/usr/share/pythia8-examples/examples/main52.cc is in pythia8-examples 8.1.80-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | // main52.cc is a part of the PYTHIA event generator.
// Copyright (C) 2013 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Studies of hadron-level and parton-level minimum-bias quantities,
// comparing internal default PDF with one from LHAPDF.
// Major differences indicate need for major retuning, e.g. pT0Ref.
// Access time information.
#include <ctime>
#include "Pythia8/Pythia.h"
using namespace Pythia8;
int main() {
// Machine: 1 = Tevatron, 2 = LHC. Statistics.
int machine = 1;
int nEvent = 10000;
// Select new PDF set; LHAPDF file name conventions.
//string pdfSet = "cteq5l.LHgrid";
//string pdfSet = "cteq61.LHpdf";
//string pdfSet = "cteq61.LHgrid";
//string pdfSet = "MRST2004nlo.LHgrid";
string pdfSet = "MRST2001lo.LHgrid";
// Histograms for hadron-level quantities.
double nMax = (machine == 1) ? 199.5 : 399.5;
Hist nChargedOld("n_charged old PDF", 100, -0.5, nMax);
Hist nChargedNew("n_charged new PDF", 100, -0.5, nMax);
Hist nChargedRat("n_charged new/old PDF", 100, -0.5, nMax);
Hist ySpecOld("y charged distribution old PDF", 100, -10., 10.);
Hist ySpecNew("y charged distribution new PDF", 100, -10., 10.);
Hist ySpecRat("y charged distribution new/old PDF", 100, -10., 10.);
Hist pTSpecOld("pT charged distribution old PDF", 100, 0., 20.);
Hist pTSpecNew("pT charged distribution new PDF", 100, 0., 20.);
Hist pTSpecRat("pT charged distribution new/old PDF", 100, 0., 20.);
Hist avgPTnChOld("<pT>(n_charged) old PDF", 100, -0.5, nMax);
Hist avgPTnChNew("<pT>(n_charged) new PDF", 100, -0.5, nMax);
Hist avgPTnChRat("<pT>(n_charged) new/old PDF", 100, -0.5, nMax);
// Histograms for parton-level quantities.
Hist xDistOld("MPI log(x) distribution old PDF", 80, -8., 0.);
Hist xDistNew("MPI log(x) distribution new PDF", 80, -8., 0.);
Hist xDistRat("MPI log(x) distribution new/old PDF", 80, -8., 0.);
Hist pTDistOld("MPI pT (=Q) distribution old PDF", 100, 0., 20.);
Hist pTDistNew("MPI pT (=Q) distribution new PDF", 100, 0., 20.);
Hist pTDistRat("MPI pT (=Q) distribution new/old PDF", 100, 0., 20.);
// Loop over one default run and one with new PDF.
for (int iRun = 0; iRun < 2; ++iRun) {
// Get starting time in seconds.
time_t tBegin = time(0);
// Generator.
Pythia pythia;
Event& event = pythia.event;
// Generate minimum-bias events, with or without double diffraction.
pythia.readString("SoftQCD:nonDiffractive = on");
//pythia.readString("SoftQCD:doubleDiffractive = on");
// Generate QCD jet events, above some threshold.
//pythia.readString("HardQCD:all = on");
//pythia.readString("PhaseSpace:pTHatMin = 50.");
// In second run pick new PDF set.
if (iRun == 1) {
pythia.readString("PDF:useLHAPDF = on");
pythia.readString("PDF:LHAPDFset = " + pdfSet);
// Allow extrapolation of PDF's beyond x and Q2 boundaries, at own risk.
// Default behaviour is to freeze PDF's at boundaries.
pythia.readString("PDF:extrapolateLHAPDF = on");
// Need to change pT0Ref depending on choice of PDF.
// One possibility: retune to same <n_charged>.
//pythia.readString("MultipartonInteractions:pT0Ref = 2.17");
}
// Tevatron/LHC initialization.
double eCM = (machine == 1) ? 1960. : 7000.;
pythia.settings.parm("Beams:eCM", eCM);
if (machine == 1) pythia.readString("Beams:idB = -2212");
pythia.init();
// Begin event loop.
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
// Generate events. Skip if error.
if (!pythia.next()) continue;
// Statistics on multiplicity and pT.
int nCh = 0;
double pTsum = 0.;
for (int i = 0; i < event.size(); ++i)
if (event[i].isFinal() && event[i].isCharged()) {
++nCh;
pTsum += event[i].pT();
// Fill histograms for charged y and pT spectra.
if (iRun == 0) {
ySpecOld.fill( event[i].y() );
pTSpecOld.fill( event[i].pT() );
} else {
ySpecNew.fill( event[i].y() );
pTSpecNew.fill( event[i].pT() );
}
}
// Fill histograms for summed quantities.
if (iRun == 0) {
nChargedOld.fill( nCh );
avgPTnChOld.fill( nCh, pTsum / max(1, nCh) );
} else {
nChargedNew.fill( nCh );
avgPTnChNew.fill( nCh, pTsum / max(1, nCh) );
}
// Loop through event record and fill x of all incoming partons.
for (int i = 1; i < event.size(); ++i)
if (event[i].status() == -21 || event[i].status() == -31) {
double x = 2. * event[i].e() / eCM;
if (iRun == 0) xDistOld.fill( log10(x) );
else xDistNew.fill( log10(x) );
}
// Loop through multiparton interactions list and fill pT of all MPI's.
for (int i = 0; i < pythia.info.nMPI(); ++i) {
double pT = pythia.info.pTMPI(i);
if (iRun == 0) pTDistOld.fill( pT );
else pTDistNew.fill( pT );
}
// End of event loop.
