complex(self.hcenter(end_x+1), self.top(y))
return [Line(p1, p2)]
def _follow_line(self, x, y, dx=0, dy=0, line_character=None, arrows=True):
"""helper function for all the line functions"""
# follow line in the given direction
while 0 <= x < self.width and 0<= y < self.height and self.get(x+dx, y+dy) == line_character:
x += dx
y += dy
if arrows:
# check for arrow head
following_character = self.get(x + dx, y + dy)
if following_character in self.ARROW_HEADS:
line_end_style = self.get_arrow(following_character, dx, dy)
if line_end_style:
x += dx
y += dy
else:
line_end_style = None
else:
line_end_style = None
return x, y, line_end_style
def _plus_joiner(self, x, y):
"""adjacent '+' signs are connected with a line from center to center
required for images like these:
+---+ The box should be closed on all sides
| +---> and the arrow start should touch the box
+---+
"""
result = []
#~ for dx, dy in ((1,0), (-1,0), (0,1), (0,-1)):
# looking right and down is sufficient as the scan is done from left to
# right, top to bottom
for dx, dy in ((1, 0), (0, 1)):
if self.get(x + dx, y + dy) == '+':
result.append(Line(
Point(self.hcenter(x), self.vcenter(y)),
Point(self.hcenter(x + dx), self.vcenter(y + dy))
))
self.tag([(x, y)], CLASS_JOIN)
return result
def _follow_fill(self, character, start_x, start_y):
"""fill shapes like the ones below with a pattern. when the character is
upper case, draw a border too.
XXX aaa BB
XXX a
"""
fill = self.get_fill(character.upper())
border = character.isupper()
result = []
# flood fill algorithm, searching for similar characters
coordinates = []
to_scan = [(start_x, start_y)]
while to_scan:
x, y = to_scan.pop()
if self.cls(x, y) is None:
if self.get(x, y) == character:
result.extend(fill(x, y))
self.tag([(x, y)], CLASS_RECTANGLE)
if self.get(x + 1, y) == character:
if self.cls(x + 1, y) is None:
to_scan.append((x + 1, y))
elif border:
result.append(Line(
Point(self.right(x), self.top(y)),
Point(self.right(x), self.bottom(y))))
if self.get(x - 1, y) == character:
if self.cls(x - 1, y) is None:
to_scan.append((x - 1, y))
elif border:
result.append(Line(
Point(self.left(x), self.top(y)),
Point(self.left(x), self.bottom(y))))
if self.get(x, y + 1) == character:
if self.cls(x, y + 1) is None:
to_scan.append((x, y + 1))
elif border:
result.append(Line(
Point(self.left(x), self.bottom(y)),
Point(self.right(x), self.bottom(y))))
if self.get(x, y - 1) == character:
if self.cls(x, y - 1) is None:
to_scan.append((x, y - 1))
elif border:
result.append(Line(
Point(self.left(x), self.top(y)),
Point(self.right(x), self.top(y))))
return group(result)
def _follow_horizontal_string(self, start_x, y, accept_anything=False, quoted=False):
"""find a string. may contain single spaces, but the detection is
aborted after more than one space.
Text one "Text two"
accept_anything means that all non space characters are interpreted
as text.
"""
# follow line from left to right
if quoted:
quotation_character = self.get(start_x, y)
x = start_x + 1
else:
quotation_character = None
x = start_x
text = []
if self.get(x, y) != ' ':
text.append(self.get(x, y))
self.tag([(x, y)], CLASS_STRING)
is_first_space = True
while 0 <= x + 1 < self.width and self.cls(x + 1, y) is None:
if not quoted:
if self.get(x + 1, y) == ' ' and not is_first_space:
break
if not accept_anything and not self.get(x + 1, y).isalnum():
break
x += 1
character = self.get(x, y)
if character == quotation_character:
self.tag([(x, y)], CLASS_STRING)
break
text.append(character)
if character == ' ':
is_first_space = False
else:
is_first_space = True
if text[-1] == ' ':
del text[-1]
x -= 1
self.tag([(x, y) for x in range(start_x, x + 1)], CLASS_STRING)
return [Label(
Point(self.left(start_x), self.bottom(y)),
''.join(text)
)]
else:
return []
def _follow_rounded_edge(self, x, y):
"""check for rounded edges:
/- | -\- | and also \ / etc.
