This file is indexed.

/usr/share/doc/prover9-doc/html/syntax.html is in prover9-doc 0.0.200902a-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
  <title>Prover9 Manual: Clauses and Formulas</title>
 <link rel="stylesheet" href="manual.css">
</head>

<body>

<hr>
<table width="100%">
<tr>
<colgroup>
<col width="33%">
<col width="34%">
<col width="33%">
</colgroup>
<td align="left"><i>Prover9 Manual</i>
<td align="center"><img src="prover9-5a-256t.gif">
<td align="right"><i>Version 2009-02A</i>
</table>
<hr>

<!-- Main content -->

<h1>Clauses and Formulas</h1>

The <a href="glossary.html">Glossary Page</a> contains definitions
of <a href="glossary.html#term">term</a>,
<a href="glossary.html#atomic formula">atomic formula</a>,
<a href="glossary.html#literal">literal</a>, <a href="glossary.html#clause">clause</a>,
and <a href="glossary.html#formula">formula</a> from a logical point of view.
This page contains descriptions of how those kinds of things are parsed
and printed, and we refer to them collectively as <i>objects</i>.

<blockquote class="otter_diff">
In Otter and in earlier versions of Prover9,
"clauses" and "formulas" were distinct types of object,
and "formulas" could not have free variables.
Now, clauses are a subset of formulas.
</blockquote>

<p>
Here are the important points about clauses and formulas.
<ul>
<li>
Clauses are a subset of formulas.  All input formulas, including clauses,
appear in a list headed by
<tt>formulas(<font color=#D10000><i>list_name</i></font>)</tt>.
<li>
There is a rule for distinguishing variables from constants,
because clauses and other formulas can have free variables
(variables not bound by quantifiers).  The default rule
is that variables start with (lower case) <tt>u</tt> through <tt>z</tt>.
For example, in the formula <tt>P(a,x)</tt>, the term
<tt>a</tt> is a constant, and
<tt>x</tt> is a variable.
(See also the flag <a href="syntax.html#prolog_style_variables"><tt><b>prolog_style_variables</b></tt></a>.)
<li>
Free variables in clauses and formulas are assumed to be universally
quantified at the outermost level.
<li>
Prover9's inference rules operate on clauses.
If non-clausal formulas are input,
Prover9 immediately translates them clauses
by <a href="glossary.html#NNF">NNF</a>,
<a href="glossary.html#skolemization">Skolemization</a>,
and <a href="glossary.html#CNF">CNF</a> conversions.
</ul>

<h2>Parsing and Printing Objects</h2>

The <i>prefix standard form</i> of an object with an n-ary symbol, say <tt>f</tt>,
at the root is 
<pre class="my_file">
f( <font color="#D10000"><i>argument_1, ..., argument_n</i></font> )
</pre>
Whitespace (spaces, tabs, newline, etc.) is accepted anywhere
except within symbols.
<p>
Prover9 will accept any term or formula written
prefix standard form.  However formulas and
many terms can be written in more convenient ways, for example,
"<tt>a=b | a!=c'</tt>" instead of "<tt>|(=(a,b),-(=(a,'(c))))</tt>".

<p>
Prover9 uses a general mechanism in which binary and unary symbols
can have special parsing properties such as "infix",
"infix-right-associated", "postfix".  In addition, each of 
those symbols has a precedence so that many parentheses
can be omitted.  (The mechanism is similar to those used by
most Prolog systems.)

<p>
Many symbols have built-in parsing properties
(see the <a href="#built_in">table below</a>),
and the user can declare parsing properties for
other symbols with the "op" command.

<p>
Clauses and formulas make extensive use of the built-in
parsing properties for the equality relation and the logic connectives.
Instead of first presenting the general mechanism,
we will present the syntax for formulas
under the assumption of the built-in parsing properties.
The general mechanism is described below in the
section <a href="#declarations">Infix, Prefix, and Postfix Declarations</a>.

<h3>Symbols</h3>

Symbols include variables, constants, function symbols, predicate symbols,
logic connectives.  Symbols do not include parentheses or commas.

