This file is indexed.

/usr/share/octave/packages/nnet-0.1.13/saveMLPStruct.m is in octave-nnet 0.1.13-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
## Copyright (C) 2005 Michel D. Schmid  <michaelschmid@users.sourceforge.net>
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} saveMLPStruct (@var{net},@var{strFileName})
## @code{saveStruct} saves a neural network structure to *.txt files
## @end deftypefn

## Author: Michel D. Schmid

function saveMLPStruct(net,strFileName)

  ## the variable net holds the neural network structure..
  # check if "net" is a structure type
  if !__checknetstruct(net)
    error("Structure doesn't seem to be a neural network")
  endif

  # open the first level file
  fid1 = fopen(strFileName,"w+t","ieee-le");

  if (fid1 < 0)
    error ("Can not open %s", strFileName);
  endif

  ## print header
#   try            ## wird nicht mehr benötigt..
    __printMLPHeader(fid1);
#   catch
#     ## Add saveMLPStructure directory to the path and try again
#     addpath ([fileparts(mfilename()),"/saveMLPStructure"]);
#     __printMLPHeader(fid1);
#   end_try_catch
  
  ## check for field "networkType"
  __printNetworkType(fid1,net);

  ## check for field "numInputs"
  __printNumInputs(fid1,net);

  ## check for field "numLayers"
  __printNumLayers(fid1,net)

  ## check for field "biasConnect"
  __printBiasConnect(fid1,net)

  ## check for field "inputConnect"
  __printInputConnect(fid1,net)

  ## check for field "layerConnect"
  __printLayerConnect(fid1,net)

  ## check for field "outputConnect"
  __printOutputConnect(fid1,net)

  ## check for field "targetConnect"
  __printTargetConnect(fid1,net)

  ## print one empty line
  fprintf(fid1,"\n");

  ## check for numOutputs
  __printNumOutputs(fid1,net);

  ## check for numTargets
  __printNumTargets(fid1,net);

  ## check for numInputDelays
  __printNumInputDelays(fid1,net);

  ## check for numLayerDelays
  __printNumLayerDelays(fid1,net);

  ## print one empty line
  fprintf(fid1,"\n");

  ## print subobject structures:
  fprintf(fid1,"  subobject structures:\n");

  ## print one empty line
  fprintf(fid1,"\n");

  ## print inputs
  __printInputs(fid1,net);

  ## print layers
  __printLayers(fid1,net);

  ## print outputs
  __printOutputs(fid1,net);

  ## print targets
  __printTargets(fid1,net);

  ## print biases
  __printBiases(fid1,net);

  ## print inputweights
  __printInputWeights(fid1,net);

  ## print layerweights
  __printLayerWeights(fid1,net);

  ## print one empty line
  fprintf(fid1,"\n");

  ## print subobject structures:
  fprintf(fid1,"  functions:\n");

  ## print one empty line
  fprintf(fid1,"\n");

  ## print adaptFcn
  __printAdaptFcn(fid1,net);

  ## print initFcn
  __printInitFcn(fid1,net);

  ## print performFcn
  __printPerformFcn(fid1,net);

  ## print performFcn
  __printTrainFcn(fid1,net);

  ## print one empty line
  fprintf(fid1,"\n");

  ## print subobject structures:
  fprintf(fid1,"  parameters:\n");

  ## print one empty line
  fprintf(fid1,"\n");

  ## print adaptParam
  __printAdaptParam(fid1,net);

  ## print initParam
  __printInitParam(fid1,net);

  ## print performParam
  __printPerformParam(fid1,net);

  ## print trainParam
  __printTrainParam(fid1,net);

  ## print one empty line
  fprintf(fid1,"\n");

  ## print subobject structures:
  fprintf(fid1,"  weight & bias values:\n");

  ## print one empty line
  fprintf(fid1,"\n");

  ## print IW
  __printIW(fid1,net);

  ## print LW
  __printLW(fid1,net);

  ## print b
  __printB(fid1,net);

  ## print one empty line
  fprintf(fid1,"\n");

  ## print subobject structures:
  fprintf(fid1,"  other:\n");


  fclose(fid1);

endfunction