| -/ | \- - |
"""
result = []
if self.get(x, y) == '/':
# rounded rectangles
if (self.get(x + 1, y) == '-' and self.get(x, y + 1) == '|'):
# upper left corner
result.append(Arc(
Point(self.hcenter(x), self.bottom(y)), 90,
Point(self.right(x), self.vcenter(y)), 180
))
if self.get(x - 1, y) == '-' and self.get(x, y - 1) == '|':
# lower right corner
result.append(Arc(
Point(self.hcenter(x), self.top(y)), -90,
Point(self.left(x), self.vcenter(y)), 0
))
if not result:
# if used as diagonal line
p1 = p2 = None
a1 = a2 = 0
arc = c1 = c2 = False
if self.get(x + 1, y - 1) == '|':
p1 = Point(self.hcenter(x + 1), self.top(y))
a1 = -90
arc = c1 = True
elif self.get(x + 1, y - 1) == '+':
p1 = Point(self.hcenter(x + 1), self.vcenter(y - 1))
a1 = -135
elif self.get(x + 1, y - 1) == '-':
p1 = Point(self.right(x), self.vcenter(y - 1))
a1 = 180
arc = c1 = True
elif self.get(x + 1, y - 1) == '/':
p1 = Point(self.right(x), self.top(y))
a1 = -135
c1 = True
elif self.get(x + 1, y) == '|':
p1 = Point(self.hcenter(x + 1), self.top(y))
elif self.get(x, y - 1) == '-':
p1 = Point(self.right(x), self.vcenter(y - 1))
if self.get(x - 1, y + 1) == '|':
p2 = Point(self.hcenter(x - 1), self.top(y + 1))
a2 = 90
arc = c2 = True
elif self.get(x - 1, y + 1) == '+':
p2 = Point(self.hcenter(x - 1), self.vcenter(y + 1))
a2 = 45
elif self.get(x - 1, y + 1) == '-':
p2 = Point(self.left(x), self.vcenter(y + 1))
a2 = 0
arc = c2 = True
elif self.get(x - 1, y + 1) == '/':
p2 = Point(self.left(x), self.bottom(y))
a2 = 45
c2 = True
elif self.get(x - 1, y) == '|':
p2 = Point(self.hcenter(x - 1), self.bottom(y))
elif self.get(x, y + 1) == '-':
p2 = Point(self.left(x), self.vcenter(y + 1))
if p1 or p2:
if not p1:
p1 = Point(self.right(x), self.top(y))
if not p2:
p2 = Point(self.left(x), self.bottom(y))
if arc:
result.append(Arc(p1, a1, p2, a2, c1, c2))
else:
result.append(Line(p1, p2))
else: # '\'
# rounded rectangles
if self.get(x-1, y) == '-' and self.get(x, y + 1) == '|':
# upper right corner
result.append(Arc(
Point(self.hcenter(x), self.bottom(y)), 90,
Point(self.left(x), self.vcenter(y)), 0
))
if self.get(x+1, y) == '-' and self.get(x, y - 1) == '|':
# lower left corner
result.append(Arc(
Point(self.hcenter(x), self.top(y)), -90,
Point(self.right(x), self.vcenter(y)), 180
))
if not result:
# if used as diagonal line
p1 = p2 = None
a1 = a2 = 0
arc = c1 = c2 = False
if self.get(x - 1, y - 1) == '|':
p1 = Point(self.hcenter(x-1), self.top(y))
a1 = -90
arc = c1 = True
elif self.get(x - 1, y - 1) == '+':
p1 = Point(self.hcenter(x-1), self.vcenter(y - 1))
a1 = -45
elif self.get(x - 1, y - 1) == '-':
p1 = Point(self.left(x), self.vcenter(y-1))
a1 = 0
arc = c1 = True
elif self.get(x - 1, y - 1) == '\\':
p1 = Point(self.left(x), self.top(y))
a1 = -45
c1 = True
elif self.get(x - 1, y) == '|':
p1 = Point(self.hcenter(x-1), self.top(y))
elif self.get(x, y - 1) == '-':
p1 = Point(self.left(x), self.hcenter(y - 1))
if self.get(x + 1, y + 1) == '|':
p2 = Point(self.hcenter(x+1), self.top(y + 1))
a2 = 90
arc = c2 = True
elif self.get(x + 1, y + 1) == '+':
p2 = Point(self.hcenter(x+1), self.vcenter(y + 1))
a2 = 135
elif self.get(x + 1, y + 1) == '-':
p2 = Point(self.right(x), self.vcenter(y + 1))
a2 = 180
arc = c2 = True
elif self.get(x + 1, y + 1) == '\\':
p2 = Point(self.right(x), self.bottom(y))
a2 = 135
c2 = True
elif self.get(x + 1, y) == '|':
p2 = Point(self.hcenter(x+1), self.bottom(y))
elif self.get(x, y + 1) == '-':
p2 = Point(self.right(x), self.vcenter(y + 1))
if p1 or p2:
if not p1:
p1 = Point(self.left(x), self.top(y))
if not p2:
p2 = Point(self.right(x), self.bottom(y))
if arc:
result.append(Arc(p1, a1, p2, a2, c1, c2))
else:
result.append(Line(p1, p2))
if result:
self.tag([(x, y)], CLASS_JOIN)
return group(result)
def process(input, visitor_class, options=None):
"""\
Parse input and render using the given visitor class.