<p>
Prover9 recognizes several kinds of symbol.
<ul>
<li>An <i>ordinary symbol</i> is a (maximal) string made from the
characters
<tt>a</tt>-<tt>z</tt>, <tt>A</tt>-<tt>Z</tt>, <tt>0</tt>-<tt>9</tt>,
<tt>$</tt>, and <tt>_</tt>.
<li><a name="special_symbol"</a>A <i>special symbol</i> is a (maximal) string made from the
<i>special characters</i>:
<tt>{+-*/\^&lt;&gt;=`~?@&|!#';}</tt>.
<li>A <i>quoted symbol</i> is any string enclosed in double quotes.
<li>The <i>empty list symbol</i> is <tt>[]</tt>.  This is a special case.
</ul>
The reason for separating ordinary and special symbols is so that
strings like <tt>a+b</tt>; that is, <tt>+(a,b)</tt>,
can be written without any whitespace around the <tt>+</tt>.

<p>
A symbol cannot have both ordinary and special characters,
for example <tt>R+</tt> (unless it is a quoted symbol).

<p>
Objects (terms or formulas) are constructed from
symbols, parentheses, and commas.

<h3>Overloaded Symbols</h3>

In most cases, symbol overloading is not allowed.  For example
a symbol cannot be both a function symbol and a predicate symbol,
or both a constant and a binary function symbol.  There
are a few exceptions.
<ul>
<li>The logic connectives can also be used as function or
predicate symbols of the same arity.  For example,
<tt>-</tt> is typically used as unary arithmetic minus
well as for logical negation.
</ul>

<p>
<blockquote class="otter_diff">
Prover9 is much more strict about overloading symbols than Otter is.
</blockquote>

<h3>Symbols With Meaning</h3>

Several symbols have built-in meaning.  These are the equality
symbols (<tt>=</tt>, <tt>!=</tt>) and logic connectives
(<tt>-</tt>, <tt>|</tt>, <tt>&</tt>, <tt>-&gt;</tt>, <tt>&lt;-</tt>,
<tt>&lt;-&gt;</tt>, <tt>all</tt>, <tt>exists</tt>).  These
symbols can be changed as described in the section
<a href="#redeclare">Redeclaring Built-in Symbols</a>.
(Parentheses, comma, period, and the list construction symbols
cannot be redeclared.)

<h3><a name="terms">Terms</h3>

Any term can be written in prefix standard form, for example,
<tt>f(g(x),y)</tt> and <tt>*('(x),y)</tt>.  If symbols in the
term have parsing/printing properties (either
<a href="#built_in">built-in</a>)
or declared with the <tt>op</tt> command), the term can be
written in infix/prefix/postfix form with assumed precedence,
for example, <tt>x'*y</tt>, which represents <tt>*('(x),y)</tt> under
the built-in parsing/printing properties.

<p>
A list notation similar to Prolog's can be used to write
terms that represent lists.  Note that the "cons" operator
is "<tt>:</tt>", instead of "<tt>|</tt>" as in Prolog.
<table "border" align="center" cellpadding="5">
<tr> <th> Term      <th> Standard Prefix Form <th> What it Is
<tr> <td> <tt>[]</tt>        <td> <tt>$nil</tt>                             <td> the empty list
<tr> <td> <tt>[a,b,c]</tt>   <td> <tt>$cons(a,$cons(b,$cons(c,$nil)))</tt>  <td> list of three objects
<tr> <td> <tt>[a:b]</tt>     <td> <tt>$cons(a,b)</tt>                       <td> first, rest
<tr> <td> <tt>[a,b:c]</tt>   <td> <tt>$cons(a,$cons(b,c))</tt>              <td> first, second, rest
</table>
<p>
Lists are frequently used in Prover9 commands such as the
<a href="input.html#lists"><tt>function_order</tt></a>
command, and they are sometimes also used in clauses and formulas.

<h3>Atomic Formulas</h3>

Equality is a built-in special case.
The binary predicate symbol <tt>=</tt>
is usually written as an infix relation.
The binary symbol <tt>!=</tt> is an abbreviation for "not equal";
that is, the formula <tt>a!=b</tt> stands for <tt>-(a=b)</tt>,
or more precisely, <tt>-(=(a,b))</tt>.
From the semantics point of view,
the binary predicate symbol <tt>=</tt>
is the one and only equality symbol for the inference
rules that use equality.

