This file is indexed.

/usr/lib/open-axiom/input/psgenfcn.input is in open-axiom-test 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
--Copyright The Numerical Algorithms Group Limited 1991.

--% Power Series Generating Functions
-- We obtain Fibonacci numbers, Bernoulli numbers and polynomials, and
-- Euler numbers and polynomials as power series coefficients
-- Author: Clifton J. Williamson
-- Date Created: 1 June 1990
-- Date Last Updated: 1 June 1990
-- Keywords: Fibonacci, Bernoulli, Euler
-- References:

-- We will compute power series in two different ways, then test equality
-- of coefficients up to a specified order.  The function that tests
-- 'approximate equality' will return an error message if the test fails.

)cl all

ORD := 20

approximateEquality(series1,series2) ==
  -- tests that 2 series are equal to order ORD
  uts1 := series1 :: UTS(EXPR INT,'t,0)
  uts2 := series2 :: UTS(EXPR INT,'t,0)
  flag := (order(uts1 - uts2,ORD) = ORD) :: Boolean
  flag => true
  error "series do not agree to specified order"

bernoulliPolynomial(n) ==
  -- returns the nth Bernoulli polynomial as an EXPR INT
  sup := bernoulli(n)$(PNTHEORY)
  p : POLY FRAC INT := multivariate(sup,'x)
  p :: (EXPR INT)

eulerPolynomial(n) ==
  -- returns the nth Euler polynomial as an EXPR INT
  sup := euler(n)$(PNTHEORY)
  p : POLY FRAC INT := multivariate(sup,'x)
  p :: (EXPR INT)

f1 := taylor(t/(1 - t - t**2))
f2 := taylor(n +-> fibonacci(n),t = 0)
approximateEquality(f1,f2)

g1 := taylor(t/(exp(t) - 1))
g2 := taylor(n +-> bernoulli(n)/factorial(n),t = 0)
approximateEquality(g1,g2)

gg1 := taylor(t*exp(t*x)/(exp(t) - 1),t = 0)
gg2 := taylor(n +-> bernoulliPolynomial(n)/factorial(n),t = 0)
approximateEquality(gg1,gg2)

h1 := taylor(2*exp(t/2)/(exp(t) + 1))
h2 := taylor(n +-> euler(n)/(2**n * factorial(n)),t = 0)
approximateEquality(h1,h2)

hh1 := taylor(2*exp(t*x)/(exp(t) + 1),t = 0)
hh2 := taylor(n +-> eulerPolynomial(n)/factorial(n),t = 0)
approximateEquality(hh1,hh2)