:param input: String or file like object with the image as text.
:param visitor_class: A class object, it will be used to render the
resulting image.
:param options: A dictionary containing the settings. When ``None`` is
given, defaults are used.
:returns: instantiated ``visitor_class`` and the image has already been
processed with the visitor.
:exception: This function can raise an ``UnsupportedFormatError`` exception
if the specified format is not supported.
"""
# remember user options (don't want to rename function parameter above)
user_options = options
# start with a copy of the defaults
options = DEFAULT_OPTIONS.copy()
if user_options is not None:
# override with settings passed by caller
options.update(user_options)
if 'fill' not in options or options['fill'] is None:
options['fill'] = options['foreground']
# if input is a file like object, read from it (otherwise it is assumed to
# be a string)
if hasattr(input, 'read'):
input = input.read()
if options['debug']:
sys.stderr.write('%r\n' % (input,))
aaimg = AsciiArtImage(input, options['aspect'], options['textual'], options['widechars'])
if options['debug']:
sys.stderr.write('%s\n' % (aaimg,))
aaimg.recognize()
visitor = visitor_class(options)
visitor.visit_image(aaimg)
return visitor
def render(input, output=None, options=None):
"""
Render an ASCII art figure to a file or file-like.
:param input: If ``input`` is a basestring subclass (str or unicode), the
text contained in ``input`` is rendered. If ``input is a file-like
object, the text to render is taken using ``input.read()``.
:param output: If no ``output`` is specified, the resulting rendered image
is returned as a string. If output is a basestring subclass, a file
with the name of ``output`` contents is created and the rendered image
is saved there. If ``output`` is a file-like object, ``output.write()``
is used to save the rendered image.
:param options: A dictionary containing the settings. When ``None`` is
given, defaults are used.
:returns: This function returns a tuple ``(visitor, output)``, where
``visitor`` is visitor instance that rendered the image and ``output``
is the image as requested by the ``output`` parameter (a ``str`` if it
was ``None``, or a file-like object otherwise, which you should
``close()`` if needed).
:exception: This function can raise an ``UnsupportedFormatError`` exception
if the specified format is not supported.
"""
if options is None:
options = {}
close_output = False
if output is None:
import StringIO
options['file_like'] = StringIO.StringIO()
elif isinstance(output, basestring):
options['file_like'] = file(output, 'wb')
close_output = True
else:
options['file_like'] = output
try:
# late import of visitor classes to not cause any import errors for
# unsupported backends (this would happen when a library a backend
# depends on is not installed)
if options['format'].lower() == 'svg':
import svg
visitor_class = svg.SVGOutputVisitor
elif options['format'].lower() == 'pdf':
import pdf
visitor_class = pdf.PDFOutputVisitor
elif options['format'].lower() == 'ascii':
import aa
visitor_class = aa.AsciiOutputVisitor
else:
# for all other formats, it may be a bitmap type. let
# PIL decide if it can write a file of that type.
import pil
visitor_class = pil.PILOutputVisitor
# now render and output the image
visitor = process(input, visitor_class, options)
finally:
if close_output:
options['file_like'].close()
return (visitor, options['file_like'])
def main():
"""implement an useful main for use as command line program"""
import sys
import optparse
import os.path
parser = optparse.OptionParser(
usage = "%prog [options] [file]",
version = """\
%prog 0.5
Copyright (C) 2006-2010 aafigure-team
Redistribution and use in source and binary forms, with or without
modification, are permitted under the terms of the BSD License.