<h3>Clauses</h3>

The disjunction (OR) symbol is <tt>|</tt>,
and the negation (NOT) symbol is <tt>-</tt>.
The disjunction symbol has higher precedence than the equality symbol,
so equations in clauses do not need parentheses.  Every clause ends
with a period.
Examples of clauses follow (Prover9 adds some
extra space when printing clauses).
<pre class="my_file">
formulas(sos).
    p|-q|r.
    a=b|c!=d.
    f(x)!=f(y)|x=y.
end_of_list.
</pre>

<h3>Formulas</h3>

<table "border" align="center" cellpadding="5">
<tr><th>Meaning     <th>  Connective   <th>  Example
<tr><td>negation    <td>  <tt>-</tt>   <td>  <tt>(-p)</tt>
<tr><td>disjunction <td>  <tt>|</tt>   <td>  <tt>(p | q | r)</tt>
<tr><td>conjunction <td>  <tt>&amp;</tt>   <td>  <tt>(p &amp; q &amp; r)</tt>
<tr><td>implication <td>  <tt>-&gt;</tt>   <td>  <tt>(p -&gt; q)</tt>
<tr><td>backward implication <td>  <tt>&lt;-</tt>   <td>  <tt>(p &lt;- q)</tt>
<tr><td>equivalence <td>  <tt>&lt;-&gt;</tt>   <td>  <tt>(p &lt;-&gt; q)</tt>
<tr><td>universal quantification <td>  <tt>all</tt>   <td>  <tt>(all x all y p(x,y))</tt>
<tr><td>existential quantification <td>  <tt>exists</tt>   <td>  <tt>(exists x exists y p(x,y))</tt>
</table>

When writing formulas, the <a href="#built_in">built-in parsing declarations</a>
allow many parentheses to be omitted.  For example, the following two formulas
are really the same formula.
<pre class="my_file">
formulas(sos).
 all x  all y (p <->   -q  |  r &  -s)     .
(all x (all y (p <-> ((-q) | (r & (-s)))))).
end_of_list.
</pre>

<blockquote class="otter_diff">
For Prover9 formulas, each quantified variable must have its own
quantifier; Otter allows quantifiers to be omitted in a sequence
of quantified variables with the same quantifier.  For example,
Otter allows <tt>(all x y z p(x,y,z))</tt>, and Prover9 requires
<tt>(all x all y all z p(x,y,z))</tt>.

</blockquote>

<h2><a name="declarations">Infix, Prefix, and Postfix Declarations</h2>

<p>
Several symbols are understood by Prover9 as having special
parsing properties that determine how terms involving those
symbols can be arranged.
In addition, the user can declare additional symbols to have special
parsing properties.

<h3>Parsing Declarations</h3>

The "op" command is used to declare parse types and precedences.

<pre class="my_file">
op( <font color="#D10000"><i>precedence</i></font>, <font color="#D10000"><i>type</i></font>, <font color="#D10000"><i>symbols(s)</i></font> ).  % declare parse type and precedence
</pre>

<ul>
<li>1 &le; <font color="#D10000"><tt><i>precedence</i></tt></font> &le; 998.
<li><font color="#D10000"><tt><i>type</i></tt></font> is one of
     { <tt>infix, infix_left, infix_right, prefix, prefix_paren, postfix, postfix_paren, ordinary</tt> }.
<li><font color="#D10000"><tt><i>symbol(s)</i></tt></font> is either a symbol or a list of symbols.
     Each multi-character special symbol must be enclosed in double quotes.
</ul>

<blockquote class="otter_diff">
Prover9 does not allow different symbol types with the same precedence,
for example,
<pre class="my_file">
op(325, postfix, ').
op(325, prefix, ~).
</pre>
This restriction prevents ambiguous strings such as <tt>~x'</tt>.
</blockquote>

<p>
The following table shows an example of each type of parsing
property (and ignores precedence).
<p>
<table "border" align="center" cellpadding="5">
<tr><th> Type                 <th> Example      <th>  Standard Prefix  <th> Comment
<tr><td><tt>infix</tt>        <td> <tt>a*(b*c) </tt>  <td>  <tt>*(a,*(b,c))</tt> <td> like Prolog's <tt>xfx</tt>
<tr><td><tt>infix_left</tt>   <td> <tt>a*b*c   </tt>  <td>  <tt>*(*(a,b),c)</tt> <td> like Prolog's <tt>yfx</tt>
<tr><td><tt>infix_right</tt>  <td> <tt>a*b*c   </tt>  <td>  <tt>*(a,*(b,c))</tt> <td> like Prolog's <tt>xfy</tt>
<tr><td><tt>prefix</tt>       <td> <tt>--p     </tt>  <td>  <tt>-(-(p))    </tt> <td> like Prolog's <tt>fy</tt>
<tr><td><tt>prefix_paren</tt> <td> <tt>-(-p)   </tt>  <td>  <tt>-(-(p))    </tt> <td> like Prolog's <tt>fx</tt>
<tr><td><tt>postfix</tt>      <td> <tt>a''     </tt>  <td>  <tt>'('(a))    </tt> <td> like Prolog's <tt>yf</tt>
<tr><td><tt>postfix_paren</tt><td> <tt>(a')'   </tt>  <td>  <tt>'('(a))    </tt> <td> like Prolog's <tt>xf</tt>
<tr><td><tt>ordinary</tt>     <td> <tt>*(a,b)  </tt>  <td>  <tt>*(a,b)     </tt>   <td> takes away parsing properties
</table>

