This file is indexed.

/usr/lib/open-axiom/input/eigen.input is in open-axiom-test 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
--Copyright The Numerical Algorithms Group Limited 1991.

-- Computation of eigenvalues and eigenvectors
)cl all

-- computation of characteristic polynomial
 
-- for matrix of integers
m:=matrix([[1,2,1],[2,1,-2],[1,-2,4]])
 
characteristicPolynomial m
characteristicPolynomial(m,x)
 
-- for matrix of polynomials
p:=matrix([[x+1,2-x*y,x**2+1],[2-x,y+2*x,x**2-2],[y**2,x-2,4-x*y]])
characteristicPolynomial p
characteristicPolynomial(p,t)
 
-- for general matrix of FRAC POLY INT
n:=matrix([[a,b,c],[d,e,f],[g,h,k]])
characteristicPolynomial n
 
-- there are many functions for the computation of  eigenvalues and
-- eigenvectors:
-- the function eigenvalues returns the eigenvalues :
leig := eigenvalues m

alpha:=leig.1
-- alpha is a rational eigenvalue; the corresponding eigenvector can be 
-- computed with the function eigenvector:
eigenvector(alpha,m)

beta:=leig.2
-- beta is a "symbolic" eigenvalue, i.e. it is a root (symbolically expressed)
-- of an irreducible factor of the characteristic polynomial. In this case
-- too we can compute the associate eigenvectors.
eigenvector(beta,m)$EP(INT)
-- eigenvector(beta,m)  not accepted by the interpreter

-- eigenvalues and eigenvectors can be computed simultaneously
--  with the function eigenvectors
eigenvectors m
 
q:=matrix [[x**2-y**2,(x-y)*(2*x+3*y)],[x+y,2*x+3*y]]
 
eigenvectors(q)

p:=matrix([[76,-18,58,-10],[-4,78,2,-2],[-6,15,45,3],[22,-75,7,41]])
ll := eigenvectors p

-- In this case the algebraic multiplicity (the field eigmult) is different
-- from the geometric multiplicity (the length of the field eigvec).

generalizedEigenvectors p
generalizedEigenvector(ll.1,p)$EP(INT)
-- generalizedEigenvector(ll.1,p) the interpreter can not handle this
 
-- these functions return respectively the complete set of 
-- generalized eigenvectors
-- or the generalized eigenvectors associated to a particular eigenvalue alpha,
-- i.e. a basis of the nullSpace((p-alpha*I)**k) where k is the  algebraic
-- multiplicity of alpha.

-- In the case of symbolic eigenvalues it is possible to convert the symbolic
-- eigenvalue and the corresponding eigenvectors in a more explicit form.
m
mm:=matrix([[30,4,24],[-17,8,-7],[-31,-54,-5]])
-- the function radicalEigenvalues expresses, when possible, the eigenvalues 
-- in terms of radicals.
le1:=radicalEigenvalues m
le2:=radicalEigenvalues mm

-- the function radicalEigenvector computes the eigenvectors assocoted to
-- a given eigenvalue, expressed in terms of radicals
radicalEigenvector(le1.2, m)
radicalEigenvector(le2.2,mm)

-- the function radicalEigenvectors computes simoultaneously all the
-- eigenvalues and the associated eigenvectors  and expresses the , when
-- it is possible, in terms of radical.
radicalEigenvectors m
radicalEigenvectors mm

-- there exist analogous functions for the computation of real and complex
-- eigenvalues and eigenvectors.

-- in order to compute respectively the eigenvalues or the
-- eigenvalues and the associared eigevectors of a matrix m and express them
-- as rational numbers (Gaussian rational) up to precision 1/1000000 use
realEigenvalues(m,1/1000000)
complexEigenvalues(mm,1/1000000)

realEigenvectors(m,1/1000000)
complexEigenvectors(mm,1/1000000)
-- to have the eigenvalues expressed as real float (complex float) use
realEigenvalues(m,.000001)
realEigenvectors(m,.000001)

complexEigenvalues(mm,.000001)
complexEigenvectors(mm,.000001)