/usr/share/doc/netcdf-doc/netcdf.html is in netcdf-doc 1:4.1.3-7ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 | <html lang="en">
<head>
<title>The NetCDF Users' Guide</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="The NetCDF Users' Guide">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="top" href="#Top">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 2005-2009 University Corporation for
Atmospheric Research
Permission is granted to make and distribute verbatim copies of this
manual provided that the copyright notice and these paragraphs are
preserved on all copies. The software and any accompanying written
materials are provided ``as is'' without warranty of any kind. UCAR
expressly disclaims all warranties of any kind, either expressed or
implied, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose.
The Unidata Program Center is managed by the University
Corporation for Atmospheric Research and sponsored by the National
Science Foundation. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.
Mention of any commercial company or product in this document
does not constitute an endorsement by the Unidata Program Center.
Unidata does not authorize any use of information from this
publication for advertising or publicity purposes.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<h1 class="settitle">The NetCDF Users' Guide</h1>
<div class="node">
<a name="Top"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Foreword">Foreword</a>,
Previous: <a rel="previous" accesskey="p" href="#dir">(dir)</a>,
Up: <a rel="up" accesskey="u" href="#dir">(dir)</a>
</div>
<h2 class="unnumbered">NetCDF Users Guide</h2>
<p><a name="index-C_002b_002b-API-1"></a><a name="index-Fortran-77-API-2"></a><a name="index-Fortran-90-API-3"></a><a name="index-C-API-4"></a><a name="index-API_002c-C_002b_002b-5"></a><a name="index-API_002c-Fortran-77-6"></a><a name="index-API_002c-Fortran-90-7"></a><a name="index-API_002c-C-8"></a><a name="index-Interface-Guide_002c-C-9"></a><a name="index-Interface-Guide_002c-C_002b_002b-10"></a><a name="index-Interface-Guide_002c-Fortran-77-11"></a><a name="index-Interface-Guide_002c-Fortran-90-12"></a>
This guide describes the netCDF object model. This document applies to
netCDF version 4.1.3, and was last updated on
30 June 2011.
<p>Interface guides are available for C (see <a href="netcdf-c.html#Top">The NetCDF C Interface Guide</a>), C++ (see <a href="netcdf-cxx.html#Top">The NetCDF C++ Interface Guide</a>), Fortran 77 (see <a href="netcdf-f77.html#Top">The NetCDF Fortran 77 Interface Guide</a>), and Fortran 90
(see <a href="netcdf-f90.html#Top">The NetCDF Fortran 90 Interface Guide</a>).
<p>Separate documentation for the netCDF Java library can be found at the
netCDF-Java website, <a href="http://www.unidata.ucar.edu/software/netcdf-java">http://www.unidata.ucar.edu/software/netcdf-java</a>.
<p>For installation and porting information, see <a href="netcdf-install.html#Top">The NetCDF Installation and Porting Guide</a>.
<ul class="menu">
<li><a accesskey="1" href="#Foreword">Foreword</a>: Foreword from 1996 Manual
<li><a accesskey="2" href="#Summary">Summary</a>: Orientation
<li><a accesskey="3" href="#Introduction">Introduction</a>: What is NetCDF?
<li><a accesskey="4" href="#Dataset-Components">Dataset Components</a>: What's in a NetCDF File?
<li><a accesskey="5" href="#Data">Data</a>: How to Store Data
<li><a accesskey="6" href="#Structure">Structure</a>: Behind the Scenes
<li><a accesskey="7" href="#NetCDF-Utilities">NetCDF Utilities</a>: Ncdump, ncgen, and nccopy
<li><a accesskey="8" href="#Units">Units</a>: Using UDUNITS
<li><a accesskey="9" href="#Attribute-Conventions">Attribute Conventions</a>: Creating Human-Readable Files
<li><a href="#File-Format">File Format</a>: Description of NetCDF Binary Formats
<li><a href="#Internal-Dispatch-Table">Internal Dispatch Table</a>: Description of experimental dispatch mechanism
<li><a href="#Combined-Index">Combined Index</a>: Index of Concepts and Functions
</li></ul>
<p>--- The Detailed Node Listing ---
<p>Introduction
</p>
<ul class="menu">
<li><a href="#Interface">Interface</a>: The NetCDF Interface
<li><a href="#Not-DBMS">Not DBMS</a>: NetCDF is not a Database
<li><a href="#Format">Format</a>: The NetCDF File Format
<li><a href="#Which-Format">Which Format</a>: Selecting the Underlying NetCDF Format
<li><a href="#Performance">Performance</a>: What about Performance?
<li><a href="#Archival">Archival</a>: Is NetCDF a Good Archive Format?
<li><a href="#Conventions">Conventions</a>: Creating Self-Describing Data Conforming to Conventions
<li><a href="#Background">Background</a>: The Evolution of the NetCDF Interface
<li><a href="#Whats-New">Whats New</a>: Latest Developments in NetCDF
<li><a href="#Limitations">Limitations</a>: Limitations of NetCDF
<li><a href="#Future">Future </a>: Plans for Future Development
<li><a href="#References">References</a>: Papers Relating to Scientific Data
</li></ul>
<p>Components of a NetCDF Dataset
</p>
<ul class="menu">
<li><a href="#Data-Model">Data Model</a>: How NetCDF Sees Data
<li><a href="#Dimensions">Dimensions</a>: Specifying Data Shape
<li><a href="#Variables">Variables</a>: Storing Data
<li><a href="#Attributes">Attributes</a>: Storing Metadata
<li><a href="#Attributes-and-Variables">Attributes and Variables</a>: Attributes vs. Variables
</li></ul>
<p>Data
</p>
<ul class="menu">
<li><a href="#External-Types">External Types</a>: Integers, Floats, and so on
<li><a href="#Classic-Data-Structures">Classic Data Structures</a>: Complex Data in Classic Format
<li><a href="#User-Defined-Types">User Defined Types</a>: Complex Data in NetCDF-4/HDF5 Format
<li><a href="#Data-Access">Data Access</a>: Reading and Writing Data
<li><a href="#Type-Conversion">Type Conversion</a>: Changing Type of Numeric Data
</li></ul>
<p>Forms of Data Access
</p>
<ul class="menu">
<li><a href="#C-Section-Access">C Section Access</a>: A C Example
<li><a href="#Fortran-Section-Access">Fortran Section Access</a>: A Fortran Example
</li></ul>
<p>File Structure and Performance
</p>
<ul class="menu">
<li><a href="#Classic-File-Parts">Classic File Parts</a>: The Classic and 64-bit Offset File
<li><a href="#NetCDF_002d4-File-Parts">NetCDF-4 File Parts</a>: The NetCDF-4/HDF5 File
<li><a href="#XDR-Layer">XDR Layer</a>: Classic Machine Interoperability
<li><a href="#Large-File-Support">Large File Support</a>: Files that Exceed 2 GiBytes
<li><a href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a>: Limitations on File and Data Size
<li><a href="#Classic-Limitations">Classic Limitations</a>: Limitations on File and Data Size
<li><a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a>: Classic I/O Described
<li><a href="#UNICOS-Optimization">UNICOS Optimization</a>: Some Cray Optimizations
<li><a href="#Chunking">Chunking</a>: NetCDF-4/HDF5 Files Read/Write Chunks
<li><a href="#Parallel-Access">Parallel Access</a>: Parallel I/O with NetCDF-4
<li><a href="#Interoperability-with-HDF5">Interoperability with HDF5</a>: Using HDF5 with NetCDF-4
<li><a href="#DAP-Support">DAP Support</a>
</li></ul>
<p>Improving Performance With Chunking
</p>
<ul class="menu">
<li><a href="#Chunk-Cache">Chunk Cache</a>
<li><a href="#Default-Chunking">Default Chunking</a>
<li><a href="#Default-Chunking-4_005f0_005f1">Default Chunking 4_0_1</a>
<li><a href="#Parallel-Chunking">Parallel Chunking</a>
<li><a href="#bm_005ffile">bm_file</a>
</li></ul>
<p>NetCDF Utilities
</p>
<ul class="menu">
<li><a href="#CDL-Syntax">CDL Syntax</a>: Creating a File without Code
<li><a href="#CDL-Data-Types">CDL Data Types</a>: Describing Types in CDL
<li><a href="#CDL-Constants">CDL Constants</a>: Constant Values in CDL
<li><a href="#ncgen">ncgen</a>: Turning CDL into Classic or Enhanced Data Files
<li><a href="#ncdump">ncdump</a>: Turning Data Files into CDL (or XML)
<li><a href="#nccopy">nccopy</a>: Copying, Converting, Compressing, and Chunking Data Files
<li><a href="#ncgen3">ncgen3</a>: Turning CDL into Classic Data Files
</li></ul>
<p>File Format Specification
</p>
<ul class="menu">
<li><a href="#NetCDF-Classic-Format">NetCDF Classic Format</a>: The Original Binary Format
<li><a href="#g_t64_002dbit-Offset-Format">64-bit Offset Format</a>: Supporting Larger Variables
<li><a href="#NetCDF_002d4-Format">NetCDF-4 Format</a>: Uses HDF5
<li><a href="#NetCDF_002d4-Classic-Model-Format">NetCDF-4 Classic Model Format</a>: HDF5 with NetCDF Limitations
<li><a href="#HDF4-SD-Format">HDF4 SD Format</a>
</li></ul>
<p>The NetCDF Classic Format Specification
</p>
<ul class="menu">
<li><a href="#Classic-Format-Spec">Classic Format Spec</a>: Detailed Format Information
<li><a href="#Computing-Offsets">Computing Offsets</a>: How to Get the Data You Want
<li><a href="#Examples">Examples</a>: The Binary Layout of some Simple Files
</ul>
<div class="node">
<a name="Foreword"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Summary">Summary</a>,
Previous: <a rel="previous" accesskey="p" href="#Top">Top</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Foreword</h2>
<p>Unidata (<a href="http://www.unidata.ucar.edu">http://www.unidata.ucar.edu</a>) is a National Science
Foundation-sponsored program empowering U.S. universities, through
innovative applications of computers and networks, to make the best
use of atmospheric and related data for enhancing education and
research. For analyzing and displaying such data, the Unidata Program
Center offers universities several supported software packages
developed by other organizations. Underlying these is a
Unidata-developed system for acquiring and managing data in real time,
making practical the Unidata principle that each university should
acquire and manage its own data holdings as local requirements
dictate. It is significant that the Unidata program has no data
center–the management of data is a "distributed" function.
<p>The Network Common Data Form (netCDF) software described in this guide
was originally intended to provide a common data access method for the
various Unidata applications. These deal with a variety of data types
that encompass single-point observations, time series,
regularly-spaced grids, and satellite or radar images.
<p>The netCDF software functions as an I/O library, callable from C,
FORTRAN, C++, Perl, or other language for which a netCDF library is
available. The library stores and retrieves data in self-describing,
machine-independent datasets. Each netCDF dataset can contain
multidimensional, named variables (with differing types that include
integers, reals, characters, bytes, etc.), and each variable may be
accompanied by ancillary data, such as units of measure or descriptive
text. The interface includes a method for appending data to existing
netCDF datasets in prescribed ways, functionality that is not unlike a
(fixed length) record structure. However, the netCDF library also
allows direct-access storage and retrieval of data by variable name
and index and therefore is useful only for disk-resident (or
memory-resident) datasets.
<p>NetCDF access has been implemented in about half of Unidata's
software, so far, and it is planned that such commonality will extend
across all Unidata applications in order to:
<ul>
<li>Facilitate the use of common datasets by distinct applications.
<li>Permit datasets to be transported between or shared by dissimilar
computers transparently, i.e., without translation.
<li>Reduce the programming effort usually spent interpreting formats.
<li>Reduce errors arising from misinterpreting data and ancillary data.
<li>Facilitate using output from one application as input to another.
<li>Establish an interface standard which simplifies the inclusion of new
software into the Unidata system.
</ul>
<p>A measure of success has been achieved. NetCDF is now in use on
computing platforms that range from personal computers to
supercomputers and include most UNIX-based workstations. It can be
used to create a complex dataset on one computer (say in FORTRAN) and
retrieve that same self-describing dataset on another computer (say in
C) without intermediate translations–netCDF datasets can be
transferred across a network, or they can be accessed remotely using a
suitable network file system or remote access protocols.
<p>Because we believe that the use of netCDF access in non-Unidata
software will benefit Unidata's primary constituency–such use may
result in more options for analyzing and displaying Unidata
information–the netCDF library is distributed without licensing or
other significant restrictions, and current versions can be obtained
via anonymous FTP. Apparently the software has been well received by a
wide range of institutions beyond the atmospheric science community,
and a substantial number of public domain and commercial data analysis
systems can now accept netCDF datasets as input.
<p>Several organizations have adopted netCDF as a data access standard,
and there is an effort underway at the National Center for
Supercomputer Applications (NCSA, which is associated with the
University of Illinois at Urbana-Champaign) to support the netCDF
programming interfaces as a means to store and retrieve data in "HDF
files," i.e., in the format used by the popular NCSA tools. We have
encouraged and cooperated with these efforts.
<p>Questions occasionally arise about the level of support provided for
the netCDF software. Unidata's formal position, stated in the
copyright notice which accompanies the netCDF library, is that the
software is provided "as is". In practice, the software is updated
from time to time, and Unidata intends to continue making improvements
for the foreseeable future. Because Unidata's mission is to serve
geoscientists at U.S. universities, problems reported by that
community necessarily receive the greatest attention.
<p>We hope the reader will find the software useful and will give us
feedback on its application as well as suggestions for its
improvement.
<p>David Fulker, 1996
<p>Unidata Program Center Director,
University Corporation for Atmospheric Research
<div class="node">
<a name="Summary"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Introduction">Introduction</a>,
Previous: <a rel="previous" accesskey="p" href="#Foreword">Foreword</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Summary</h2>
<p><a name="index-supported-programming-languages-13"></a><a name="index-API_002c-C-14"></a><a name="index-API_002c-Fortran-15"></a><a name="index-API_002c-F90-16"></a><a name="index-API_002c-C_002b_002b-17"></a><a name="index-API_002c-Java-18"></a><a name="index-C-API-19"></a><a name="index-Fortran-API-20"></a><a name="index-F90-API-21"></a><a name="index-C_002b_002b-API-22"></a><a name="index-Java-API-23"></a>
The purpose of the Network Common Data Form (netCDF) interface is to
allow you to create, access, and share array-oriented data in a form
that is self-describing and portable. "Self-describing" means that a
dataset includes information defining the data it contains. "Portable"
means that the data in a dataset is represented in a form that can be
accessed by computers with different ways of storing integers,
characters, and floating-point numbers. Using the netCDF interface for
creating new datasets makes the data portable. Using the netCDF
interface in software for data access, management, analysis, and
display can make the software more generally useful.
<p>The netCDF software includes C, Fortran 77, Fortran 90, and C++
interfaces for accessing netCDF data. These libraries are available
for many common computing platforms.
<p>The community of netCDF users has contributed ports of the software to
additional platforms and interfaces for other programming languages as
well. Source code for netCDF software libraries is freely available to
encourage the sharing of both array-oriented data and the software
that makes the data useful.
<p>This User's Guide presents the netCDF data model. It explains how the
netCDF data model uses dimensions, variables, and attributes to store
data. Language specific programming guides are available for C
(see <a href="netcdf-c.html#Top">The NetCDF C Interface Guide</a>), C++
(see <a href="netcdf-cxx.html#Top">The NetCDF C++ Interface Guide</a>), Fortran
77 (see <a href="netcdf-f77.html#Top">The NetCDF Fortran 77 Interface Guide</a>), and
Fortran 90 (see <a href="netcdf-f90.html#Top">The NetCDF Fortran 90 Interface Guide</a>).
<p>Reference documentation for UNIX systems, in the form of UNIX 'man'
pages for the C and FORTRAN interfaces is also available at the netCDF
web site (<a href="http://www.unidata.ucar.edu/netcdf">http://www.unidata.ucar.edu/netcdf</a>), and with the netCDF
distribution.
<p>The latest version of this document, and the language specific guides,
can be found at the netCDF web site, <a href="http://www.unidata.ucar.edu/netcdf/docs">http://www.unidata.ucar.edu/netcdf/docs</a>, along
with extensive additional information about netCDF, including pointers
to other software that works with netCDF data.
<p>Separate documentation of the Java netCDF library can be found at
<a href="http://www.unidata.ucar.edu/software/netcdf-java">http://www.unidata.ucar.edu/software/netcdf-java</a>.
<p>For installation and porting information See <a href="netcdf-install.html#Top">The NetCDF Installation and Porting Guide</a>.
