This file is indexed.

/usr/share/octave/packages/nnet-0.1.13/doc-cache is in octave-nnet 0.1.13-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
# Created by Octave 3.6.1, Thu May 03 16:49:09 2012 UTC <root@panlong>
# name: cache
# type: cell
# rows: 3
# columns: 28
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dhardlim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 -- Function File:  [A = dhardlim (N)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 0




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
dividerand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 556
 -- Function File: [
          TRAINVECTORS,VALIDATIONVECTORS,TESTVECTORS,INDEXOFTRAIN,INDEXOFVALIDATION,INDEXOFTEST]
          = dividerand (ALLCASES,TRAINRATIO,VALRATIO,TESTRATIO)
     Divide the vectors in training, validation and test group
     according to the informed ratios


          [trainVectors,validationVectors,testVectors,indexOfTrain,indexOfValidatio
          n,indexOfTest] = dividerand(allCases,trainRatio,valRatio,testRatio)

          The ratios are normalized. This way:

          dividerand(xx,1,2,3) == dividerand(xx,10,20,30)





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Divide the vectors in training, validation and test group according to
the infor



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dposlin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Function File:  A= poslin (N)
     `poslin' is a positive linear transfer function used by neural
     networks




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
`poslin' is a positive linear transfer function used by neural networks




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dsatlin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
 -- Function File:  [A = dsatlin (N)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 0




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dsatlins


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Function File:  [A = satlins (N)
     A neural feed-forward network will be trained with `trainlm'





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
A neural feed-forward network will be trained with `trainlm'




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hardlim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
 -- Function File:  [A = hardlim (N)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 0




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
hardlims


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 -- Function File:  [A = hardlims (N)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 0




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ind2vec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 256
 -- Function File: VEC = ind2vec (IND)
     `vec2ind' convert indices to vector

          EXAMPLE 1
          vec = [1 2 3; 4 5 6; 7 8 9];

          ind = vec2ind(vec)
          The prompt output will be:
          ans =
             1 2 3 1 2 3 1 2 3





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
`vec2ind' convert indices to vector




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
isposint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
 -- Function File:  F = isposint(N)
     `isposint' returns true for positive integer values.

            isposint(1)   # this returns TRUE
            isposint(0.5) # this returns FALSE
            isposint(0)   # this also return FALSE
            isposint(-1)  # this also returns FALSE





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
`isposint' returns true for positive integer values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
logsig


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 224
 -- Function File:  A = logsig (N)
     `logsig' is a non-linear transfer function used to train neural
     networks.  This function can be used in newff(...) to create a new
     feed forward multi-layer neural network.





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
`logsig' is a non-linear transfer function used to train neural
networks.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mapstd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1273
 -- Function File: [ YY,PS] = mapstd (XX,YMEAN,YSTD)
     Map values to mean 0 and standard derivation to 1.

          [YY,PS] = mapstd(XX,ymean,ystd)

             Apply the conversion and returns YY as (YY-ymean)/ystd.

          [YY,PS] = mapstd(XX,FP)

             Apply the conversion but using an struct to inform target mean/stddev.
             This is the same of [YY,PS]=mapstd(XX,FP.ymean, FP.ystd).

          YY = mapstd('apply',XX,PS)

             Reapply the conversion based on a previous operation data.
             PS stores the mean and stddev of the first XX used.

          XX = mapstd('reverse',YY,PS)

             Reverse a conversion of a previous applied operation.

          dx_dy = mapstd('dx',XX,YY,PS)

             Returns the derivative of Y with respect to X.

          dx_dy = mapstd('dx',XX,[],PS)

             Returns the derivative (less efficient).

          name = mapstd('name');

             Returns the name of this convesion process.

          FP = mapstd('pdefaults');

             Returns the default process parameters.

          names = mapstd('pnames');

             Returns the description of the process parameters.

          mapstd('pcheck',FP);

             Raises an error if FP has some inconsistent.





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Map values to mean 0 and standard derivation to 1.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
min_max


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 267
 -- Function File:  PR = min_max (PP)
     `min_max' returns variable Pr with range of matrix rows

          PR - R x 2 matrix of min and max values for R input elements

          Pp = [1 2 3; -1 -0.5 -3]
          pr = min_max(Pp);
          pr = [1 3; -0.5 -3];




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
`min_max' returns variable Pr with range of matrix rows




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
newff


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 820
 -- Function File: NET = newff (PR,SS,TRF,BTF,BLF,PF)
     `newff' create a feed-forward backpropagation network

          Pr - R x 2 matrix of min and max values for R input elements
          Ss - 1 x Ni row vector with size of ith layer, for N layers
          trf - 1 x Ni list with transfer function of ith layer,
                default = "tansig"
          btf - Batch network training function,
                default = "trainlm"
          blf - Batch weight/bias learning function,
                default = "learngdm"
          pf  - Performance function,
                default = "mse".