THIS SOFTWARE IS PROVIDED BY THE AAFIGURE-TEAM ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AAFIGURE-TEAM BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
""",
description = "ASCII art to image (SVG, PNG, JPEG, PDF and more) converter."
)
parser.add_option("-e", "--encoding",
dest = "encoding",
action = "store",
help = "character encoding of input text",
default = DEFAULT_OPTIONS['encoding'],
)
parser.add_option("-w", "--wide-chars",
dest = "widechars",
action = "store",
help = "unicode properties to be treated as wide glyph (e.g. 'F,W,A')",
default = DEFAULT_OPTIONS['widechars'],
)
parser.add_option("-o", "--output",
dest = "output",
metavar = "FILE",
help = "write output to FILE"
)
parser.add_option("-t", "--type",
dest = "format",
help = "filetype: png, jpg, svg (by default autodetect from filename)",
default = None,
)
parser.add_option("-D", "--debug",
dest = "debug",
action = "store_true",
help = "enable debug outputs",
default = DEFAULT_OPTIONS['debug'],
)
parser.add_option("-T", "--textual",
dest = "textual",
action = "store_true",
help = "disable horizontal fill detection",
default = DEFAULT_OPTIONS['textual'],
)
parser.add_option("-s", "--scale",
dest = "scale",
action = "store",
type = 'float',
help = "set scale",
default = DEFAULT_OPTIONS['scale'],
)
parser.add_option("-a", "--aspect",
dest = "aspect",
action = "store",
type = 'float',
help = "set aspect ratio",
default = DEFAULT_OPTIONS['aspect'],
)
parser.add_option("-l", "--linewidth",
dest = "line_width",
action = "store",
type = 'float',
help = "set width, svg only",
default = DEFAULT_OPTIONS['line_width'],
)
parser.add_option("--proportional",
dest = "proportional",
action = "store_true",
help = "use proportional font instead of fixed width",
default = DEFAULT_OPTIONS['proportional'],
)
parser.add_option("-f", "--foreground",
dest = "foreground",
action = "store",
help = "foreground color default=%default",
default = DEFAULT_OPTIONS['foreground'],
)
parser.add_option("-x", "--fill",
dest = "fill",
action = "store",
help = "foreground color default=foreground",
default = None,
)
parser.add_option("-b", "--background",
dest = "background",
action = "store",
help = "foreground color default=%default",
default = DEFAULT_OPTIONS['background'],
)
parser.add_option("-O", "--option",
dest = "_extra_options",
action = "append",
help = "pass special options to backends (expert user)",
)
(options, args) = parser.parse_args()
if len(args) > 1:
parser.error("too many arguments")
if options.format is None:
if options.output is None:
parser.error("Please specify output format with --type")
else:
options.format = os.path.splitext(options.output)[1][1:]
if args:
_input = file(args[0])
else:
_input = sys.stdin
input = codecs.getreader(options.encoding)(_input)
if options.output is None:
output = sys.stdout
else:
output = file(options.output, 'wb')
# explicit copying of parameters to the options dictionary
options_dict = {}
for key in ('widechars', 'textual', 'proportional',
'line_width', 'aspect', 'scale',
'format', 'debug'):
options_dict[key] = getattr(options, key)
# ensure all color parameters start with a '#'
# this is for the convenience of the user as typing the shell comment
# character isn't for everyone ;-)
for color in ('foreground', 'background', 'fill'):
value = getattr(options, color)
if value is not None:
if value[0] != '#':
options_dict[color] = '#%s' % value
else:
options_dict[color] = value
# copy extra options
if options._extra_options is not None:
for keyvalue in options._extra_options:
try:
key, value = keyvalue.split('=')
except ValueError:
parser.error('--option must be in the format <key>=<value> (not %r)' % (keyvalue,))
options_dict[key] = value
if options.debug:
sys.stderr.write('options=%r\n' % (options_dict,))
try:
(visitor, output) = render(input, output, options_dict)
output.close()
except UnsupportedFormatError, e:
print "ERROR: Can't output format '%s': %s" % (options.format, e)
# when module is run, run the command line tool
if __name__ == '__main__':
main()
|