<div class="node">
<a name="Introduction"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Dataset-Components">Dataset Components</a>,
Previous: <a rel="previous" accesskey="p" href="#Summary">Summary</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">1 Introduction</h2>
<ul class="menu">
<li><a accesskey="1" href="#Interface">Interface</a>: The NetCDF Interface
<li><a accesskey="2" href="#Not-DBMS">Not DBMS</a>: NetCDF is not a Database
<li><a accesskey="3" href="#Format">Format</a>: The NetCDF File Format
<li><a accesskey="4" href="#Which-Format">Which Format</a>: Selecting the Underlying NetCDF Format
<li><a accesskey="5" href="#Performance">Performance</a>: What about Performance?
<li><a accesskey="6" href="#Archival">Archival</a>: Is NetCDF a Good Archive Format?
<li><a accesskey="7" href="#Conventions">Conventions</a>: Creating Self-Describing Data Conforming to Conventions
<li><a accesskey="8" href="#Background">Background</a>: The Evolution of the NetCDF Interface
<li><a accesskey="9" href="#Whats-New">Whats New</a>: Latest Developments in NetCDF
<li><a href="#Limitations">Limitations</a>: Limitations of NetCDF
<li><a href="#Future">Future </a>: Plans for Future Development
<li><a href="#References">References</a>: Papers Relating to Scientific Data
</ul>
<div class="node">
<a name="Interface"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Not-DBMS">Not DBMS</a>,
Previous: <a rel="previous" accesskey="p" href="#Introduction">Introduction</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.1 The NetCDF Interface</h3>
<p>The Network Common Data Form, or netCDF, is an interface to a library
of data access functions for storing and retrieving data in the form
of arrays. An array is an n-dimensional (where n is 0, 1, 2, <small class="dots">...</small>)
rectangular structure containing items which all have the same data
type (e.g., 8-bit character, 32-bit integer). A <dfn>scalar</dfn> (simple
single value) is a 0-dimensional array.
<p>NetCDF is an abstraction that supports a view of data as a collection
of self-describing, portable objects that can be accessed through a
simple interface. Array values may be accessed directly, without
knowing details of how the data are stored. Auxiliary information
about the data, such as what units are used, may be stored with the
data. Generic utilities and application programs can access netCDF
datasets and transform, combine, analyze, or display specified fields
of the data. The development of such applications has led to improved
accessibility of data and improved re-usability of software for
array-oriented data management, analysis, and display.
<p>The netCDF software implements an abstract data type, which means that
all operations to access and manipulate data in a netCDF dataset must
use only the set of functions provided by the interface. The
representation of the data is hidden from applications that use the
interface, so that how the data are stored could be changed without
affecting existing programs. The physical representation of netCDF
data is designed to be independent of the computer on which the data
were written.
<p>Unidata supports the netCDF interfaces for C, (see <a href="netcdf-c.html#Top">Top</a>), FORTRAN 77 (see <a href="netcdf-f77.html#Top">Top</a>), FORTRAN 90 (see <a href="netcdf-f90.html#Top">Top</a>), and C++ (see <a href="netcdf-cxx.html#Top">Top</a>).
<p>The netCDF library is supported for various UNIX operating systems. A
MS Windows port is also available. The software is also ported and
tested on a few other operating systems, with assistance from users
with access to these systems, before each major release. Unidata's
netCDF software is freely available via FTP to encourage its
widespread use. (<a href="ftp://ftp.unidata.ucar.edu/pub/netcdf">ftp://ftp.unidata.ucar.edu/pub/netcdf</a>).
<p>For detailed installation instructions, see the Porting and
Installation Guide. See <a href="netcdf-install.html#Top">Top</a>.
<div class="node">
<a name="Not-DBMS"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Format">Format</a>,
Previous: <a rel="previous" accesskey="p" href="#Interface">Interface</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.2 NetCDF Is Not a Database Management System</h3>
<p><a name="index-data-base-24"></a><a name="index-DBMS-25"></a>
Why not use an existing database management system for storing
array-oriented data? Relational database software is not suitable for
the kinds of data access supported by the netCDF interface.
<p>First, existing database systems that support the relational model do
not support multidimensional objects (arrays) as a basic unit of data
access. Representing arrays as relations makes some useful kinds of
data access awkward and provides little support for the abstractions
of multidimensional data and coordinate systems. A quite different
data model is needed for array-oriented data to facilitate its
retrieval, modification, mathematical manipulation and visualization.
<p>Related to this is a second problem with general-purpose database
systems: their poor performance on large arrays. Collections of
satellite images, scientific model outputs and long-term global
weather observations are beyond the capabilities of most database
systems to organize and index for efficient retrieval.
<p>Finally, general-purpose database systems provide, at significant cost
in terms of both resources and access performance, many facilities
that are not needed in the analysis, management, and display of
array-oriented data. For example, elaborate update facilities, audit
trails, report formatting, and mechanisms designed for
transaction-processing are unnecessary for most scientific
applications.
<div class="node">
<a name="Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Which-Format">Which Format</a>,
Previous: <a rel="previous" accesskey="p" href="#Not-DBMS">Not DBMS</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.3 The netCDF File Format</h3>
<p><a name="index-XDR-format-26"></a>
Until version 3.6.0, all versions of netCDF employed only one binary
data format, now referred to as netCDF classic format. NetCDF classic
is the default format for all versions of netCDF.
<p>In version 3.6.0 a new binary format was introduced, 64-bit offset
format. Nearly identical to netCDF classic format, it uses 64-bit
offsets (hence the name), and allows users to create far larger
datasets.
<p>In version 4.0.0 a third binary format was introduced: the HDF5
format. Starting with this version, the netCDF library can use HDF5
files as its base format. (Only HDF5 files created with netCDF-4 can
be understood by netCDF-4).
<p>By default, netCDF uses the classic format. To use the 64-bit offset
or netCDF-4/HDF5 format, set the appropriate constant when creating
the file.
<p>To achieve network-transparency (machine-independence), netCDF classic
and 64-bit offset formats are implemented in terms of an external
representation much like XDR (eXternal Data Representation, see
<a href="http://www.ietf.org/rfc/rfc1832.txt">http://www.ietf.org/rfc/rfc1832.txt</a>), a standard for describing
and encoding data. This representation provides encoding of data into
machine-independent sequences of bits. It has been implemented on a
wide variety of computers, by assuming only that eight-bit bytes can
be encoded and decoded in a consistent way. The IEEE 754
floating-point standard is used for floating-point data
representation.
<p>Descriptions of the overall structure of netCDF classic and 64-bit
offset files are provided later in this manual. See <a href="#Structure">Structure</a>.
<p>The details of the classic and 64-bit offset formats are described in
an appendix. See <a href="#File-Format">File Format</a>. However, users are discouraged from
using the format specification to develop independent low-level
software for reading and writing netCDF files, because this could lead
to compatibility problems if the format is ever modified.
<div class="node">
<a name="Which-Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Performance">Performance</a>,
Previous: <a rel="previous" accesskey="p" href="#Format">Format</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.4 How to Select the Format</h3>
<p><a name="index-format-selection-advice-27"></a>
With three different base formats, care must be taken in creating data
files to choose the correct base format.
<p>The format of a netCDF file is determined at create time.
<p>When opening an existing netCDF file the netCDF library will
transparently detect its format and adjust accordingly. However,
netCDF library versions earlier than 3.6.0 cannot read 64-bit offset
format files, and library versions before 4.0 can't read netCDF-4/HDF5
files. NetCDF classic format files (even if created by version
3.6.0 or later) remain compatible with older versions of the netCDF
library.
<p>Users are encouraged to use netCDF classic format to distribute data,
for maximum portability.
<p>To select 64-bit offset or netCDF-4 format files, C programmers should
use flag NC_64BIT_OFFSET or NC_NETCDF4 in function
nc_create. See <a href="netcdf-c.html#nc_005fcreate">nc_create</a>.
<p>In Fortran, use flag nf_64bit_offset or nf_format_netcdf4 in function
NF_CREATE. See <a href="netcdf-f77.html#NF_005fCREATE">NF_CREATE</a>.
<p>It is also possible to change the default creation format, to convert
a large body of code without changing every create call. C programmers
see <a href="netcdf-c.html#nc_005fset_005fdefault_005fformat">nc_set_default_format</a>. Fortran
programs see <a href="netcdf-f77.html#NF_005fSET_005fDEFAULT_005fFORMAT">NF_SET_DEFAULT_FORMAT</a>.
<h4 class="subsection">1.4.1 NetCDF Classic Format</h4>
<p>The original netCDF format is identified using four bytes in the file
header. All files in this format have “CDF\001” at the beginning of the
file. In this documentation this format is referred to as “netCDF
classic format.”
<p>NetCDF classic format is identical to the format used by every
previous version of netCDF. It has maximum portability, and is still
the default netCDF format.
<p>For some users, the various 2 GiB format limitations of the classic
format become a problem. (see <a href="#Classic-Limitations">Classic Limitations</a>).
<h4 class="subsection">1.4.2 NetCDF 64-bit Offset Format</h4>
<p>For these users, 64-bit offset format is a natural choice. It greatly
eases the size restrictions of netCDF classic files (see <a href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a>).
<p>Files with the 64-bit offsets are identified with a “CDF\002” at the
beginning of the file. In this documentation this format is called
“64-bit offset format.”
<p>Since 64-bit offset format was introduced in version 3.6.0, earlier
versions of the netCDF library can't read 64-bit offset files.
<h4 class="subsection">1.4.3 NetCDF-4 Format</h4>
<p>In version 4.0, netCDF included another new underlying format:
HDF5.
<p>NetCDF-4 format files offer new features such as groups, compound
types, variable length arrays, new unsigned integer types, parallel
I/O access, etc. None of these new features can be used with classic
or 64-bit offset files.
<p>NetCDF-4 files can't be created at all, unless the netCDF configure
script is run with –enable-netcdf-4. This also requires version 1.8.0
of HDF5.
<p>For the netCDF-4.0 release, netCDF-4 features are only available from
the C and Fortran interfaces. We plan to bring netCDF-4 features to the
CXX API in a future release of netCDF.
<p>NetCDF-4 files can't be read by any version of the netCDF library
previous to 4.0. (But they can be read by HDF5, version 1.8.0 or
better).
<p>For more discussion of format issues see <a href="netcdf-tutorial.html#Versions">The NetCDF Tutorial</a>.
<div class="node">
<a name="Performance"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Archival">Archival</a>,
Previous: <a rel="previous" accesskey="p" href="#Which-Format">Which Format</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.5 What about Performance?</h3>
<p><a name="index-performance_002c-introduction-28"></a>
One of the goals of netCDF is to support efficient access to small
subsets of large datasets. To support this goal, netCDF uses direct
access rather than sequential access. This can be much more efficient
when the order in which data is read is different from the order in
which it was written, or when it must be read in different orders for
different applications.
<p>The amount of overhead for a portable external representation depends
on many factors, including the data type, the type of computer, the
granularity of data access, and how well the implementation has been
tuned to the computer on which it is run. This overhead is typically
small in comparison to the overall resources used by an
application. In any case, the overhead of the external representation
layer is usually a reasonable price to pay for portable data access.
<p>Although efficiency of data access has been an important concern in
designing and implementing netCDF, it is still possible to use the
netCDF interface to access data in inefficient ways: for example, by
requesting a slice of data that requires a single value from each
record. Advice on how to use the interface efficiently is provided in
<a href="#Structure">Structure</a>.
<p>The use of HDF5 as a data format adds significant overhead in metadata
operations, less so in data access operations. We continue to study
the challenge of implementing netCDF-4/HDF5 format without
compromising performance.
<div class="node">
<a name="Archival"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Conventions">Conventions</a>,
Previous: <a rel="previous" accesskey="p" href="#Performance">Performance</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.6 Is NetCDF a Good Archive Format?</h3>
<p><a name="index-archive-format-29"></a><a name="index-compression-30"></a>
NetCDF classic or 64-bit offset formats can be used as a
general-purpose archive format for storing arrays. Compression of data
is possible with netCDF (e.g., using arrays of eight-bit or 16-bit
integers to encode low-resolution floating-point numbers instead of
arrays of 32-bit numbers), or the resulting data file may be
compressed before storage (but must be uncompressed before it is
read). Hence, using these netCDF formats may require more space than
special-purpose archive formats that exploit knowledge of particular
characteristics of specific datasets.
<p>With netCDF-4/HDF5 format, the zlib library can provide compression on
a per-variable basis. That is, some variables may be compressed,
others not. In this case the compression and decompression of data
happen transparently to the user, and the data may be stored, read,
and written compressed.
<div class="node">
<a name="Conventions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Background">Background</a>,
Previous: <a rel="previous" accesskey="p" href="#Archival">Archival</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.7 Creating Self-Describing Data conforming to Conventions</h3>
<p><a name="index-applications_002c-generic_002c-conventions-31"></a><a name="index-conventions_002c-introduction-32"></a>
The mere use of netCDF is not sufficient to make data
"self-describing" and meaningful to both humans and machines. The
names of variables and dimensions should be meaningful and conform to
any relevant conventions. Dimensions should have corresponding
coordinate variables where sensible.
<p>Attributes play a vital role in providing ancillary information. It is
important to use all the relevant standard attributes using the
relevant conventions. For a description of reserved attributes (used by
the netCDF library) and attribute conventions for generic application
software, see <a href="#Attribute-Conventions">Attribute Conventions</a>.
<p>A number of groups have defined their own additional conventions and
styles for netCDF data. Descriptions of these conventions, as well as
examples incorporating them can be accessed from the netCDF
Conventions site, <a href="http://www.unidata.ucar.edu/netcdf/conventions.html">http://www.unidata.ucar.edu/netcdf/conventions.html</a>.
<p>These conventions should be used where suitable. Additional
conventions are often needed for local use. These should be
contributed to the above netCDF conventions site if likely to interest
other users in similar areas.
<div class="node">
<a name="Background"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Whats-New">Whats New</a>,
Previous: <a rel="previous" accesskey="p" href="#Conventions">Conventions</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.8 Background and Evolution of the NetCDF Interface</h3>
<p><a name="index-XDR_002c-introduction-into-netCDF-33"></a><a name="index-workshop_002c-CDF-34"></a><a name="index-CANDIS-35"></a><a name="index-NASA-CDF-format-36"></a><a name="index-SNIDE-37"></a><a name="index-New-Mexico-Institute-of-Mining-38"></a><a name="index-SeaSpace_002c-Inc-39"></a><a name="index-University-of-Miami-40"></a><a name="index-Terascan-data-format-41"></a><a name="index-FAN-42"></a><a name="index-NCO-43"></a><a name="index-DODS-44"></a><a name="index-OpenDAP-45"></a><a name="index-NcML-46"></a><a name="index-Northwestern-University-47"></a><a name="index-Argonne-National-Laboratory-48"></a><a name="index-g_t64_002dbit-offsets_002c-history-49"></a><a name="index-ruby-API_002c-history-50"></a><a name="index-python-API_002c-history-51"></a><a name="index-Tcl_002fTk-API_002c-history-52"></a><a name="index-Java-API_002c-history-53"></a><a name="index-Matlab-API_002c-history-54"></a><a name="index-WetCDF_002c-history-55"></a><a name="index-ADA-API_002c-history-56"></a><a name="index-g_t64_002dbit-offsets_002c-history-57"></a>
The development of the netCDF interface began with a modest goal
related to Unidata's needs: to provide a common interface between
Unidata applications and real-time meteorological data. Since Unidata
software was intended to run on multiple hardware platforms with
access from both C and FORTRAN, achieving Unidata's goals had the
potential for providing a package that was useful in a broader
context. By making the package widely available and collaborating with
other organizations with similar needs, we hoped to improve the then
current situation in which software for scientific data access was
only rarely reused by others in the same discipline and almost never
reused between disciplines (Fulker, 1988).
<p>Important concepts employed in the netCDF software originated in a
paper (Treinish and Gough, 1987) that described data-access software
developed at the NASA Goddard National Space Science Data Center
(NSSDC). The interface provided by this software was called the Common
Data Format (CDF). The NASA CDF was originally developed as a
platform-specific FORTRAN library to support an abstraction for
storing arrays.
<p>The NASA CDF package had been used for many different kinds of data in
an extensive collection of applications. It had the virtues of
simplicity (only 13 subroutines), independence from storage format,
generality, ability to support logical user views of data, and support
for generic applications.
<p>Unidata held a workshop on CDF in Boulder in August 1987. We proposed
exploring the possibility of collaborating with NASA to extend the CDF
FORTRAN interface, to define a C interface, and to permit the access
of data aggregates with a single call, while maintaining compatibility
with the existing NASA interface.