          EXAMPLE 1
          Pr = [0.1 0.8; 0.1 0.75; 0.01 0.8];
               it's a 3 x 2 matrix, this means 3 input neurons

          net = newff(Pr, [4 1], {"tansig","purelin"}, "trainlm", "learngdm", "mse");





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
`newff' create a feed-forward backpropagation network




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
newp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 545
 -- Function File: NET = newp (PR,SS,TRANSFUNC,LEARNFUNC)
     `newp' create a perceptron

          PLEASE DON'T USE THIS FUNCTIONS, IT'S STILL NOT FINISHED!
          =========================================================

          Pr - R x 2 matrix of min and max values for R input elements
          ss - a scalar value with the number of neurons
          transFunc - a string with the transfer function
                default = "hardlim"
          learnFunc - a string with the learning function
                default = "learnp"





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
`newp' create a perceptron




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
poslin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 117
 -- Function File:  A= poslin (N)
     `poslin' is a positive linear transfer function used by neural
     networks




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
`poslin' is a positive linear transfer function used by neural networks




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
poststd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 153
 -- Function File:  [PP,TT] = poststd(PN,MEANP,,STDP,TN,MEANT,STDT)
     `poststd' postprocesses the data which has been preprocessed by
     `prestd'.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
`poststd' postprocesses the data which has been preprocessed by
`prestd'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
prestd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 160
 -- Function File:  [PN,MEANP,STDP,TN,MEANT,STDT] =prestd(P,T)
     `prestd' preprocesses the data so that the mean is 0 and the
     standard deviation is 1.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
`prestd' preprocesses the data so that the mean is 0 and the standard
deviation 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
purelin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Function File:  A= purelin (N)
     `purelin' is a linear transfer function used by neural networks




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
`purelin' is a linear transfer function used by neural networks




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
radbas


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
 -- Function File:  radbas (N)
     Radial basis transfer function.

     `radbas(n) = exp(-n^2)'





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Radial basis transfer function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
satlin


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 104
 -- Function File:  [A = satlin (N)
     A neural feed-forward network will be trained with `trainlm'





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
A neural feed-forward network will be trained with `trainlm'




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
satlins


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 105
 -- Function File:  [A = satlins (N)
     A neural feed-forward network will be trained with `trainlm'





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
A neural feed-forward network will be trained with `trainlm'




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
saveMLPStruct


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 119
 -- Function File:  saveMLPStruct (NET,STRFILENAME)
     `saveStruct' saves a neural network structure to *.txt files




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
`saveStruct' saves a neural network structure to *.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
sim


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 215
 -- Function File: NETOUTPUT = sim (NET, MINPUT)
     `sim' is usuable to simulate a before defined neural network.
     `net' is created with newff(...) and MINPUT should be the
     corresponding input data set!




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
`sim' is usuable to simulate a before defined neural network.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
subset


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1632
 -- Function File:  [MTRAIN, MTEST, MVALI] = subset
          (MDATA,NTARGETS,IOPTI,FTEST,FVALI)
     `subset' splits the main data matrix which contains inputs and
     targets into 2 or 3 subsets depending on the parameters.

     The first parameter MDATA must be in row order. This means if the
     network contains three inputs, the matrix must be have 3 rows and
     x columns to define the data for the inputs. And some more rows
     for the outputs (targets), e.g. a neural network with three inputs
     and two outputs must have 5 rows with x columns!  The second
     parameter NTARGETS defines the number or rows which contains the
     target values!  The third argument `iOpti' is optional and can
     have three status: 	   0: no optimization     1: will
     randomise the column order and order the columns containing min
     and max values to be in the train set     2: will NOT randomise
     the column order, but order the columns containing min and max
     values to be in the train set 	   default value is `1' The
     fourth argument `fTest' is also optional and defines how much data
     sets will be in the test set. Default value is `1/3' The fifth
     parameter `fTrain' is also optional and defines how much data sets
     will be in the train set. Default value is `1/6' So we have 50% of
     all data sets which are for training with the default values.

            [mTrain, mTest] = subset(mData,1)
            returns three subsets of the complete matrix
            with randomized and optimized columns!

            [mTrain, mTest] = subset(mData,1,)
            returns two subsets





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
`subset' splits the main data matrix which contains inputs and targets
into 2 or



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
tansig


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 224
 -- Function File:  A = tansig (N)
     `tansig' is a non-linear transfer function used to train neural
     networks.  This function can be used in newff(...) to create a new
     feed forward multi-layer neural network.





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
`tansig' is a non-linear transfer function used to train neural
networks.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
train


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 614
 -- Function File:  [NET] = train (MLPNET,MINPUTN,MOUTPUT,[],[],VV)
     A neural feed-forward network will be trained with `train'

          [net,tr,out,E] = train(MLPnet,mInputN,mOutput,[],[],VV);

          left side arguments:
            net: the trained network of the net structure `MLPnet'

          right side arguments:
            MLPnet : the untrained network, created with `newff'
            mInputN: normalized input matrix
            mOutput: output matrix (normalized or not)
            []     : unused parameter
            []     : unused parameter
            VV     : validize structure




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
A neural feed-forward network will be trained with `train'




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
trastd


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 447
 -- Function File:  PN = trastd (P,MEANP,STDP)
     `trastd' preprocess additional data for neural network simulation.

            `p'    : test input data
            `meanp': vector with standardization parameters of prestd(...)
            `stdp' : vector with standardization parameters of prestd(...)

            meanp = [2.5; 6.5];
            stdp = [1.2910; 1.2910];
            p = [1 4; 2 5];

            pn = trastd(p,meanp,stdp);





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
`trastd' preprocess additional data for neural network simulation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vec2ind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 260
 -- Function File: IND = vec2ind (VECTOR)
     `vec2ind' convert vectors to indices

          EXAMPLE 1
          vec = [1 2 3; 4 5 6; 7 8 9];

          ind = vec2ind(vec)
          The prompt output will be:
          ans =
             1 2 3 1 2 3 1 2 3





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
`vec2ind' convert vectors to indices