<p>
Higher precedence means closer to the root of the object,
and lower precedence means the the symbol binds more closely.
For example, assume that the following declarations are in effect.
<pre class="my_file">
op(790, infix_right,  "|" ).  % disjunction in formulas or clauses
op(780, infix_right,  "&" ).  % conjunction in formulas
</pre>
Then the string <tt>a & b | c</tt> is an abbreviation for <tt>(a & b) | c</tt>.

<p>
The built-in parsing declarations are shown in the following box.
The ones with comments have built-in meanings;
the others are for general use as function or predicate symbols.

<a name="built_in">
<pre class="my_file">
op(810, infix_right,  "#" ).  % for attaching attributes to clauses
	    
op(800, infix,      "<->" ).  % equivalence in formulas
op(800, infix,       "->" ).  % implication in formulas
op(800, infix,       "<-" ).  % backward implication in formulas
op(790, infix_right,  "|" ).  % disjunction in formulas or clauses
op(780, infix_right,  "&" ).  % conjunction in formulas

% Quantifiers (a special case) have precedence 750.
	    
op(700, infix,        "=" ).  % equal in atomic formulas
op(700, infix,       "!=" ).  % not equal in atomic formulas
op(700, infix,       "==" ).  
op(700, infix,        "<" ).
op(700, infix,       "<=" ).
op(700, infix,        ">" ).
op(700, infix,       ">=" ).
	    
op(500, infix,        "+" ).
op(500, infix,        "*" ).
op(500, infix,        "@" ).
op(500, infix,        "/" ).
op(500, infix,        "\" ).
op(500, infix,        "^" ).
op(500, infix,        "v" ).

op(350, prefix,       "-" ).  % logical negation in formulas or clauses
op(300, postfix,      "'" ).
</pre>

<p>
The built-in parsing declarations can be overridden with ordinary "op"
commands.  Be careful, however, when overriding parsing declarations
for symbols with built-in meanings.  For example, say you wish to
use "#" as an infix function
symbol and give the following the declaration.
<pre class="my_file">
op(500, infix, "#").
</pre>
Then clauses with attributes might have be written with more parentheses,
for example, as
<pre class="my_file">
(p(a) | q(a)) # (label(a) # label(b)).
</pre>

<p>
If you wish to use one of the symbols with built-in parsing declarations
as an ordinary prefix symbol, you can undo the declaration by giving
an "op" command with type "ordinary".  The following example clears
the parse types for two symbols.
<pre class="my_file">
op(ordinary, ["*","+"]).   % there is no precedence argument for type "ordinary"
</pre>

<p>
Finally, the following example shows that parsing declarations can
be changed anywhere in the input, with immediate effect.  This can be useful
for example, if lists of clauses come from different sources.
<pre class="my_file">
op(400,infix_left,"*").  % assume left association for following clauses

formulas(sos).
  P(a * b * c).
end_of_list.

op(400,infix_right,"*"). % assume right association for following clauses

formulas(sos).
  Q(d * e * f).
end_of_list.

op(400,infix,"*").  % from here on, include all parentheses (input and output)
</pre>

An excerpt from the output of the preceding example shows how the clauses are
printed after the last "op" command.
<pre class="my_file">
formulas(sos).
P((a * b) * c).  [assumption].
Q(d * (e * f)).  [assumption].
end_of_list.
</pre>

<h2>Prolog-Style Variables</h2>

<!-- start option prolog_style_variables -->
<a name="prolog_style_variables">
<pre class="my_option">
set(prolog_style_variables).
clear(prolog_style_variables).    % default clear
</pre>

<blockquote>
A rule is needed for distinguishing variables from constants in
clauses and formulas with free variables.
If this flag is clear, variables in clauses start with
(lower case) 'u' through 'z'.
If this flag is set, variables in clauses start with
(upper case) 'A' through 'Z' or '_'.
<p>
Prover9 decides whether symbols are constants or variables
after it has read all of its input, so the state of the
flag <a href="syntax.html#prolog_style_variables"><tt><b>prolog_style_variables</b></tt></a>
at the end of the input determines the rule that is used for
<i>all</i> formulas.
For example, in the following input,
<pre class="my_file">
formulas(sos).
  p(x,A).
end_of_list.

set(prolog_style_variables).

formulas(sos).
  q(y,B).
end_of_list.
</pre>
the term <tt>x</tt> is a constant, and <tt>A</tt> is a variable.