<p>Independently, Dave Raymond at the New Mexico Institute of Mining and
Technology had developed a package of C software for UNIX that
supported sequential access to self-describing array-oriented data and
a "pipes and filters" (or "data flow") approach to processing,
analyzing, and displaying the data. This package also used the "Common
Data Format" name, later changed to C-Based Analysis and Display
System (CANDIS). Unidata learned of Raymond's work (Raymond, 1988),
and incorporated some of his ideas, such as the use of named
dimensions and variables with differing shapes in a single data
object, into the Unidata netCDF interface.
<p>In early 1988, Glenn Davis of Unidata developed a prototype netCDF
package in C that was layered on XDR. This prototype proved that a
single-file, XDR-based implementation of the CDF interface could be
achieved at acceptable cost and that the resulting programs could be
implemented on both UNIX and VMS systems. However, it also
demonstrated that providing a small, portable, and NASA CDF-compatible
FORTRAN interface with the desired generality was not
practical. NASA's CDF and Unidata's netCDF have since evolved
separately, but recent CDF versions share many characteristics with
netCDF.
<p>In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software
development firm in San Diego, California), a participant in the 1987
Unidata CDF workshop, independently developed a CDF package in C that
extended the NASA CDF interface in several important ways (Fahle,
1989). Like Raymond's package, the SeaSpace CDF software permitted
variables with unrelated shapes to be included in the same data object
and permitted a general form of access to multidimensional
arrays. Fahle's implementation was used at SeaSpace as the
intermediate form of storage for a variety of steps in their
image-processing system. This interface and format have subsequently
evolved into the Terascan data format.
<p>After studying Fahle's interface, we concluded that it solved many of
the problems we had identified in trying to stretch the NASA interface
to our purposes. In August 1988, we convened a small workshop to agree
on a Unidata netCDF interface, and to resolve remaining open
issues. Attending were Joe Fahle of SeaSpace, Michael Gough of Apple
(an author of the NASA CDF software), Angel Li of the University of
Miami (who had implemented our prototype netCDF software on VMS and
was a potential user), and Unidata systems development
staff. Consensus was reached at the workshop after some further
simplifications were discovered. A document incorporating the results
of the workshop into a proposed Unidata netCDF interface specification
was distributed widely for comments before Glenn Davis and Russ Rew
implemented the first version of the software. Comparison with other
data-access interfaces and experience using netCDF are discussed in
Rew and Davis (1990a), Rew and Davis (1990b), Jenter and Signell
(1992), and Brown, Folk, Goucher, and Rew (1993).
<p>In October 1991, we announced version 2.0 of the netCDF software
distribution. Slight modifications to the C interface (declaring
dimension lengths to be long rather than int) improved the usability
of netCDF on inexpensive platforms such as MS-DOS computers, without
requiring recompilation on other platforms. This change to the
interface required no changes to the associated file format.
<p>Release of netCDF version 2.3 in June 1993 preserved the same file
format but added single call access to records, optimizations for
accessing cross-sections involving non-contiguous data, subsampling
along specified dimensions (using 'strides'), accessing non-contiguous
data (using 'mapped array sections'), improvements to the ncdump and
ncgen utilities, and an experimental C++ interface.
<p>In version 2.4, released in February 1996, support was added for new
platforms and for the C++ interface, significant optimizations
were implemented for supercomputer architectures, and the file format
was formally specified in an appendix to the User's Guide.
<p>FAN (File Array Notation), software providing a high-level interface
to netCDF data, was made available in May 1996. The capabilities of
the FAN utilities include extracting and manipulating array data from
netCDF datasets, printing selected data from netCDF arrays, copying
ASCII data into netCDF arrays, and performing various operations (sum,
mean, max, min, product, and others) on netCDF arrays.
<p>In 1996 and 1997, Joe Sirott implemented and made available the first
implementation of a read-only netCDF interface for Java, Bill Noon
made a Python module available for netCDF, and Konrad Hinsen
contributed another netCDF interface for Python.
<p>In May 1997, Version 3.3 of netCDF was released. This included a new
type-safe interface for C and Fortran, as well as many other
improvements. A month later, Charlie Zender released version 1.0 of
the NCO (netCDF Operators) package, providing command-line utilities
for general purpose operations on netCDF data.
<p>Version 3.4 of Unidata's netCDF software, released in March 1998,
included initial large file support, performance enhancements, and
improved Cray platform support. Later in 1998, Dan Schmitt provided a
Tcl/Tk interface, and Glenn Davis provided version 1.0 of netCDF for
Java.
<p>In May 1999, Glenn Davis, who was instrumental in creating and
developing netCDF, died in a small plane crash during a
thunderstorm. The memory of Glenn's passions and intellect continue to
inspire those of us who worked with him.
<p>In February 2000, an experimental Fortran 90 interface developed by
Robert Pincus was released.
<p>John Caron released netCDF for Java, version 2.0 in February 2001.
This version incorporated a new high-performance package for
multidimensional arrays, simplified the interface, and included
OpenDAP (known previously as DODS) remote access, as well as remote
netCDF access via HTTP contributed by Don Denbo.
<p>In March 2001, netCDF 3.5.0 was released. This release fully
integrated the new Fortran 90 interface, enhanced portability,
improved the C++ interface, and added a few new tuning functions.
<p>Also in 2001, Takeshi Horinouchi and colleagues made a netCDF
interface for Ruby available, as did David Pierce for the R language
for statistical computing and graphics. Charles Denham released
WetCDF, an independent implementation of the netCDF interface for
Matlab, as well as updates to the popular netCDF Toolbox for Matlab.
<p>In 2002, Unidata and collaborators developed NcML, an XML
representation for netCDF data useful for cataloging data holdings,
aggregation of data from multiple datasets, augmenting metadata in
existing datasets, and support for alternative views of data. The
Java interface currently provides access to netCDF data through NcML.
<p>Additional developments in 2002 included translation of C and Fortran
User Guides into Japanese by Masato Shiotani and colleagues, creation
of a “Best Practices” guide for writing netCDF files, and provision
of an Ada-95 interface by Alexandru Corlan.
<p>In July 2003 a group of researchers at Northwestern University and
Argonne National Laboratory (Jianwei Li, Wei-keng Liao, Alok
Choudhary, Robert Ross, Rajeev Thakur, William Gropp, and Rob Latham)
contributed a new parallel interface for writing and reading netCDF
data, tailored for use on high performance platforms with parallel
I/O. The implementation built on the MPI-IO interface, providing
portability to many platforms.
<p>In October 2003, Greg Sjaardema contributed support for an alternative
format with 64-bit offsets, to provide more complete support for very
large files. These changes, with slight modifications at Unidata, were
incorporated into version 3.6.0, released in December, 2004.
<p>In 2004, thanks to a NASA grant, Unidata and NCSA began a
collaboration to increase the interoperability of netCDF and HDF5, and
bring some advanced HDF5 features to netCDF users.
<p>In February, 2006, release 3.6.1 fixed some minor bugs.
<p>In March, 2007, release 3.6.2 introduced an improved build system that
used automake and libtool, and an upgrade to the most recent autoconf
release, to support shared libraries and the netcdf-4 builds. This
release also introduced the NetCDF Tutorial and example programs.
<p>The first beta release of netCDF-4.0 was celebrated with a giant party
at Unidata in April, 2007. Over 2000 people danced 'til dawn at the
NCAR Mesa Lab, listening to the Flaming Lips and the Denver Gilbert &
Sullivan repertory company.
<p>In June, 2008, netCDF-4.0 was released. Version 3.6.3, the same code
but with netcdf-4 features turned off, was released at the same
time. The 4.0 release uses HDF5 1.8.1 as the data storage layer for
netcdf, and introduces many new features including groups and
user-defined types. The 3.6.3/4.0 releases also introduced handling of
UTF8-encoded Unicode names.
<p>NetCDF-4.1.1 was released in April, 2010, provided built-in client
support for the DAP protocol for accessing data from remote OPeNDAP
servers, full support for the enhanced netCDF-4 data model in the
ncgen utility, a new nccopy utility for copying and conversion among
netCDF format variants, ability to read some HDF4/HDF5 data archives
through the netCDF C or Fortran interfaces, support for parallel I/O
on netCDF classic and 64-bit offset files using the parallel-netcdf
(formerly pnetcdf) library from Argonne/Northwestern, a new nc-config
utility to help compile and link programs that use netCDF, inclusion
of the UDUNITS library for hadling “units” attributes, and inclusion
of libcf to assist in creating data compliant with the Climate and
Forecast (CF) metadata conventions.
<p>In September, 2010, the Netcdf-Java/CDM (Common Data Model) version
4.2 library was declared stable and made available to users. This
100%-Java implementation provides a read-write interface to netCDF-3
classic and 64-bit offset data, as well as a read-onlt interface to
netCDF-4 enhanced model data and many other formats of scientific data
through a common (CDM) interface. The NetCDF-Java library also
implements NcML, which allows you to add metadata to CDM datasets, as
well as to create virtual datasets through aggregation. A ToolsUI
application is also included that provides a graphical user interface
to capabilities similar to the C-based ncdump and ncgen utilities, as
well as CF-compliance checking and many other features.
<div class="node">
<a name="Whats-New"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Limitations">Limitations</a>,
Previous: <a rel="previous" accesskey="p" href="#Background">Background</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.9 What's New Since the Previous Release?</h3>
<p><a name="index-new-netCDF-features-in-4_002e0-58"></a>
This Guide documents the 4.1.3 release of netCDF, which
introduces a new storage format, netCDF-4/HDF5, while maintaining full
backward compatibility.
<p>New features available with netCDF-4/HDF5 files include:
<ul>
<li>The use of groups to organize datasets.
<li>New unsigned integer data types, 64-bit integer types, and a string
type.
<li>A user defined compound type, which can be constructed by users to
match a C struct or other arbitrary organization of types.
<li>A variable length array type.
<li>Multiple unlimited dimensions.
<li>Support for parallel I/O.
</ul>
<p>More information about netCDF-4 can be found at the netCDF web
page <a href="http://www.unidata.ucar.edu/netcdf/netcdf-4">http://www.unidata.ucar.edu/netcdf/netcdf-4</a>.
<div class="node">
<a name="Limitations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Future">Future</a>,
Previous: <a rel="previous" accesskey="p" href="#Whats-New">Whats New</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.10 Limitations of NetCDF</h3>
<p><a name="index-arrays_002c-ragged-59"></a><a name="index-writers_002c-multiple-60"></a><a name="index-limitations-of-netCDF-61"></a><a name="index-classic-netCDF-format-62"></a><a name="index-GiBytes-63"></a><a name="index-GBytes-64"></a>
The netCDF classic data model is widely applicable to data that can be
organized into a collection of named array variables with named
attributes, but there are some important limitations to the model and
its implementation in software. Some of these limitations have been
removed or relaxed in netCDF-4 files, but still apply to netCDF
classic and netCDF 64-bit offset files.
<p>Currently, netCDF classic and 64-bit offset formats offer a limited
number of external numeric data types: 8-, 16-, 32-bit integers, or
32- or 64-bit floating-point numbers. (The netCDF-4 format adds 64-bit
integer types and unsigned integer types.)
<p>With the netCDF-4/HDF5 format, new unsigned integers (of various
sizes), 64-bit integers, and the string type allow improved expression
of meaning in scientific data. The new VLEN (variable length) and
COMPOUND types allow users to organize data in new ways.
<p>With the classic netCDF file format, there are constraints that limit
how a dataset is structured to store more than 2 <dfn>GiBytes</dfn> (a
GiByte is 2^30
or 1,073,741,824 bytes, as compared to a <dfn>Gbyte</dfn>, which is
1,000,000,000 bytes.) of data in a single netCDF
dataset. (see <a href="#Classic-Limitations">Classic Limitations</a>). This limitation
is a result of 32-bit offsets used for storing relative offsets within
a classic netCDF format file. Since one of the goals of netCDF is
portable data, and some file systems still can't deal with files
larger than 2 GiB, it is best to keep files that must be portable
below this limit. Nevertheless, it is possible to create and access
netCDF files larger than 2 GiB on platforms that provide support for
such files (see <a href="#Large-File-Support">Large File Support</a>).
<p>The new 64-bit offset format allows large files, and makes it easy to
create to create fixed variables of about 4 GiB, and record variables
of about 4 GiB per record. (see <a href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a>). However, old netCDF applications will not be able to
read the 64-bit offset files until they are upgraded to at least
version 3.6.0 of netCDF (i.e. the version in which 64-bit offset
format was introduced).
<p>With the netCDF-4/HDF5 format, size limitations are further relaxed,
and files can be as large as the underlying file system
supports. NetCDF-4/HDF5 files are unreadable to the netCDF library
before version 4.0.
<p>Another limitation of the classic (and 64-bit offset) model is that
only one unlimited (changeable) dimension is permitted for each netCDF
data set. Multiple variables can share an unlimited dimension, but
then they must all grow together. Hence the classic netCDF model does
not permit variables with several unlimited dimensions or the use of
multiple unlimited dimensions in different variables within the same
dataset. Variables that have non-rectangular shapes (for example,
ragged arrays) cannot be represented conveniently.
<p>In netCDF-4/HDF5 files, multiple unlimited dimensions are fully
supported. Any variable can be defined with any combination of limited
and unlimited dimensions.
<p>The extent to which data can be completely self-describing is limited:
there is always some assumed context without which sharing and
archiving data would be impractical. NetCDF permits storing meaningful
names for variables, dimensions, and attributes; units of measure in a
form that can be used in computations; text strings for attribute
values that apply to an entire data set; and simple kinds of
coordinate system information. But for more complex kinds of metadata
(for example, the information necessary to provide accurate
georeferencing of data on unusual grids or from satellite images), it
is often necessary to develop conventions.
<p>Specific additions to the netCDF data model might make some of these
conventions unnecessary or allow some forms of metadata to be
represented in a uniform and compact way. For example, adding explicit
georeferencing to the netCDF data model would simplify elaborate
georeferencing conventions at the cost of complicating the model. The
problem is finding an appropriate trade-off between the richness of
the model and its generality (i.e., its ability to encompass many
kinds of data). A data model tailored to capture the shared context
among researchers within one discipline may not be appropriate for
sharing or combining data from multiple disciplines.
<p>The classic netCDF data model (which is used for classic-format and
64-bit offset format data) does not support nested data structures
such as trees, nested arrays, or other recursive structures. Through use of
indirection and conventions it is possible to represent some kinds of
nested structures, but the result may fall short of the netCDF goal of
self-describing data.
<p>In netCDF-4/HDF5 format files, the introduction of the compound type
allows the creation of complex data types, involving any combination
of types. The VLEN type allows efficient storage of ragged arrays, and
the introduction of hierarchical groups allows users new ways to organize data.
<p>Finally, using the netCDF-3 programming interfaces, concurrent access to a
netCDF dataset is limited. One writer and multiple readers may access
data in a single dataset simultaneously, but there is no support for
multiple concurrent writers.
<p>NetCDF-4 supports parallel read/write access to netCDF-4/HDF5 files,
using the underlying HDF5 library and parallel read/write access to
classic and 64-bit offset files using the parallel-netcdf library.
<p>For more information about HDF5, see the HDF5 web site:
<a href="http://hdfgroup.org/HDF5/">http://hdfgroup.org/HDF5/</a>.
<p>For more information about parallel-netcdf, see their web site:
<a href="http://www.mcs.anl.gov/parallel-netcdf">http://www.mcs.anl.gov/parallel-netcdf</a>.
<div class="node">
<a name="Future"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#References">References</a>,
Previous: <a rel="previous" accesskey="p" href="#Limitations">Limitations</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.11 Plans for NetCDF</h3>
<p><a name="index-future-plans-for-netCDF-65"></a><a name="index-plans-for-netCDF-66"></a><a name="index-netCDF-5_002e0-67"></a><a name="index-pong-68"></a>
Future versions of netCDF will include the following features:
<ol type=1 start=1>
<li>Extensions of netCDF-4 features to C++ API and to tools
ncgen/ncdump.
<li>Better documentation and more examples.
</ol>
<div class="node">
<a name="References"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Future">Future</a>,
Up: <a rel="up" accesskey="u" href="#Introduction">Introduction</a>
</div>
<h3 class="section">1.12 References</h3>
<p><a name="index-references-69"></a>
<ol type=1 start=1>
<li>Brown, S. A, M. Folk, G. Goucher, and R. Rew, "Software for
Portable Scientific Data Management," Computers in Physics, American
Institute of Physics, Vol. 7, No. 3, May/June 1993.
<li>Davies, H. L., "FAN - An array-oriented query language," Second
Workshop on Database Issues for Data Visualization (Visualization
1995), Atlanta, Georgia, IEEE, October 1995.