}
// Statistics.
pythia.readString("Stat:showPartonLevel = on");
pythia.stat();
// Get finishing time in seconds. Print used time.
time_t tEnd = time(0);
cout << "\n This subrun took " << tEnd - tBegin << " seconds \n" << endl;
// End of loop over two runs.
}
// Form <pT>(n_charged) ratios.
avgPTnChOld /= nChargedOld;
avgPTnChNew /= nChargedNew;
// Take ratios of new to old distributions.
nChargedRat = nChargedNew / nChargedOld;
ySpecRat = ySpecNew / ySpecOld;
pTSpecRat = pTSpecNew / pTSpecOld;
avgPTnChRat = avgPTnChNew / avgPTnChOld;
xDistRat = xDistNew / xDistOld;
pTDistRat = pTDistNew / pTDistOld;
// Print histograms.
cout << nChargedOld << nChargedNew << nChargedRat
<< ySpecOld << ySpecNew << ySpecRat
<< pTSpecOld << pTSpecNew << pTSpecRat
<< avgPTnChOld << avgPTnChNew << avgPTnChRat
<< xDistOld << xDistNew << xDistRat
<< pTDistOld << pTDistNew << pTDistRat;
// Second part of study, as simple extra check:
// Begin fill shape of effective PDF at typical MPI Q2 = 10 scale:
// F_effective(x) = (9/4) x*g(x) + Sum_i (x*q_i(x) + x*qbar_i(x)).
double Q2 = 10.;
PDF* oldPDF = new CTEQ5L(2212);
PDF* newPDF = new LHAPDF(2212, pdfSet, 0);
// Histograms.
Hist effFlinOld("F_effective( x, Q2 = 10) old", 100 , 0., 1.);
Hist effFlinNew("F_effective( x, Q2 = 10) new", 100 , 0., 1.);
Hist effFlinRat("F_effective( x, Q2 = 10) new/old", 100 , 0., 1.);
Hist effFlogOld("F_effective( x, Q2 = 10) old", 80 , -8., 0.);
Hist effFlogNew("F_effective( x, Q2 = 10) new", 80 , -8., 0.);
Hist effFlogRat("F_effective( x, Q2 = 10) new/old", 80 , -8., 0.);
// Loop over x values, in a linear scale.
for (int iX = 0; iX < 99; ++iX) {
double x = 0.005 + 0.01 * iX;
// Evaluate old summed PDF.
double oldSum = 2.25 * oldPDF->xf( 21, x, Q2);
for (int i = 1; i < 6; ++i)
oldSum += oldPDF->xf( i, x, Q2) + oldPDF->xf( -i, x, Q2);
effFlinOld.fill ( x, oldSum );
// Evaluate new summed PDF.
double newSum = 2.25 * newPDF->xf( 21, x, Q2);
for (int i = 1; i < 6; ++i)
newSum += newPDF->xf( i, x, Q2) + newPDF->xf( -i, x, Q2);
effFlinNew.fill ( x, newSum );
//End loop over x values, in a linear scale.
}
// Loop over x values, in a logarithmic scale
for (int iX = 0; iX < 80; ++iX) {
double xLog = -(0.1 * iX + 0.05);
double x = pow( 10., xLog);
// Evaluate old summed PDF.
double oldSum = 2.25 * oldPDF->xf( 21, x, Q2);
for (int i = 1; i < 6; ++i)
oldSum += oldPDF->xf( i, x, Q2) + oldPDF->xf( -i, x, Q2);
effFlogOld.fill ( xLog, oldSum );
// Evaluate new summed PDF.
double newSum = 2.25 * newPDF->xf( 21, x, Q2);
for (int i = 1; i < 6; ++i)
newSum += newPDF->xf( i, x, Q2) + newPDF->xf( -i, x, Q2);
effFlogNew.fill ( xLog, newSum );
//End loop over x values, in a logarithmic scale.
}
// Take ratios of new to old distributions.
effFlinRat = effFlinNew / effFlinOld;
effFlogRat = effFlogNew / effFlogOld;
// Print histograms.
cout << effFlinOld << effFlinNew << effFlinRat
<< effFlogOld << effFlogNew << effFlogRat;
// Done.
delete oldPDF;
delete newPDF;
return 0;
}
|