</blockquote>
<!-- end option -->

<h2><a name="redeclare">Redeclaring Built-in Symbols</h2>

NOTE: Keep in mind the difference between <i>semantic</i>
properties of symbols (e.g., logic connectives) and
<i>parsing/printing</i> properties of symbols
(e.g., infix with high precedence).
Those two kinds of property are independent
(by default, many symbols have both).

<p>
Most of the symbols with built-in meaning can be
changed to other symbols.  The symbols that can be
changed are shown in the following table.

<p>
<table "border" align="center" cellpadding="5">
<tr><th>Operation                  <th>  Default Symbol
<tr><td>true                       <td>  <tt>$T</tt>
<tr><td>false                      <td>  <tt>$F</tt>
<tr><td>negation                   <td>  <tt>-</tt>
<tr><td>disjunction                <td>  <tt>|</tt>
<tr><td>conjunction                <td>  <tt>&amp;</tt>
<tr><td>implication                <td>  <tt>-&gt;</tt>
<tr><td>backward_implication       <td>  <tt>&lt;-</tt>
<tr><td>equivalence                <td>  <tt>&lt;-&gt;</tt>
<tr><td>universal_quantification   <td>  <tt>all</tt>
<tr><td>existential_quantification <td>  <tt>exists</tt>
<tr><td>equality                   <td>  <tt>=</tt>
<tr><td>negated_equality           <td>  <tt>!=</tt>
<tr><td>attribute                  <td>  <tt>#</tt>
</table>

<p>
To change the symbol associated with an operation, one
uses the following command.

<pre class="my_file">
redeclare( <font color="#D10000"><i>operation</i></font>, <font color="#D10000"><i>symbol</i></font> ).  % associate a different symbol with an operation
</pre>

For example, the following command says that "<tt>AND</tt>" will be used
for conjunction.

<pre class="my_file">
redeclare(conjunction, AND).  % change the conjunction symbol to AND.
</pre>

As with the "<tt>op</tt>" command, if the new symbol is a
multicharacter <a href="#special_symbol">special symbol</a>,
it must be enclosed in double quotes, as in the following
example.
<pre class="my_file">
redeclare(conjunction, "&&").  % change the conjunction symbol to &&.
</pre>
When in doubt, quote the symbol, because unnecessary quotes are
ignored in the "<tt>redeclare</tt>" and "<tt>op</tt>" commands.

<h3>Parsing/Printing Properties and Redeclarations</h3>
<p>
Many of the default symbols for the built-in operations have
default printing/parsing properties, for example, the default
properties for default conjunction symbol are

<pre class="my_file">
op(780, infix_right,  "&" ).  % conjunction in formulas
</pre>

When a redeclaration for such an operation occurs, the parsing/printing
properties are copied from the old symbol to the new symbol.
For example, when conjunction is changed to <tt>AND</tt>, the
following is <i>automatically</i> applied.

<pre class="my_file">
op(780, infix_right,  AND ).
</pre>

If the user wishes some other printing/parsing properties for the
new symbol, the appropriate "<tt>op</tt>" command can be placed
after the "<tt>redeclare</tt>" command.

<h3>Redeclaration Example</h3>

The following example shows redeclarations of many of the operations.
<pre class="my_job">
prover9 -f <a href="../examples/redeclare.in">redeclare.in</a> &gt; <a href="../examples/redeclare.out">redeclare.out</a>
</pre>

<h3>Location of Redeclare Commands</h3>

Most of the operations can be redeclared repeatedly throughout
the input.  The declarations in effect when a formula is read
will be used, ane the ones in effect at the end of the
input will be used for all subsequent output.

<p>
<i>An exception</i>: If the operations "<tt>equality</tt>" or
"<tt>negated_equality</tt>" are redeclared, it must be done
before any formulas containing those symbols are read.

<hr>
Next Section:
<a href="auto.html">Auto Modes</a>

</body>
</html>