<li>Fahle, J., TeraScan Applications Programming Interface, SeaSpace,
San Diego, California, 1989.
<li>Fulker, D. W., "The netCDF: Self-Describing, Portable Files—a
Basis for 'Plug-Compatible' Software Modules Connectable by Networks,"
ICSU Workshop on Geophysical Informatics, Moscow, USSR, August 1988.
<li>Fulker, D. W., "Unidata Strawman for Storing Earth-Referencing
Data," Seventh International Conference on Interactive Information and
Processing Systems for Meteorology, Oceanography, and Hydrology, New
Orleans, La., American Meteorology Society, January 1991.
<li>Gough, M. L., NSSDC CDF Implementer's Guide (DEC VAX/VMS) Version
1.1, National Space Science Data Center, 88-17, NASA/Goddard Space
Flight Center, 1988.
<li>Jenter, H. L. and R. P. Signell, "NetCDF: A Freely-Available
Software-Solution to Data-Access Problems for Numerical Modelers,"
Proceedings of the American Society of Civil Engineers Conference on
Estuarine and Coastal Modeling, Tampa, Florida, 1992.
<li>Raymond, D. J., "A C Language-Based Modular System for Analyzing
and Displaying Gridded Numerical Data," Journal of Atmospheric and
Oceanic Technology, 5, 501-511, 1988.
<li>Rew, R. K. and G. P. Davis, "The Unidata netCDF: Software for
Scientific Data Access," Sixth International Conference on Interactive
Information and Processing Systems for Meteorology, Oceanography, and
Hydrology, Anaheim, California, American Meteorology Society, February
1990.
<li>Rew, R. K. and G. P. Davis, "NetCDF: An Interface for Scientific
Data Access," Computer Graphics and Applications, IEEE, pp. 76-82,
July 1990.
<li>Rew, R. K. and G. P. Davis, "Unidata's netCDF Interface for Data
Access: Status and Plans," Thirteenth International Conference on
Interactive Information and Processing Systems for Meteorology,
Oceanography, and Hydrology, Anaheim, California, American Meteorology
Society, February 1997.
<li>Treinish, L. A. and M. L. Gough, "A Software Package for the Data
Independent Management of Multi-Dimensional Data," EOS Transactions,
American Geophysical Union, 68, 633-635, 1987.
</ol>
<div class="node">
<a name="Dataset-Components"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Data">Data</a>,
Previous: <a rel="previous" accesskey="p" href="#Introduction">Introduction</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">2 Components of a NetCDF Dataset</h2>
<ul class="menu">
<li><a accesskey="1" href="#Data-Model">Data Model</a>: How NetCDF Sees Data
<li><a accesskey="2" href="#Dimensions">Dimensions</a>: Specifying Data Shape
<li><a accesskey="3" href="#Variables">Variables</a>: Storing Data
<li><a accesskey="4" href="#Attributes">Attributes</a>: Storing Metadata
<li><a accesskey="5" href="#Attributes-and-Variables">Attributes and Variables</a>: Attributes vs. Variables
</ul>
<div class="node">
<a name="Data-Model"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Dimensions">Dimensions</a>,
Previous: <a rel="previous" accesskey="p" href="#Dataset-Components">Dataset Components</a>,
Up: <a rel="up" accesskey="u" href="#Dataset-Components">Dataset Components</a>
</div>
<h3 class="section">2.1 The NetCDF Data Model</h3>
<p><a name="index-netCDF-data-model-70"></a><a name="index-data-model_002c-netCDF-71"></a><a name="index-naming-conventions-72"></a><a name="index-conventions_002c-naming-73"></a><a name="index-CDL_002c-example-74"></a><a name="index-common-data-form-language-75"></a><a name="index-ncdump_002c-introduction-76"></a><a name="index-groups-77"></a><a name="index-user-defined-types-78"></a>
<p>A netCDF dataset contains dimensions, variables, and attributes, which
all have both a name and an ID number by which they are
identified. These components can be used together to capture the
meaning of data and relations among data fields in an array-oriented
dataset. The netCDF library allows simultaneous access to multiple
netCDF datasets which are identified by dataset ID numbers, in
addition to ordinary file names.
<h4 class="subsection">2.1.1 Enhanced Model in NetCDF-4 Files</h4>
<p>Files created with the netCDF-4 format have access to an enhanced data
model, which includes named groups. Groups, like directories in a Unix
file system, are hierarchically organized, to arbitrary depth. They
can be used to organize large numbers of variables.
<p>Each group acts as an entire netCDF dataset in the classic model. That
is, each group may have attributes, dimensions, and variables, as well
as other groups.
<p>The default group is the root group, which allows the classic netCDF
data model to fit neatly into the new model.
<p>Dimensions are scoped such that they can be seen in all descendant
groups. That is, dimensions can be shared between variables in
different groups, if they are defined in a parent group.
<p>In netCDF-4 files, the user may also define a type. For example a
compound type may hold information from an array of C structures, or a
variable length type allows the user to read and write arrays of
variable length values.
<p>Variables, groups, and types share a namespace. Within the same group,
variables, groups, and types must have unique names. (That is, a type
and variable may not have the same name within the same group, and
similarly for sub-groups of that group.)
<p>Groups and user-defined types are only available in files created in
the netCDF-4/HDF5 format. They are not available for classic or 64-bit
offset format files.
<h4 class="subsection">2.1.2 Naming Conventions</h4>
<p>The names of dimensions, variables and attributes (and, in netCDF-4
files, groups, user-defined types, compound member names, and
enumeration symbols) consist of arbitrary sequences of alphanumeric
characters, underscore '_', period '.', plus '+', hyphen '-', or at
sign '@', but beginning with an alphanumeric character or underscore. However names
commencing with underscore are reserved for system use. Case is
significant in netCDF names. A zero-length name is not allowed. Some
widely used conventions restrict names to only alphanumeric characters
or underscores. Beginning with versions 3.6.3 and 4.0, names may also
include UTF-8 encoded Unicode characters as well as other special
characters, except for the character '/', which may not appear in a
name. Names that have trailing space characters are also
not permitted.
<h4 class="subsection">2.1.3 Network Common Data Form Language (CDL)</h4>
<p>We will use a small netCDF example to illustrate the concepts of the
netCDF classic data model. This includes dimensions, variables, and
attributes. The notation used to describe this simple netCDF object is
called CDL (network Common Data form Language), which provides a
convenient way of describing netCDF datasets. The netCDF system
includes the ncdump utility for producing human-oriented CDL text
files from binary netCDF datasets and vice versa using the ncgen
utility.
(The ncdump utility
accommodates netCDF-4 features in the CDL
output, but the example here is restricted to netCDF-3 CDL.)
<pre class="example"> netcdf example_1 { // example of CDL notation for a netCDF dataset
dimensions: // dimension names and lengths are declared first
lat = 5, lon = 10, level = 4, time = unlimited;
variables: // variable types, names, shapes, attributes
float temp(time,level,lat,lon);
temp:long_name = "temperature";
temp:units = "celsius";
float rh(time,lat,lon);
rh:long_name = "relative humidity";
rh:valid_range = 0.0, 1.0; // min and max
int lat(lat), lon(lon), level(level);
lat:units = "degrees_north";
lon:units = "degrees_east";
level:units = "millibars";
short time(time);
time:units = "hours since 1996-1-1";
// global attributes
:source = "Fictional Model Output";
data: // optional data assignments
level = 1000, 850, 700, 500;
lat = 20, 30, 40, 50, 60;
lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
time = 12;
rh =.5,.2,.4,.2,.3,.2,.4,.5,.6,.7,
.1,.3,.1,.1,.1,.1,.5,.7,.8,.8,
.1,.2,.2,.2,.2,.5,.7,.8,.9,.9,
.1,.2,.3,.3,.3,.3,.7,.8,.9,.9,
0,.1,.2,.4,.4,.4,.4,.7,.9,.9;
}
</pre>
<p>The CDL notation for a netCDF dataset can be generated automatically
by using ncdump, a utility program described later
(see <a href="#ncdump">ncdump</a>). Another netCDF utility, ncgen, generates a netCDF
dataset (or optionally C or FORTRAN source code containing calls
needed to produce a netCDF dataset) from CDL input (see <a href="#ncgen">ncgen</a>).
This version of ncgen can produce netcdf-3 or netcdf-4
files and can utilize CDL input that includes the netcdf-4 data model
constructs. The older ncgen program is still available under the name
ncgen3.
<p>The CDL notation is simple and largely self-explanatory. It will be
explained more fully as we describe the components of a netCDF
dataset. For now, note that CDL statements are terminated by a
semicolon. Spaces, tabs, and newlines can be used freely for
readability. Comments in CDL follow the characters '//' on any line. A
CDL description of a netCDF dataset takes the form
<pre class="example"> netCDF name {
types: [netcdf-4 only]
dimensions: ...
variables: ...
data: ...
}
</pre>
<p>where the name is used only as a default in constructing file names by
the ncgen utility. The CDL description consists of three optional
parts, introduced by the keywords dimensions, variables, and
data. NetCDF dimension declarations appear after the dimensions
keyword, netCDF variables and attributes are defined after the
variables keyword, and variable data assignments appear after the data
keyword.
<p>The ncgen utility provides a command line option which indicates the
desired output format. Limitations are enforced for the selected
format - that is, some CDL files may be expressible only in 64-bit
offset or netCDF-4 format.
<p>For example, trying to create a file with very large variables in
classic format may result in an error because size limits are
violated.
<div class="node">
<a name="Dimensions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Variables">Variables</a>,
Previous: <a rel="previous" accesskey="p" href="#Data-Model">Data Model</a>,
Up: <a rel="up" accesskey="u" href="#Dataset-Components">Dataset Components</a>
</div>
<h3 class="section">2.2 Dimensions</h3>
<p><a name="index-appending-data-along-unlimited-dimension-79"></a><a name="index-dimensions_002c-introduction-80"></a><a name="index-dimensions_002c-unlimited-81"></a><a name="index-unlimited-dimensions-82"></a><a name="index-multiple-unlimited-dimensions-83"></a>
A dimension may be used to represent a real physical dimension, for
example, time, latitude, longitude, or height. A dimension might also
be used to index other quantities, for example station or
model-run-number.
<p>A netCDF dimension has both a name and a length.
<!-- As a convenience, in netCDF-4 format files, a name is no longer -->
<!-- necessary for every dimension. Dimensions without a name are called -->
<!-- anonymous dimensions, and function in every other way just as other -->
<!-- dimensions do. -->
<p>A dimension length is an arbitrary positive integer, except that one
dimension in a classic or 64-bit offset netCDF dataset can have the
length UNLIMITED. In a netCDF-4 dataset, any number of unlimited
dimensions can be used.
<p>Such a dimension is called the unlimited dimension or the record
dimension. A variable with an unlimited dimension can grow to any
length along that dimension. The unlimited dimension index is like a
record number in conventional record-oriented files.
<p>A netCDF classic or 64-bit offset dataset can have at most one
unlimited dimension, but need not have any. If a variable has an
unlimited dimension, that dimension must be the most significant
(slowest changing) one. Thus any unlimited dimension must be the first
dimension in a CDL shape and the first dimension in corresponding C
array declarations.
<p>A netCDF-4 dataset may have multiple unlimited dimensions, and there
are no restrictions on their order in the list of a variables
dimensions.
<p>To grow variables along an unlimited dimension, write the data using
any of the netCDF data writing functions, and specify the index of the
unlimited dimension to the desired record number. The netCDF library
will write however many records are needed (using the fill value,
unless that feature is turned off, to fill in any intervening
records).
<p>CDL dimension declarations may appear on one or more lines following
the CDL keyword dimensions. Multiple dimension declarations on the
same line may be separated by commas. Each declaration is of the form
name = length. Use the “/” character to include group information
(netCDF-4 output only).
<p>There are four dimensions in the above example: lat, lon, level, and
time (see <a href="#Data-Model">Data Model</a>). The first three are assigned fixed lengths;
time is assigned the length UNLIMITED, which means it is the unlimited
dimension.
<p>The basic unit of named data in a netCDF dataset is a variable. When a
variable is defined, its shape is specified as a list of
dimensions. These dimensions must already exist. The number of
dimensions is called the rank (a.k.a. dimensionality). A scalar
variable has rank 0, a vector has rank 1 and a matrix has rank 2.
<p>It is possible (since version 3.1 of netCDF) to use the same dimension
more than once in specifying a variable shape. For example,
correlation(instrument, instrument) could be a matrix giving
correlations between measurements using different instruments. But
data whose dimensions correspond to those of physical space/time
should have a shape comprising different dimensions, even if some of
these have the same length.
<div class="node">
<a name="Variables"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Attributes">Attributes</a>,
Previous: <a rel="previous" accesskey="p" href="#Dimensions">Dimensions</a>,
Up: <a rel="up" accesskey="u" href="#Dataset-Components">Dataset Components</a>
</div>
<h3 class="section">2.3 Variables</h3>
<p><a name="index-variables_002c-defined-84"></a><a name="index-variable-types-85"></a><a name="index-netCDF-data-types-86"></a><a name="index-NC_005fBYTE-87"></a><a name="index-NC_005fINT-88"></a><a name="index-NC_005fSHORT-89"></a><a name="index-NC_005fLONG-90"></a><a name="index-NC_005fCHAR-91"></a><a name="index-NC_005fFLOAT-92"></a><a name="index-NC_005fDOUBLE-93"></a><a name="index-NC_005fUBYTE-94"></a><a name="index-NC_005fUINT-95"></a><a name="index-NC_005fUSHORT-96"></a><a name="index-NC_005fUINT-97"></a><a name="index-NC_005fINT64-98"></a><a name="index-NC_005fUINT64-99"></a><a name="index-NC_005fSTRING-100"></a><a name="index-nf_005fbyte-101"></a><a name="index-nf_005fchar-102"></a><a name="index-nf_005fshort-103"></a><a name="index-nf_005fint1-104"></a><a name="index-nf_005fint2-105"></a><a name="index-nf_005freal-106"></a><a name="index-nf_005fdouble-107"></a><a name="index-nf_005ffloat-108"></a><a name="index-attributes-associated-with-a-variable-109"></a><a name="index-primary-variables-110"></a><a name="index-variables_002c-primary-111"></a><a name="index-coordinate-variables-112"></a><a name="index-variables_002c-coordinate-113"></a>
Variables are used to store the bulk of the data in a netCDF
dataset. A variable represents an array of values of the same type. A
scalar value is treated as a 0-dimensional array. A variable has a
name, a data type, and a shape described by its list of dimensions
specified when the variable is created. A variable may also have
associated attributes, which may be added, deleted or changed after
the variable is created.
<p>A variable external data type is one of a small set of netCDF
types. In classic and 64-bit offset files, only the original six types
are available (byte, character, short, int, float, and
double). Variables in netCDF-4 files may also use unsigned short,
unsigned int, 64-bit int, unsigned 64-bit int, or string. Or the user
may define a type, as an opaque blob of bytes, as an array of variable
length arrays, or as a compound type, which acts like a C struct.
<p>For more information on types for the C interface, see <a href="netcdf-c.html#Variable-Types">Variable Types</a> in The NetCDF C Interface Guide.
<p>For more information on types for the Fortran interface, see
<a href="netcdf-f77.html#Variable-Types">Variable Types</a> in
The NetCDF Fortran 77 Interface Guide.
<p>In the CDL notation, classic and 64-bit offset type can be
used. They are given the simpler names byte, char, short, int, float,
and double. The name real may be used as a synonym for float in the CDL
notation. The name long is a deprecated synonym for int. For the exact meaning
of each of the types see <a href="#External-Types">External Types</a>. The ncgen utility
supports new primitive types with names ubyte, ushort, uint,
int64, uint64, and string.
<p>CDL variable declarations appear after the variable keyword in a CDL
unit. They have the form
<pre class="example"> type variable_name ( dim_name_1, dim_name_2, ... );
</pre>
<p>for variables with dimensions, or
<pre class="example"> type variable_name;
</pre>
<p>for scalar variables.
<p>In the above CDL example there are six variables. As discussed below,
four of these are coordinate variables. The remaining variables
(sometimes called primary variables), temp and rh, contain what is
usually thought of as the data. Each of these variables has the
unlimited dimension time as its first dimension, so they are called
record variables. A variable that is not a record variable has a fixed
length (number of data values) given by the product of its dimension
lengths. The length of a record variable is also the product of its
dimension lengths, but in this case the product is variable because it
involves the length of the unlimited dimension, which can vary. The
length of the unlimited dimension is the number of records.
<h4 class="subsection">2.3.1 Coordinate Variables</h4>
<p>It is legal for a variable to have the same name as a dimension. Such
variables have no special meaning to the netCDF library. However there
is a convention that such variables should be treated in a special way
by software using this library.
<p>A variable with the same name as a dimension is called a coordinate
variable. It typically defines a physical coordinate corresponding to
that dimension. The above CDL example includes the coordinate
variables lat, lon, level and time, defined as follows:
<pre class="example"> int lat(lat), lon(lon), level(level);
short time(time);
...
data:
level = 1000, 850, 700, 500;
lat = 20, 30, 40, 50, 60;
lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
time = 12;
</pre>
<p>These define the latitudes, longitudes, barometric pressures and times
corresponding to positions along these dimensions. Thus there is data
at altitudes corresponding to 1000, 850, 700 and 500 millibars; and at
latitudes 20, 30, 40, 50 and 60 degrees north. Note that each
coordinate variable is a vector and has a shape consisting of just the
dimension with the same name.
<p>A position along a dimension can be specified using an index. This is
an integer with a minimum value of 0 for C programs, 1 in Fortran
programs. Thus the 700 millibar level would have an index value of 2
in the example above in a C program, and 3 in a Fortran program.
<p>If a dimension has a corresponding coordinate variable, then this
provides an alternative, and often more convenient, means of
specifying position along it. Current application packages that make
use of coordinate variables commonly assume they are numeric vectors
and strictly monotonic (all values are different and either increasing
or decreasing).
<div class="node">
<a name="Attributes"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Attributes-and-Variables">Attributes and Variables</a>,
Previous: <a rel="previous" accesskey="p" href="#Variables">Variables</a>,
Up: <a rel="up" accesskey="u" href="#Dataset-Components">Dataset Components</a>
</div>
<h3 class="section">2.4 Attributes</h3>
<p><a name="index-attributes_002c-defined-114"></a><a name="index-attributes_002c-defining-in-CDL-115"></a><a name="index-attributes_002c-adding-to-existing-dataset-116"></a><a name="index-CDL_002c-defining-attributes-117"></a><a name="index-CDL_002c-defining-global-attributes-118"></a><a name="index-ancillary-data_002c-storing-119"></a><a name="index-storing-ancillary-data-120"></a><a name="index-applications_002c-generic-121"></a><a name="index-generic-applications-122"></a><a name="index-attributes_002c-data-type-123"></a><a name="index-attributes_002c-global-124"></a><a name="index-attributes_002c-operations-on-125"></a><a name="index-global-attributes-126"></a><a name="index-operations-on-attributes-127"></a>
NetCDF attributes are used to store data about the data (ancillary
data or metadata), similar in many ways to the information stored in
data dictionaries and schema in conventional database systems. Most
attributes provide information about a specific variable. These are
identified by the name (or ID) of that variable, together with the
name of the attribute.
<p>Some attributes provide information about the dataset as a whole and
are called global attributes. These are identified by the attribute
name together with a blank variable name (in CDL) or a special null
"global variable" ID (in C or Fortran).
<p>In netCDF-4 file, attributes can also be added at the group level.
<p>An attribute has an associated variable (the null "global variable"
for a global or group-level attribute), a name, a data type, a length,
and a value. The current version treats all attributes as vectors;
scalar values are treated as single-element vectors.
<p>Conventional attribute names should be used where applicable. New
names should be as meaningful as possible.
<p>The external type of an attribute is specified when it is created. The
types permitted for attributes are the same as the netCDF external
data types for variables. Attributes with the same name for different
variables should sometimes be of different types. For example, the
attribute valid_max specifying the maximum valid data value for a
variable of type int should be of type int, whereas the attribute
valid_max for a variable of type double should instead be of type
double.
<p>Attributes are more dynamic than variables or dimensions; they can be
deleted and have their type, length, and values changed after they are
created, whereas the netCDF interface provides no way to delete a
variable or to change its type or shape.
<p>The CDL notation for defining an attribute is
<pre class="example"> variable_name:attribute_name = list_of_values;
</pre>
<p>for a variable attribute, or
<pre class="example"> :attribute_name = list_of_values;
</pre>
<p>for a global attribute.
<p>For the netCDF classic model,
the type and length of each attribute are not explicitly declared in
CDL; they are derived from the values assigned to the attribute. All
values of an attribute must be of the same type. The notation used for
constant values of the various netCDF types is discussed later
(see <a href="#CDL-Constants">CDL Constants</a>).
<p>The extended CDL syntax for the enhanced
data model supported by netCDF-4 allows optional type specifications,
including user-defined types, for
attributes of user-defined types. See ncdump output or the reference
documentation for ncgen for details of the extended CDL systax.
<p>In the netCDF example (see <a href="#Data-Model">Data Model</a>), units is an attribute for
the variable lat that has a 13-character array value
'degrees_north'. And valid_range is an attribute for the variable rh
that has length 2 and values '0.0' and '1.0'.
<p>One global attribute, called “source”, is defined for the example
netCDF dataset. This is a character array intended for documenting the
data. Actual netCDF datasets might have more global attributes to
document the origin, history, conventions, and other characteristics
of the dataset as a whole.
<p>Most generic applications that process netCDF datasets assume standard
attribute conventions and it is strongly recommended that these be
followed unless there are good reasons for not doing so. For
information about units, long_name, valid_min, valid_max, valid_range,
scale_factor, add_offset, _FillValue, and other conventional
attributes, see <a href="#Attribute-Conventions">Attribute Conventions</a>.
<p>Attributes may be added to a netCDF dataset long after it is first
defined, so you don't have to anticipate all potentially useful
attributes. However adding new attributes to an existing classic or
64-bit offset format dataset can incur the same expense as copying the
dataset. For a more extensive discussion see <a href="#Structure">Structure</a>.
<div class="node">
<a name="Attributes-and-Variables"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Attributes">Attributes</a>,
Up: <a rel="up" accesskey="u" href="#Dataset-Components">Dataset Components</a>
</div>
<h3 class="section">2.5 Differences between Attributes and Variables</h3>
<p><a name="index-ancillary-data-as-attributes-128"></a><a name="index-attributes-vs_002e-variables-129"></a><a name="index-variables-vs_002e-attributes-130"></a><a name="index-differences-between-attributes-and-variables-131"></a>
In contrast to variables, which are intended for bulk data, attributes
are intended for ancillary data, or information about the data. The
total amount of ancillary data associated with a netCDF object, and
stored in its attributes, is typically small enough to be
memory-resident. However variables are often too large to entirely fit
in memory and must be split into sections for processing.
<p>Another difference between attributes and variables is that variables
may be multidimensional. Attributes are all either scalars
(single-valued) or vectors (a single, fixed dimension).
<p>Variables are created with a name, type, and shape before they are
assigned data values, so a variable may exist with no values. The
value of an attribute is specified when it is created, unless it is a
zero-length attribute.
<p>A variable may have attributes, but an attribute cannot have
attributes. Attributes assigned to variables may have the same units
as the variable (for example, valid_range) or have no units (for
example, scale_factor). If you want to store data that requires units
different from those of the associated variable, it is better to use a
variable than an attribute. More generally, if data require ancillary
data to describe them, are multidimensional, require any of the
defined netCDF dimensions to index their values, or require a
significant amount of storage, that data should be represented using
variables rather than attributes.
<div class="node">
<a name="Data"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Structure">Structure</a>,
Previous: <a rel="previous" accesskey="p" href="#Dataset-Components">Dataset Components</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">3 Data</h2>
<p>This chapter discusses the primitive netCDF external data types, the
kinds of data access supported by the netCDF interface, and how data
structures other than arrays may be implemented in a netCDF dataset.
<ul class="menu">
<li><a accesskey="1" href="#External-Types">External Types</a>: Integers, Floats, and so on
<li><a accesskey="2" href="#Classic-Data-Structures">Classic Data Structures</a>: Complex Data in Classic Format
<li><a accesskey="3" href="#User-Defined-Types">User Defined Types</a>: Complex Data in NetCDF-4/HDF5 Format
<li><a accesskey="4" href="#Data-Access">Data Access</a>: Reading and Writing Data
<li><a accesskey="5" href="#Type-Conversion">Type Conversion</a>: Changing Type of Numeric Data
</ul>
<div class="node">
<a name="External-Types"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Classic-Data-Structures">Classic Data Structures</a>,
Previous: <a rel="previous" accesskey="p" href="#Data">Data</a>,
Up: <a rel="up" accesskey="u" href="#Data">Data</a>
</div>
<h3 class="section">3.1 NetCDF External Data Types</h3>
<p><a name="index-ASCII-characters-132"></a><a name="index-data-types_002c-external-133"></a><a name="index-conversion-of-data-types_002c-introduction-134"></a><a name="index-external-data-types-135"></a><a name="index-byte_002c-signed-vs_002e-unsigned-136"></a>
The atomic external types supported by the netCDF interface are:
<p><table summary="">
<tr align="left"><td valign="top" width="15%">C name </td><td valign="top" width="15%">Fortran name </td><td valign="top" width="70%">storage
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_BYTE </td><td valign="top" width="15%">nf_byte </td><td valign="top" width="70%">8-bit signed integer
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_CHAR </td><td valign="top" width="15%">nf_char </td><td valign="top" width="70%">8-bit unsigned integer
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_SHORT </td><td valign="top" width="15%">nf_short </td><td valign="top" width="70%">16-bit signed integer
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_USHORT </td><td valign="top" width="15%">nf_ushort </td><td valign="top" width="70%">16-bit unsigned integer *
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_INT (or NC_LONG) </td><td valign="top" width="15%">nf_int </td><td valign="top" width="70%">32-bit signed integer
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_UINT </td><td valign="top" width="15%">nf_uint </td><td valign="top" width="70%">32-bit unsigned integer *
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_INT64 </td><td valign="top" width="15%">nf_int64 </td><td valign="top" width="70%">64-bit signed integer *
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_UINT64 </td><td valign="top" width="15%">nf_uint64 </td><td valign="top" width="70%">64-bit unsigned integer *
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_FLOAT </td><td valign="top" width="15%">nf_float </td><td valign="top" width="70%">32-bit floating point
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_DOUBLE </td><td valign="top" width="15%">nf_double </td><td valign="top" width="70%">64-bit floating point
<p><br></td></tr><tr align="left"><td valign="top" width="15%">NC_STRING </td><td valign="top" width="15%">nf_string </td><td valign="top" width="70%">variable length character string *
<br></td></tr></table>
<p>* These types are available only for netCDF-4 format files. All the
unsigned ints (except NC_CHAR), the 64-bit ints, and string
type are for netCDF-4 files only.
<p>These types were chosen to provide a reasonably wide range of
trade-offs between data precision and number of bits required for each
value. These external data types are independent from whatever
internal data types are supported by a particular machine and language
combination.
<p>These types are called "external", because they correspond to the
portable external representation for netCDF data. When a program reads
external netCDF data into an internal variable, the data is converted,
if necessary, into the specified internal type. Similarly, if you
write internal data into a netCDF variable, this may cause it to be
converted to a different external type, if the external type for the
netCDF variable differs from the internal type.
<p>The separation of external and internal types and automatic type
conversion have several advantages. You need not be aware of the
external type of numeric variables, since automatic conversion to or
from any desired numeric type is available. You can use this feature
to simplify code, by making it independent of external types, using a
sufficiently wide internal type, e.g., double precision, for numeric
netCDF data of several different external types. Programs need not be
changed to accommodate a change to the external type of a variable.
<p>If conversion to or from an external numeric type is necessary, it is
handled by the library.
<p>Converting from one numeric type to another may result in an error if
the target type is not capable of representing the converted
value. For example, an internal short integer type may not be able to
hold data stored externally as an integer. When accessing an array of
values, a range error is returned if one or more values are out of the
range of representable values, but other values are converted
properly.
<p>Note that mere loss of precision in type conversion does not return an
error. Thus, if you read double precision values into a
single-precision floating-point variable, for example, no error
results unless the magnitude of the double precision value exceeds the
representable range of single-precision floating point numbers on your
platform. Similarly, if you read a large integer into a float
incapable of representing all the bits of the integer in its mantissa,
this loss of precision will not result in an error. If you want to
avoid such precision loss, check the external types of the variables
you access to make sure you use an internal type that has adequate
precision.
<p>The names for the primitive external data types (byte, char, short,
ushort, int, uint, int64, uint64, float or real, double, string)
are reserved words in CDL, so the names of variables, dimensions, and
attributes must not be type names.
<p>It is possible to interpret byte data as either signed (-128 to 127)
or unsigned (0 to 255). However, when reading byte data to be
converted into other numeric types, it is interpreted as signed.
<p>For the correspondence between netCDF external data types and the data
types of a language see <a href="#Variables">Variables</a>.
<div class="node">
<a name="Classic-Data-Structures"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#User-Defined-Types">User Defined Types</a>,
Previous: <a rel="previous" accesskey="p" href="#External-Types">External Types</a>,
Up: <a rel="up" accesskey="u" href="#Data">Data</a>
</div>
<h3 class="section">3.2 Data Structures in Classic and 64-bit Offset Files</h3>
<p><a name="index-data-structures-137"></a><a name="index-structures_002c-data-138"></a>
The only kind of data structure directly supported by the netCDF
classic (and 64-bit offset) abstraction is a collection of named
arrays with attached vector attributes. NetCDF is not particularly
well-suited for storing linked lists, trees, sparse matrices, ragged
arrays or other kinds of data structures requiring pointers.
<p>It is possible to build other kinds of data structures in netCDF
classic or 64-bit offset formats, from sets of arrays by adopting
various conventions regarding the use of data in one array as pointers
into another array. The netCDF library won't provide much help or
hindrance with constructing such data structures, but netCDF provides
the mechanisms with which such conventions can be designed.
<p>The following netCDF classic example stores a ragged array ragged_mat using an
attribute row_index to name an associated index variable giving the
index of the start of each row. In this example, the first row
contains 12 elements, the second row contains 7 elements (19 - 12),
and so on. (NetCDF-4 includes native support for variable length
arrays. See below.)
<pre class="example"> float ragged_mat(max_elements);
ragged_mat:row_index = "row_start";
int row_start(max_rows);
data:
row_start = 0, 12, 19, ...
</pre>
<p>As another example, netCDF variables may be grouped within a netCDF
classic or 64-bit offset dataset by defining attributes that list the
names of the variables in each group, separated by a conventional
delimiter such as a space or comma. Using a naming convention for
attribute names for such groupings permits any number of named groups
of variables. A particular conventional attribute for each variable
might list the names of the groups of which it is a member. Use of
attributes, or variables that refer to other attributes or variables,
provides a flexible mechanism for representing some kinds of complex
structures in netCDF datasets.
<div class="node">
<a name="User-Defined-Types"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Data-Access">Data Access</a>,
Previous: <a rel="previous" accesskey="p" href="#Classic-Data-Structures">Classic Data Structures</a>,
Up: <a rel="up" accesskey="u" href="#Data">Data</a>
</div>
<h3 class="section">3.3 NetCDF-4 User Defined Data Types</h3>
<p><a name="index-compound-type-139"></a><a name="index-vlen-type-140"></a><a name="index-variable-length-array-type-141"></a><a name="index-opaque-type-142"></a><a name="index-enum-type-143"></a>
NetCDF supported six data types through version 3.6.0 (char, byte,
short, int, float, and double). Starting with version 4.0, many new
data types are supported (unsigned int types, strings, compound types,
variable length arrays, enums, opaque).
<p>In addition to the new atomic types the user may define types.
<p>Types are defined in define mode, and must be fully defined before
they are used. New types may be added to a file by re-entering define
mode.
<p>Once defined the type may be used to create a variable or attribute.
<p>Types may be nested in complex ways. For example, a compound type
containing an array of VLEN types, each containing variable length
arrays of some other compound type, etc. Users are cautioned to keep
types simple. Reading data of complex types can be challenging for
Fortran users.
<p>Types may be defined in any group in the data file, but they are
always available globally in the file.
<p>Types cannot have attributes (but variables of the type may have
attributes).
<p>Only files created with the netCDF-4/HDF5 mode flag (NC_NETCDF4,
NF_NETCDF4, or NF90_NETCDF4), but without the classic model flag
(NC_CLASSIC_MODEL, NF_CLASSIC_MODEL, or NF90_CLASSIC_MODEL.)
<p>Once types are defined, use their ID like any other type ID when
defining variables or attributes. Each API has functions to read and
write variables and attributes of any type. Use these functions to
read and write variables and attributes of user defined type. In C use
nc_put_att/nc_get_att and the nc_put_var/nc_get_var,
nc_put_var1/nc_get_var1, nc_put_vara/nc_get_vara, or
nc_put_vars/nc_get_vars functons to access attribute and variable data
of user defined type.
<h4 class="subsection">3.3.1 Compound Types</h4>
<p>Compound types allow the user to combine atomic and user-defined types
into C-like structs. Since users defined types may be used within a
compound type, they can contain nested compound types.
<p>Users define a compound type, and (in their C code) a corresponding C
struct. They can then use the nc_put_var[1asm] calls to write
multi-dimensional arrays of these structs, and nc_get_var[1asm] calls
to read them. (For example, the nc_put_varm function will write mapped
arrays of these structs.)
<p>While structs, in general, are not portable from platform to platform,
the HDF5 layer (when installed) performs the magic required to figure
out your platform's idiosyncrasies, and adjust to them. The end result
is that HDF5 compound types (and therefore, netCDF-4 compound types),
are portable.
<p>For more information on creating and using compound types, see
<a href="netcdf-c.html#Compound-Types">Compound Types</a> in The NetCDF C Interface Guide.
<h4 class="subsection">3.3.2 VLEN Types</h4>
<p>Variable length arrays can be used to create a ragged array of data,
in which one of the dimensions varies in size from point to point.
<p>An example of VLEN use would the to store a 1-D array of dropsonde
data, in which the data at each drop point is of variable length.
<p>There is no special restriction on the dimensionality of VLEN
variables. It's possible to have 2D, 3D, 4D, etc. data, in which each
point contains a VLEN.
<p>A VLEN has a base type (that is, the type that it is a VLEN of). This
may be one of the atomic types (forming, for example, a variable
length array of NC_INT), or it can be another user defined type, like
a compound type.
<p>With VLEN data, special memory allocation and deallocation procedures
must be followed, or memory leaks may occur.
<p>Compression is permitted but may not be effective for VLEN data,
because the compression is applied to structures containing lengths
and pointers to the data, rather than the actual data.
<p>For more information on creating and using variable length arrays, see
<a href="netcdf-c.html#Variable-Length-Arrays">Variable Length Arrays</a> in
The NetCDF C Interface Guide.
<h4 class="subsection">3.3.3 Opaque Types</h4>
<p>Opaque types allow the user to store arrays of data blobs of a fixed
size.
<p>For more information on creating and using opaque types, see
<a href="netcdf-c.html#Opaque-Type">Opaque Type</a> in The NetCDF C Interface Guide.
<h4 class="subsection">3.3.4 Enum Types</h4>
<p>Enum types allow the user to specify an enumeration.
<p>For more information on creating and using enum types, see <a href="netcdf-c.html#Enum-Type">Enum Type</a> in The NetCDF C Interface Guide.
<h4 class="subsection">3.3.5 Groups</h4>
<p>Although not a type of data, groups can help organize data within a
dataset. Like a directory structure on a Unix file-system, the
grouping feature allows users to organize variables and dimensions
into distinct, named, hierarchical areas, called groups. For more
information on groups types, see <a href="netcdf-c.html#Groups">Groups</a> in The NetCDF C Interface Guide.
<div class="node">
<a name="Data-Access"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Type-Conversion">Type Conversion</a>,
Previous: <a rel="previous" accesskey="p" href="#User-Defined-Types">User Defined Types</a>,
Up: <a rel="up" accesskey="u" href="#Data">Data</a>
</div>
<h3 class="section">3.4 Data Access</h3>
<p><a name="index-data_002c-reading-144"></a><a name="index-data_002c-writing-145"></a><a name="index-access-random-146"></a>
To access (read or write) netCDF data you specify an open netCDF
dataset, a netCDF variable, and information (e.g., indices)
identifying elements of the variable. The name of the access function
corresponds to the internal type of the data. If the internal type has
a different representation from the external type of the variable, a
conversion between the internal type and external type will take place
when the data is read or written.
<p>Access to data in classic and 64-bit offset format is direct. Access
to netCDF-4 data is buffered by the HDF5 layer. In either case you can
access a small subset of data from a large dataset efficiently,
without first accessing all the data that precedes it.
<p>Reading and writing data by specifying a variable, instead of a
position in a file, makes data access independent of how many other
variables are in the dataset, making programs immune to data format
changes that involve adding more variables to the data.
<p>In the C and FORTRAN interfaces, datasets are not specified by name
every time you want to access data, but instead by a small integer
called a dataset ID, obtained when the dataset is first created or
opened.
<p>Similarly, a variable is not specified by name for every data access
either, but by a variable ID, a small integer used to identify each
variable in a netCDF dataset.
<h4 class="subsection">3.4.1 Forms of Data Access</h4>
<p><a name="index-array-section_002c-corner-147"></a><a name="index-array-section_002c-definition-148"></a><a name="index-array-section_002c-edges-149"></a><a name="index-array-section_002c-mapped-150"></a>
The netCDF interface supports several forms of direct access to data
values in an open netCDF dataset. We describe each of these forms of
access in order of increasing generality:
<ul>
<li>access to all elements;
<li>access to individual elements, specified with an index vector;
<li>access to array sections, specified with an index vector, and count
vector;
<li>access to sub-sampled array sections, specified with an index vector,
count vector, and stride vector; and
<li>access to mapped array sections, specified with an index vector, count
vector, stride vector, and an index mapping vector.
</ul>
<p>The four types of vector (index vector, count vector, stride vector
and index mapping vector) each have one element for each dimension of
the variable. Thus, for an n-dimensional variable (rank = n),
n-element vectors are needed. If the variable is a scalar (no
dimensions), these vectors are ignored.
<p>An array section is a "slab" or contiguous rectangular block that is
specified by two vectors. The index vector gives the indices of the
element in the corner closest to the origin. The count vector gives
the lengths of the edges of the slab along each of the variable's
dimensions, in order. The number of values accessed is the product of
these edge lengths.
<p>A subsampled array section is similar to an array section, except that
an additional stride vector is used to specify sampling. This vector
has an element for each dimension giving the length of the strides to
be taken along that dimension. For example, a stride of 4 means every
fourth value along the corresponding dimension. The total number of
values accessed is again the product of the elements of the count
vector.
<p>A mapped array section is similar to a subsampled array section except
that an additional index mapping vector allows one to specify how data
values associated with the netCDF variable are arranged in memory. The
offset of each value from the reference location, is given by the sum
of the products of each index (of the imaginary internal array which
would be used if there were no mapping) by the corresponding element
of the index mapping vector. The number of values accessed is the same
as for a subsampled array section.
<p>The use of mapped array sections is discussed more fully below, but
first we present an example of the more commonly used array-section
access.
<ul class="menu">
<li><a accesskey="1" href="#C-Section-Access">C Section Access</a>: A C Example
<li><a accesskey="2" href="#Fortran-Section-Access">Fortran Section Access</a>: A Fortran Example
</ul>
<div class="node">
<a name="C-Section-Access"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Fortran-Section-Access">Fortran Section Access</a>,
Previous: <a rel="previous" accesskey="p" href="#Data-Access">Data Access</a>,
Up: <a rel="up" accesskey="u" href="#Data-Access">Data Access</a>
</div>
<h4 class="subsection">3.4.2 A C Example of Array-Section Access</h4>
<p><a name="index-access-C-example-of-array-section-151"></a><a name="index-array-section_002c-C-example-152"></a>
Assume that in our earlier example of a netCDF dataset (see <a href="#Data-Model">Network Common Data Form Language (CDL)</a>), we wish to read a
cross-section of all the data for the temp variable at one level (say,
the second), and assume that there are currently three records (time
values) in the netCDF dataset. Recall that the dimensions are defined
as
<pre class="example"> lat = 5, lon = 10, level = 4, time = unlimited;
</pre>
<p>and the variable temp is declared as
<pre class="example"> float temp(time, level, lat, lon);
</pre>
<p>in the CDL notation.
<p>A corresponding C variable that holds data for only one level might be
declared as
<pre class="example"> #define LATS 5
#define LONS 10
#define LEVELS 1
#define TIMES 3 /* currently */
...
float temp[TIMES*LEVELS*LATS*LONS];
to keep the data in a one-dimensional array, or
...
float temp[TIMES][LEVELS][LATS][LONS];
</pre>
<p>using a multidimensional array declaration.
<p>To specify the block of data that represents just the second level,
all times, all latitudes, and all longitudes, we need to provide a
start index and some edge lengths. The start index should be (0, 1, 0,
0) in C, because we want to start at the beginning of each of the
time, lon, and lat dimensions, but we want to begin at the second
value of the level dimension. The edge lengths should be (3, 1, 5, 10)
in C, (since we want to get data for all three time values, only one
level value, all five lat values, and all 10 lon values. We should
expect to get a total of 150 floating-point values returned (3 * 1 * 5
* 10), and should provide enough space in our array for this many. The
order in which the data will be returned is with the last dimension,
lon, varying fastest:
<pre class="example"> temp[0][1][0][0]
temp[0][1][0][1]
temp[0][1][0][2]
temp[0][1][0][3]
...
temp[2][1][4][7]
temp[2][1][4][8]
temp[2][1][4][9]
</pre>
<p>Different dimension orders for the C, FORTRAN, or other language
interfaces do not reflect a different order for values stored on the
disk, but merely different orders supported by the procedural
interfaces to the languages. In general, it does not matter whether a
netCDF dataset is written using the C, FORTRAN, or another language
interface; netCDF datasets written from any supported language may be
read by programs written in other supported languages.
<h4 class="subsection">3.4.3 More on General Array Section Access for C</h4>
<p>The use of mapped array sections allows non-trivial relationships
between the disk addresses of variable elements and the addresses
where they are stored in memory. For example, a matrix in memory could
be the transpose of that on disk, giving a quite different order of
elements. In a regular array section, the mapping between the disk and
memory addresses is trivial: the structure of the in-memory values
(i.e., the dimensional lengths and their order) is identical to that
of the array section. In a mapped array section, however, an index
mapping vector is used to define the mapping between indices of netCDF
variable elements and their memory addresses.
<p>With mapped array access, the offset (number of array elements) from
the origin of a memory-resident array to a particular point is given
by the inner product[1] of the index mapping vector with the point's
coordinate offset vector. A point's coordinate offset vector gives,
for each dimension, the offset from the origin of the containing array
to the point.In C, a point's coordinate offset vector is the same as
its coordinate vector.
<p>The index mapping vector for a regular array section would have–in
order from most rapidly varying dimension to most slowly–a constant
1, the product of that value with the edge length of the most rapidly
varying dimension of the array section, then the product of that value
with the edge length of the next most rapidly varying dimension, and
so on. In a mapped array, however, the correspondence between netCDF
variable disk locations and memory locations can be different.
<p>For example, the following C definitions
<pre class="example"> struct vel {
int flags;
float u;
float v;
} vel[NX][NY];
ptrdiff_t imap[2] = {
sizeof(struct vel),
sizeof(struct vel)*NY
};
</pre>
<p>where imap is the index mapping vector, can be used to access the
memory-resident values of the netCDF variable, vel(NY,NX), even though
the dimensions are transposed and the data is contained in a 2-D array
of structures rather than a 2-D array of floating-point values.
<p>A detailed example of mapped array access is presented in the
description of the interfaces for mapped array
access. See <a href="netcdf-c.html#nc_005fput_005fvarm_005f-type">Write a Mapped Array of Values - nc_put_varm_ type</a>.
<p>Note that, although the netCDF abstraction allows the use of
subsampled or mapped array-section access there use is not
required. If you do not need these more general forms of access, you
may ignore these capabilities and use single value access or regular
array section access instead.
<div class="node">
<a name="Fortran-Section-Access"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#C-Section-Access">C Section Access</a>,
Up: <a rel="up" accesskey="u" href="#Data-Access">Data Access</a>
</div>
<h4 class="subsection">3.4.4 A Fortran Example of Array-Section Access</h4>
<p><a name="index-access-Fortran-example-of-array-section-153"></a><a name="index-array-section_002c-Fortran-example-154"></a>
Assume that in our earlier example of a netCDF dataset (see <a href="#Data-Model">Data Model</a>), we wish to read a cross-section of all the data for the temp
variable at one level (say, the second), and assume that there are
currently three records (time values) in the netCDF dataset. Recall
that the dimensions are defined as
<pre class="example"> lat = 5, lon = 10, level = 4, time = unlimited;
</pre>
<p>and the variable temp is declared as
<pre class="example"> float temp(time, level, lat, lon);
</pre>
<p>in the CDL notation.
<p>In FORTRAN, the dimensions are reversed from the CDL declaration with
the first dimension varying fastest and the record dimension as the
last dimension of a record variable. Thus a FORTRAN declarations for a
variable that holds data for only one level is
<pre class="example"> INTEGER LATS, LONS, LEVELS, TIMES
PARAMETER (LATS=5, LONS=10, LEVELS=1, TIMES=3)
...
REAL TEMP(LONS, LATS, LEVELS, TIMES)
</pre>
<p>To specify the block of data that represents just the second level,
all times, all latitudes, and all longitudes, we need to provide a
start index and some edge lengths. The start index should be (1, 1, 2,
1) in FORTRAN, because we want to start at the beginning of each of
the time, lon, and lat dimensions, but we want to begin at the second
value of the level dimension. The edge lengths should be (10, 5, 1, 3)
in FORTRAN, since we want to get data for all three time values, only
one level value, all five lat values, and all 10 lon values. We should
expect to get a total of 150 floating-point values returned (3 * 1 * 5
* 10), and should provide enough space in our array for this many. The
order in which the data will be returned is with the first dimension,
LON, varying fastest:
<pre class="example"> TEMP( 1, 1, 2, 1)
TEMP( 2, 1, 2, 1)
TEMP( 3, 1, 2, 1)
TEMP( 4, 1, 2, 1)
...
TEMP( 8, 5, 2, 3)
TEMP( 9, 5, 2, 3)
TEMP(10, 5, 2, 3)
</pre>
<p>Different dimension orders for the C, FORTRAN, or other language
interfaces do not reflect a different order for values stored on the
disk, but merely different orders supported by the procedural
interfaces to the languages. In general, it does not matter whether a
netCDF dataset is written using the C, FORTRAN, or another language
interface; netCDF datasets written from any supported language may be
read by programs written in other supported languages.
<h4 class="subsection">3.4.5 More on General Array Section Access for Fortran</h4>
<p>The use of mapped array sections allows non-trivial relationships
between the disk addresses of variable elements and the addresses
where they are stored in memory. For example, a matrix in memory could
be the transpose of that on disk, giving a quite different order of
elements. In a regular array section, the mapping between the disk and
memory addresses is trivial: the structure of the in-memory values
(i.e., the dimensional lengths and their order) is identical to that
of the array section. In a mapped array section, however, an index
mapping vector is used to define the mapping between indices of netCDF
variable elements and their memory addresses.
<p>With mapped array access, the offset (number of array elements) from
the origin of a memory-resident array to a particular point is given
by the inner product[1] of the index mapping vector with the point's
coordinate offset vector. A point's coordinate offset vector gives,
for each dimension, the offset from the origin of the containing array
to the point. In FORTRAN, the values of a point's coordinate offset
vector are one less than the corresponding values of the point's
coordinate vector, e.g., the array element A(3,5) has coordinate
offset vector [2, 4].
<p>The index mapping vector for a regular array section would have–in
order from most rapidly varying dimension to most slowly–a constant
1, the product of that value with the edge length of the most rapidly
varying dimension of the array section, then the product of that value
with the edge length of the next most rapidly varying dimension, and
so on. In a mapped array, however, the correspondence between netCDF
variable disk locations and memory locations can be different.
<p>A detailed example of mapped array access is presented in the
description of the interfaces for mapped array
access. See <a href="netcdf-f77.html#nf_005fput_005fvarm_005f-type">nf_put_varm_ type</a>.
<p>Note that, although the netCDF abstraction allows the use of
subsampled or mapped array-section access there use is not
required. If you do not need these more general forms of access, you
may ignore these capabilities and use single value access or regular
array section access instead.
<div class="node">
<a name="Type-Conversion"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Data-Access">Data Access</a>,
Up: <a rel="up" accesskey="u" href="#Data">Data</a>
</div>
<h3 class="section">3.5 Type Conversion</h3>
<p><a name="index-type-conversion-155"></a><a name="index-byte-array-vs_002e-text-string-156"></a><a name="index-data-types_002c-conversion-157"></a>
Each netCDF variable has an external type, specified when the variable
is first defined. This external type determines whether the data is
intended for text or numeric values, and if numeric, the range and
precision of numeric values.
<p>If the netCDF external type for a variable is char, only character
data representing text strings can be written to or read from the
variable. No automatic conversion of text data to a different
representation is supported.
<p>If the type is numeric, however, the netCDF library allows you to
access the variable data as a different type and provides automatic
conversion between the numeric data in memory and the data in the
netCDF variable. For example, if you write a program that deals with
all numeric data as double-precision floating point values, you can
read netCDF data into double-precision arrays without knowing or
caring what the external type of the netCDF variables are. On reading
netCDF data, integers of various sizes and single-precision
floating-point values will all be converted to double-precision, if
you use the data access interface for double-precision values. Of
course, you can avoid automatic numeric conversion by using the netCDF
interface for a value type that corresponds to the external data type
of each netCDF variable, where such value types exist.
<p>The automatic numeric conversions performed by netCDF are easy to
understand, because they behave just like assignment of data of one
type to a variable of a different type. For example, if you read
floating-point netCDF data as integers, the result is truncated
towards zero, just as it would be if you assigned a floating-point
value to an integer variable. Such truncation is an example of the
loss of precision that can occur in numeric conversions.
<p>Converting from one numeric type to another may result in an error if
the target type is not capable of representing the converted
value. For example, an integer may not be able to hold data stored
externally as an IEEE floating-point number. When accessing an array
of values, a range error is returned if one or more values are out of
the range of representable values, but other values are converted
properly.
<p>Note that mere loss of precision in type conversion does not result in
an error. For example, if you read double precision values into an
integer, no error results unless the magnitude of the double precision
value exceeds the representable range of integers on your
platform. Similarly, if you read a large integer into a float
incapable of representing all the bits of the integer in its mantissa,
this loss of precision will not result in an error. If you want to
avoid such precision loss, check the external types of the variables
you access to make sure you use an internal type that has a compatible
precision.
<p>Whether a range error occurs in writing a large floating-point value
near the boundary of representable values may be depend on the
platform. The largest floating-point value you can write to a netCDF
float variable is the largest floating-point number representable on
your system that is less than 2 to the 128th power. The largest double
precision value you can write to a double variable is the largest
double-precision number representable on your system that is less than
2 to the 1024th power.
<div class="node">
<a name="Structure"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#NetCDF-Utilities">NetCDF Utilities</a>,
Previous: <a rel="previous" accesskey="p" href="#Data">Data</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">4 File Structure and Performance</h2>
<p><a name="index-file-structure_002c-overview-158"></a><a name="index-performance-of-NetCDF-159"></a>
This chapter describes the file structure of a netCDF classic or
64-bit offset dataset in enough detail to aid in understanding netCDF
performance issues.
<p>NetCDF is a data abstraction for array-oriented data access and a
software library that provides a concrete implementation of the
interfaces that support that abstraction. The implementation provides
a machine-independent format for representing arrays. Although the
netCDF file format is hidden below the interfaces, some understanding
of the current implementation and associated file structure may help
to make clear why some netCDF operations are more expensive than
others.
<p>Knowledge of the format is not needed for reading and writing netCDF
data or understanding most efficiency issues. Programs that use only
the documented interfaces and that make no assumptions about the
format will continue to work even if the netCDF format is changed in
the future, because any such change will be made below the documented
interfaces and will support earlier versions of the netCDF file
format.
<ul class="menu">
<li><a accesskey="1" href="#Classic-File-Parts">Classic File Parts</a>: The Classic and 64-bit Offset File
<li><a accesskey="2" href="#NetCDF_002d4-File-Parts">NetCDF-4 File Parts</a>: The NetCDF-4/HDF5 File
<li><a accesskey="3" href="#XDR-Layer">XDR Layer</a>: Classic Machine Interoperability
<li><a accesskey="4" href="#Large-File-Support">Large File Support</a>: Files that Exceed 2 GiBytes
<li><a accesskey="5" href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a>: Limitations on File and Data Size
<li><a accesskey="6" href="#Classic-Limitations">Classic Limitations</a>: Limitations on File and Data Size
<li><a accesskey="7" href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a>: Classic I/O Described
<li><a accesskey="8" href="#UNICOS-Optimization">UNICOS Optimization</a>: Some Cray Optimizations
<li><a accesskey="9" href="#Chunking">Chunking</a>: NetCDF-4/HDF5 Files Read/Write Chunks
<li><a href="#Parallel-Access">Parallel Access</a>: Parallel I/O with NetCDF-4
<li><a href="#Interoperability-with-HDF5">Interoperability with HDF5</a>: Using HDF5 with NetCDF-4
<li><a href="#DAP-Support">DAP Support</a>
</ul>
<div class="node">
<a name="Classic-File-Parts"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#NetCDF_002d4-File-Parts">NetCDF-4 File Parts</a>,
Previous: <a rel="previous" accesskey="p" href="#Structure">Structure</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.1 Parts of a NetCDF Classic File</h3>
<p><a name="index-classic-file-format-160"></a><a name="index-file-format_002c-classic-161"></a><a name="index-file-format_002c-64_002dbit-offset-162"></a><a name="index-g_t64_002dbit-offset-file-format-163"></a>
A netCDF classic or 64-bit offset dataset is stored as a single file
comprising two parts:
<p>a header, containing all the information about dimensions, attributes,
and variables except for the variable data;
<p>a data part, comprising fixed-size data, containing the data for
variables that don't have an unlimited dimension; and variable-size
data, containing the data for variables that have an unlimited
dimension.
<p>Both the header and data parts are represented in a
machine-independent form. This form is very similar to XDR (eXternal
Data Representation), extended to support efficient storage of arrays
of non-byte data.
<p>The header at the beginning of the file contains information about the
dimensions, variables, and attributes in the file, including their
names, types, and other characteristics. The information about each
variable includes the offset to the beginning of the variable's data
for fixed-size variables or the relative offset of other variables
within a record. The header also contains dimension lengths and
information needed to map multidimensional indices for each variable
to the appropriate offsets.
<p>By default, this header has little usable extra space; it is only as
large as it needs to be for the dimensions, variables, and attributes
(including all the attribute values) in the netCDF dataset, with a
small amount of extra space from rounding up to the nearest disk block
size. This has the advantage that netCDF files are compact, requiring
very little overhead to store the ancillary data that makes the
datasets self-describing. A disadvantage of this organization is that
any operation on a netCDF dataset that requires the header to grow
(or, less likely, to shrink), for example adding new dimensions or new
variables, requires moving the data by copying it. This expense is
incurred when the enddef function is called: nc_enddef in C
(see <a href="netcdf-c.html#nc_005fenddef">nc_enddef</a>), NF_ENDDEF in Fortran
(see <a href="netcdf-f77.html#NF_005fENDDEF">NF_ENDDEF</a>), after a previous
call to the redef function: nc_redef in C (see <a href="netcdf-c.html#nc_005fredef">nc_redef</a>) or NF_REDEF in Fortran (see <a href="netcdf-f77.html#NF_005fREDEF">NF_REDEF</a>). If you create all necessary dimensions,
variables, and attributes before writing data, and avoid later
additions and renamings of netCDF components that require more space
in the header part of the file, you avoid the cost associated with
later changing the header.
<p>Alternatively, you can use an alternative version of the enddef
function with two underbar characters instead of one to explicitly
reserve extra space in the file header when the file is created: in C
nc__enddef (see <a href="netcdf-c.html#nc_005f_005fenddef">nc__enddef</a>), in Fortran
NF__ENDDEF (see <a href="netcdf-f77.html#NF_005f_005fENDDEF">NF__ENDDEF</a>), after
a previous call to the redef function. This avoids the expense of
moving all the data later by reserving enough extra space in the
header to accommodate anticipated changes, such as the addition of new
attributes or the extension of existing string attributes to hold
longer strings.
<p>When the size of the header is changed, data in the file is moved, and
the location of data values in the file changes. If another program is
reading the netCDF dataset during redefinition, its view of the file
will be based on old, probably incorrect indexes. If netCDF datasets
are shared across redefinition, some mechanism external to the netCDF
library must be provided that prevents access by readers during
redefinition, and causes the readers to call nc_sync/NF_SYNC before
any subsequent access.
<p>The fixed-size data part that follows the header contains all the
variable data for variables that do not employ an unlimited
dimension. The data for each variable is stored contiguously in this
part of the file. If there is no unlimited dimension, this is the last
part of the netCDF file.
<p>The record-data part that follows the fixed-size data consists of a
variable number of fixed-size records, each of which contains data for
all the record variables. The record data for each variable is stored
contiguously in each record.
<p>The order in which the variable data appears in each data section is
the same as the order in which the variables were defined, in
increasing numerical order by netCDF variable ID. This knowledge can
sometimes be used to enhance data access performance, since the best
data access is currently achieved by reading or writing the data in
sequential order.
<p>For more detail see <a href="#File-Format">File Format</a>.
<div class="node">
<a name="NetCDF-4-File-Parts"></a>
<a name="NetCDF_002d4-File-Parts"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#XDR-Layer">XDR Layer</a>,
Previous: <a rel="previous" accesskey="p" href="#Classic-File-Parts">Classic File Parts</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.2 Parts of a NetCDF-4 HDF5 File</h3>
<p><a name="index-netcdf_002d4-file-format-164"></a><a name="index-file-format_002c-netcdf_002d4-165"></a>
NetCDF-4 files are created with the HDF5 library, and are HDF5 files
in every way, and can be read without the netCDF-4 interface. (Note
that modifying these files with HDF5 will almost certainly make them
unreadable to netCDF-4.)
<p>Groups in a netCDF-4 file correspond with HDF5 groups (although the
netCDF-4 tree is rooted not at the HDF5 root, but in group
“_netCDF”).
<p>Variables in netCDF coo-respond with identically named datasets in
HDF5. Attributes similarly.
<p>Since there is more metadata in a netCDF file than an HDF5 file,
special datasets are used to hold netCDF metadata.
<p>The _netcdf_dim_info dataset (in group _netCDF) contains the ids of
the shared dimensions, and their length (0 for unlimited dimensions).
<p>The _netcdf_var_info dataset (in group _netCDF) holds an array of
compound types which contain the variable ID, and the associated
dimension ids.
<div class="node">
<a name="XDR-Layer"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Large-File-Support">Large File Support</a>,
Previous: <a rel="previous" accesskey="p" href="#NetCDF_002d4-File-Parts">NetCDF-4 File Parts</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.3 The Extended XDR Layer</h3>
<p><a name="index-XDR-layer-166"></a>
XDR is a standard for describing and encoding data and a library of
functions for external data representation, allowing programmers to
encode data structures in a machine-independent way. Classic or 64-bit
offset netCDF employs an extended form of XDR for representing
information in the header part and the data parts. This extended XDR
is used to write portable data that can be read on any other machine
for which the library has been implemented.
<p>The cost of using a canonical external representation for data varies
according to the type of data and whether the external form is the
same as the machine's native form for that type.
<p>For some data types on some machines, the time required to convert
data to and from external form can be significant. The worst case is
reading or writing large arrays of floating-point data on a machine
that does not use IEEE floating-point as its native representation.
<div class="node">
<a name="Large-File-Support"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a>,
Previous: <a rel="previous" accesskey="p" href="#XDR-Layer">XDR Layer</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.4 Large File Support</h3>
<p><a name="index-large-file-support-167"></a><a name="index-g_t64_002dbit-offset-format_002c-introduction-168"></a><a name="index-classic-format_002c-introduction-169"></a><a name="index-LFS-170"></a><a name="index-CDF1-171"></a><a name="index-CDF2-172"></a>
It is possible to write netCDF files that exceed 2 GiByte on platforms
that have "Large File Support" (LFS). Such files are
platform-independent to other LFS platforms, but trying to open them
on an older platform without LFS yields a "file too large" error.
<p>Without LFS, no files larger than 2 GiBytes can be used. The rest of
this section applies only to systems with LFS.
<p>The original binary format of netCDF (classic format) limits the size
of data files by using a signed 32-bit offset within its internal
structure. Files larger than 2 GiB can be created, with certain
limitations. See <a href="#Classic-Limitations">Classic Limitations</a>.
<p>In version 3.6.0, netCDF included its first-ever variant of the underlying
data format. The new format introduced in 3.6.0 uses 64-bit file offsets
in place of the 32-bit offsets. There are still some limits on the sizes
of variables, but the new format can create very large
datasets. See <a href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a>.
<p>NetCDF-4 variables and files can be any size supported by the
underlying file system.
<p>The original data format (netCDF classic), is still the default data
format for the netCDF library.
<p>The following table summarizes the size limitations of various
permutations of LFS support, netCDF version, and data format. Note
that 1 GiB = 2^30 bytes or about 1.07e+9 bytes, 1 EiB = 2^60 bytes or
about 1.15e+18 bytes. Note also that all sizes
are really 4 bytes less than the ones given below. For example the
maximum size of a fixed variable in netCDF 3.6 classic format is
really 2 GiB - 4 bytes.
<p><table summary="">
<tr align="left"><td valign="top" width="25%">Limit </td><td valign="top" width="15%">No LFS </td><td valign="top" width="15%">v3.5 </td><td valign="top" width="15%">v3.6/classic </td><td valign="top" width="15%">v3.6/64-bit
offset </td><td valign="top" width="15%">v4.0/netCDF-4
<p><br></td></tr><tr align="left"><td valign="top" width="25%">Max File Size </td><td valign="top" width="15%">2 GiB </td><td valign="top" width="15%">8 EiB </td><td valign="top" width="15%">8 EiB </td><td valign="top" width="15%">8 EiB </td><td valign="top" width="15%">??
<p><br></td></tr><tr align="left"><td valign="top" width="25%">Max Number of Fixed Vars > 2 GiB </td><td valign="top" width="15%">0 </td><td valign="top" width="15%">1 (last) </td><td valign="top" width="15%">1
(last) </td><td valign="top" width="15%">2^32 </td><td valign="top" width="15%">??
<p><br></td></tr><tr align="left"><td valign="top" width="25%">Max Record Vars w/ Rec Size > 2 GiB </td><td valign="top" width="15%">0 </td><td valign="top" width="15%">1 (last) </td><td valign="top" width="15%">1
(last) </td><td valign="top" width="15%">2^32 </td><td valign="top" width="15%">??
<p><br></td></tr><tr align="left"><td valign="top" width="25%">Max Size of Fixed/Record Size of Record Var </td><td valign="top" width="15%">2 GiB </td><td valign="top" width="15%">2
GiB </td><td valign="top" width="15%">2 GiB </td><td valign="top" width="15%">4 GiB </td><td valign="top" width="15%">??
<p><br></td></tr><tr align="left"><td valign="top" width="25%">Max Record Size </td><td valign="top" width="15%">2 GiB/nrecs </td><td valign="top" width="15%">4 GiB </td><td valign="top" width="15%">8 EiB/nrecs
</td><td valign="top" width="15%">8 EiB/nrecs </td><td valign="top" width="15%">??
<br></td></tr></table>
<p>For more information about the different file formats of netCDF
See <a href="#Which-Format">Which Format</a>.
<div class="node">
<a name="g_t64-bit-Offset-Limitations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Classic-Limitations">Classic Limitations</a>,
Previous: <a rel="previous" accesskey="p" href="#Large-File-Support">Large File Support</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.5 NetCDF 64-bit Offset Format Limitations</h3>
<p><a name="index-g_t64_002dbit-offset-format_002c-limitations-173"></a>
Although the 64-bit offset format allows the creation of much larger
netCDF files than was possible with the classic format, there are
still some restrictions on the size of variables.
<p>It's important to note that without Large File Support (LFS) in the
operating system, it's impossible to create any file larger than 2
GiBytes. Assuming an operating system with LFS, the following
restrictions apply to the netCDF 64-bit offset format.
<p>No fixed-size variable can require more than 2^32 - 4 bytes (i.e. 4GiB
- 4 bytes, or 4,294,967,292 bytes) of storage for its data, unless it is the
last fixed-size variable and there are no record variables. When there
are no record variables, the last fixed-size variable can be any size
supported by the file system, e.g. terabytes.
<p>A 64-bit offset format netCDF file can have up to 2^32 - 1 fixed sized
variables, each under 4GiB in size. If there are no record variables
in the file the last fixed variable can be any size.
<p>No record variable can require more than 2^32 - 4 bytes of storage for
each record's worth of data, unless it is the last record variable.
A 64-bit offset format netCDF file can have up to 2^32 - 1 records, of
up to 2^32 - 1 variables, as long as the size of one record's data for
each record variable except the last is less than 4 GiB - 4.
<p>Note also that all netCDF variables and records are padded to 4 byte
boundaries.
<div class="node">
<a name="Classic-Limitations"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a>,
Previous: <a rel="previous" accesskey="p" href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.6 NetCDF Classic Format Limitations</h3>
<p><a name="index-classic-format_002c-limitations-174"></a>
There are important constraints on the structure of large netCDF
classic files that result from the 32-bit relative offsets that are
part of the netCDF classic file format:
<p>The maximum size of a record in the classic format in versions 3.5.1
and earlier is 2^32 - 4 bytes, or about 4 GiB. In versions 3.6.0 and
later, there is no such restriction on total record size for the classic
format or 64-bit offset format.
<p>If you don't use the unlimited dimension, only one variable can exceed
2 GiB in size, but it can be as large as the underlying file system
permits. It must be the last variable in the dataset, and the offset
to the beginning of this variable must be less than about 2
GiB.
<p>The limit is really 2^31 - 4. If you were to specify a variable
size of 2^31 -3, for example, it would be rounded up to the nearest
multiple of 4 bytes, which would be 2^31, which is larger than the
largest signed integer, 2^31 - 1.
<p>For example, the structure of the data might be something like:
<pre class="example"> netcdf bigfile1 {
dimensions:
x=2000;
y=5000;
z=10000;
variables:
double x(x); // coordinate variables
double y(y);
double z(z);
double var(x, y, z); // 800 Gbytes
}
</pre>
<p>If you use the unlimited dimension, record variables may
exceed 2 GiB in size, as long as the offset of the start of each
record variable within a record is less than 2 GiB - 4. For
example, the structure of the data in a 2.4 Tbyte file might be
something like:
<pre class="example"> netcdf bigfile2 {
dimensions:
x=2000;
y=5000;
z=10;
t=UNLIMITED; // 1000 records, for example
variables:
double x(x); // coordinate variables
double y(y);
double z(z);
double t(t);
// 3 record variables, 2400000000 bytes per record
double var1(t, x, y, z);
double var2(t, x, y, z);
double var3(t, x, y, z);
}
</pre>
<div class="node">
<a name="The-NetCDF-3-IO-Layer"></a>
<a name="The-NetCDF_002d3-IO-Layer"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#UNICOS-Optimization">UNICOS Optimization</a>,
Previous: <a rel="previous" accesskey="p" href="#Classic-Limitations">Classic Limitations</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.7 The NetCDF-3 I/O Layer</h3>
<p><a name="index-I_002fO-layer-175"></a><a name="index-access-shared-dataset-I_002fO-176"></a><a name="index-shared-dataset-I_002fO-access-177"></a><a name="index-buffers_002c-I_002fO-178"></a><a name="index-NC_005fSHARE-179"></a><a name="index-NF_005fSHARE-180"></a><a name="index-share-flag-181"></a><a name="index-NF_005fSYNC-182"></a><a name="index-nc_005fsync-183"></a><a name="index-fflush-184"></a><a name="index-flushing-buffers-185"></a><a name="index-g_t_005fIONBF-flag-186"></a>
<p>The following discussion applies only to netCDF classic and 64-bit
offset files. For netCDF-4 files, the I/O layer is the HDF5 library.
<p>For netCDF classic and 64-bit offset files, an I/O layer implemented
much like the C standard I/O (stdio) library is used by netCDF to read
and write portable data to netCDF datasets. Hence an understanding of
the standard I/O library provides answers to many questions about
multiple processes accessing data concurrently, the use of I/O
buffers, and the costs of opening and closing netCDF files. In
particular, it is possible to have one process writing a netCDF
dataset while other processes read it.
<p>Data reads and writes are no more atomic than calls to stdio fread()
and fwrite(). An nc_sync/NF_SYNC call is analogous to the fflush call
in the C standard I/O library, writing unwritten buffered data so
other processes can read it; The C function nc_sync (see <a href="netcdf-c.html#nc_005fsync">nc_sync</a>), or the Fortran function NF_SYNC
(see <a href="netcdf-f77.html#NF_005fSYNC">NF_SYNC</a>), also brings header
changes up-to-date (for example, changes to attribute values). Opening
the file with the NC_SHARE (in C) or the NF_SHARE (in Fortran) is
analogous to setting a stdio stream to be unbuffered with the _IONBF
flag to setvbuf.
<p>As in the stdio library, flushes are also performed when "seeks" occur
to a different area of the file. Hence the order of read and write
operations can influence I/O performance significantly. Reading data
in the same order in which it was written within each record will
minimize buffer flushes.
<p>You should not expect netCDF classic or 64-bit offset format data
access to work with multiple writers having the same file open for
writing simultaneously.
<p>It is possible to tune an implementation of netCDF for some platforms
by replacing the I/O layer with a different platform-specific I/O
layer. This may change the similarities between netCDF and standard
I/O, and hence characteristics related to data sharing, buffering, and
the cost of I/O operations.
<p>The distributed netCDF implementation is meant to be
portable. Platform-specific ports that further optimize the
implementation for better I/O performance are practical in some cases.
<div class="node">
<a name="UNICOS-Optimization"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Chunking">Chunking</a>,
Previous: <a rel="previous" accesskey="p" href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.8 UNICOS Optimization</h3>
<p><a name="index-UNICOS-187"></a><a name="index-NETCDF_005fFFIOSPEC-188"></a>
It should be noted that no UNICOS platform has been available at
Unidata for netCDF testing for some years. The following information
is left here for historical reasons.
<p>As was mentioned in the previous section, it is possible to replace
the I/O layer in order to increase I/O efficiency. This has been done
for UNICOS, the operating system of Cray computers similar to the Cray
Y-MP.
<p>Additionally, it is possible for the user to obtain even greater I/O
efficiency through appropriate setting of the NETCDF_FFIOSPEC
environment variable. This variable specifies the Flexible File I/O
buffers for netCDF I/O when executing under the UNICOS operating
system (the variable is ignored on other operating systems). An
appropriate specification can greatly increase the efficiency of
netCDF I/O–to the extent that it can surpass default FORTRAN binary
I/O. Possible specifications include the following:
<dl>
<dt><code>bufa:336:2</code><dd>2, asynchronous, I/O buffers of 336 blocks each (i.e., double
buffering). This is the default specification and favors sequential
I/O.
<br><dt><code>cache:256:8</code><dd>8, synchronous, 256-block buffers. This favors larger random accesses.
<br><dt><code>cachea:256:8:2</code><dd>8, asynchronous, 256-block buffers with a 2 block
read-ahead/write-behind factor. This also favors larger random
accesses.
<br><dt><code>cachea:8:256:0</code><dd>256, asynchronous, 8-block buffers without
read-ahead/write-behind. This favors many smaller pages without
read-ahead for more random accesses as typified by slicing netCDF
arrays.
<br><dt><code>cache:8:256,cachea.sds:1024:4:1</code><dd>This is a two layer cache. The first (synchronous) layer is composed
of 256 8-block buffers in memory, the second (asynchronous) layer is
composed of 4 1024-block buffers on the SSD. This scheme works well
when accesses proceed through the dataset in random waves roughly
2x1024-blocks wide.
</dl>
<p>All of the options/configurations supported in CRI's FFIO library are
available through this mechanism. We recommend that you look at CRI's
I/O optimization guide for information on using FFIO to its
fullest. This mechanism is also compatible with CRI's EIE I/O library.
<p>Tuning the NETCDF_FFIOSPEC variable to a program's I/O pattern can
dramatically improve performance. Speedups of two orders of magnitude
have been seen.
<div class="node">
<a name="Chunking"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Parallel-Access">Parallel Access</a>,
Previous: <a rel="previous" accesskey="p" href="#UNICOS-Optimization">UNICOS Optimization</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.9 Improving Performance With Chunking</h3>
<p><a name="index-chunking-189"></a><a name="index-deflation-190"></a><a name="index-shuffle-filter-191"></a>
NetCDF may use HDF5 as a storage format (when files are created with
NC_NETCDF4/NF_NETCDF4/NF90_NETCDF4). For those files, the writer may
control the size of the chunks of data that are written to the HDF5,
along with other aspects of the data, such as endianness, a shuffle
and checksum filter, on-the-fly compression/decompression of the data.
<p>The chunk sizes of a variable are specified after the variable is
defined, but before any data are written. If chunk sizes are not
specified for a variable, default chunk sizes are chosen by the
library.
<p>The selection of good chunk sizes is a complex topic, and one that data
writers must grapple with. Once the data are written, there is no way
to change the chunk sizes except to copy the data to a new variable.
<p>Chunks should match read access patterns; the best chunk performance
can be achieved by writing chunks which exactly match the size of the
subsets of data that will be read. When multiple read access patterns
are to be used, there is no one way to best set the chunk sizes.
<p>Some good discussion of chunking can be found in the HDF5-EOS XIII
workshop presentation (<a href="http://hdfeos.org/workshops/ws13/presentations/day1/HDF5-EOSXIII-Advanced-Chunking.ppt">http://hdfeos.org/workshops/ws13/presentations/day1/HDF5-EOSXIII-Advanced-Chunking.ppt</a>).
<ul class="menu">
<li><a accesskey="1" href="#Chunk-Cache">Chunk Cache</a>
<li><a accesskey="2" href="#Default-Chunking">Default Chunking</a>
<li><a accesskey="3" href="#Default-Chunking-4_005f0_005f1">Default Chunking 4_0_1</a>
<li><a accesskey="4" href="#Parallel-Chunking">Parallel Chunking</a>
<li><a accesskey="5" href="#bm_005ffile">bm_file</a>
</ul>
<div class="node">
<a name="Chunk-Cache"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Default-Chunking">Default Chunking</a>,
Previous: <a rel="previous" accesskey="p" href="#Chunking">Chunking</a>,
Up: <a rel="up" accesskey="u" href="#Chunking">Chunking</a>
</div>
<h4 class="subsection">4.9.1 The Chunk Cache</h4>
<p>When data are first read or written to a netCDF-4/HDF5 variable, the
HDF5 library opens a cache for that variable. The default size of that
cache (settable with the –with-chunk-cache-size at netCDF build
time).
<p>For good performance your chunk cache must be larger than one chunk of
your data - preferably that it be large enough to hold multiple chunks
of data.
<p>In addition, when a file is opened (or a variable created in an open
file), the netCDF-4 library checks to make sure the default chunk
cache size will work for that variable. The cache will be large enough
to hold N chunks, up to a maximum size of M bytes. (Both N and M are
settable at configure time with the –with-default-chunks-in-cache and
the –with-max-default-cache-size options to the configure
script. Currently they are set to 10 and 64 MB.)
<p>To change the default chunk cache size, use the set_chunk_cache
function before opening the file. C programmers see
<a href="netcdf-c.html#nc_005fset_005fchunk_005fcache">nc_set_chunk_cache</a>, Fortran 77
programmers see <a href="netcdf-f77.html#NF_005fSET_005fCHUNK_005fCACHE">NF_SET_CHUNK_CACHE</a>). Fortran 90 programmers use the optional cache_size,
cache_nelems, and cache_preemption parameters to nf90_open/nf90_create
to change the chunk size before opening the file.
<p>To change the per-variable cache size, use the set_var_chunk_cache
function at any time on an open file. C programmers see
<a href="netcdf-c.html#nc_005fset_005fvar_005fchunk_005fcache">nc_set_var_chunk_cache</a>, Fortran 77
programmers see <a href="netcdf-f77.html#NF_005fSET_005fVAR_005fCHUNK_005fCACHE">NF_SET_VAR_CHUNK_CACHE</a>, <!-- Fortran 90 programmers see -->
<!-- @ref{NF90_SET_VAR_CHUNK_CACHE,,, netcdf-f90, @value{f90-man}} -->
).
<div class="node">
<a name="Default-Chunking"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Default-Chunking-4_005f0_005f1">Default Chunking 4_0_1</a>,
Previous: <a rel="previous" accesskey="p" href="#Chunk-Cache">Chunk Cache</a>,
Up: <a rel="up" accesskey="u" href="#Chunking">Chunking</a>
</div>
<h4 class="subsection">4.9.2 The Default Chunking Scheme in version 4.1 (and 4.1.1)</h4>
<p>When the data writer does not specify chunk sizes for variable, the
netCDF library has to come up with some default values.
<p>The C code below determines the default chunks sizes.
<p>For unlimited dimensions, a chunk size of one is always used. Users
are advised to set chunk sizes for large data sets with one or more
unlimited dimensions, since a chunk size of one is quite inefficient.
<p>For fixed dimensions, the algorithm below finds a size for the chunk
sizes in each dimension which results in chunks of DEFAULT_CHUNK_SIZE
(which can be modified in the netCDF configure script).
<pre class="example"> /* Unlimited dim always gets chunksize of 1. */
if (dim->unlimited)
chunksize[d] = 1;
else
chunksize[d] = pow((double)DEFAULT_CHUNK_SIZE/type_size,
1/(double)(var->ndims - unlimdim));
</pre>
<div class="node">
<a name="Default-Chunking-4_0_1"></a>
<a name="Default-Chunking-4_005f0_005f1"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Parallel-Chunking">Parallel Chunking</a>,
Previous: <a rel="previous" accesskey="p" href="#Default-Chunking">Default Chunking</a>,
Up: <a rel="up" accesskey="u" href="#Chunking">Chunking</a>
</div>
<h4 class="subsection">4.9.3 The Default Chunking Scheme in version 4.0.1</h4>
<p>In the 4.0.1 release, the default chunk sizes were chosen with a
different scheme, as demonstrated in the following C code:
<pre class="example"> /* These are limits for default chunk sizes. (2^16 and 2^20). */
#define NC_LEN_TOO_BIG 65536
#define NC_LEN_WAY_TOO_BIG 1048576
/* Now we must determine the default chunksize. */
if (dim->unlimited)
chunksize[d] = 1;
else if (dim->len < NC_LEN_TOO_BIG)
chunksize[d] = dim->len;
else if (dim->len > NC_LEN_TOO_BIG && dim->len <= NC_LEN_WAY_TOO_BIG)
chunksize[d] = dim->len / 2 + 1;
else
chunksize[d] = NC_LEN_WAY_TOO_BIG;
</pre>
<p>As can be seen from this code, the default chunksize is 1 for
unlimited dimensions, otherwise it is the full length of the dimension
(if it is under NC_LEN_TOO_BIG), or half the size of the dimension (if
it is between NC_LEN_TOO_BIG and NC_LEN_WAY_TOO_BIG), and, if it's
longer than NC_LEN_WAY_TOO_BIG, it is set to NC_LEN_WAY_TOO_BIG.
<p>Our experience is that these defaults work well for small data sets,
but once variable size reaches the GB range, the user is better off
determining chunk sizes for their read access patterns.
<p>In particular, the idea of using 1 for the chunksize of an unlimited
dimension works well if the data are being read a record at a
time. Any other read access patterns will result in slower
performance.
<div class="node">
<a name="Parallel-Chunking"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#bm_005ffile">bm_file</a>,
Previous: <a rel="previous" accesskey="p" href="#Default-Chunking-4_005f0_005f1">Default Chunking 4_0_1</a>,
Up: <a rel="up" accesskey="u" href="#Chunking">Chunking</a>
</div>
<h4 class="subsection">4.9.4 Chunking and Parallel I/O</h4>
<p>When files are opened for read/write parallel I/O access, the chunk
cache is not used. Therefore it is important to open parallel files
with read only access when possible, to achieve the best performance.
<div class="node">
<a name="bm_file"></a>
<a name="bm_005ffile"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Parallel-Chunking">Parallel Chunking</a>,
Up: <a rel="up" accesskey="u" href="#Chunking">Chunking</a>
</div>
<h4 class="subsection">4.9.5 A Utility to Help Benchmark Results: bm_file</h4>
<p>The bm_file utility may be used to copy files, from one netCDF format to
another, changing chunking, filter, parallel I/O, and other
parameters. This program may be used for benchmarking netCDF
performance for user data files with a range of choices, allowing data
producers to pick settings that best serve their user base.
<p>NetCDF must have been configured with –enable-benchmarks at build
time for the bm_file program to be built. When built with
–enable-benchmarks, netCDF will include tests (run with “make
check”) that will run the bm_file program on sample data files.
<p>Since data files and their access patterns vary from case to case,
these benchmark tests are intended to suggest further use of the
bm_file program for users.
<p>Here's an example of a call to bm_file:
<pre class="example"> ./bm_file -d -f 3 -o tst_elena_out.nc -c 0:-1:0:1024:256:256 tst_elena_int_3D.nc
</pre>
<p>Generally a range of settings must be tested. This is best done with a
shell script, which calls bf_file repeatedly, to create output like
this:
<pre class="example"> *** Running benchmarking program bm_file for simple shorts test files, 1D to 6D...
input format, output_format, input size, output size, meta read time, meta write time, data read time, data write time, enddianness, metadata reread time, data reread time, read rate, write rate, reread rate, deflate, shuffle, chunksize[0], chunksize[1], chunksize[2], chunksize[3]
1, 4, 200092, 207283, 1613, 1054, 409, 312, 0, 1208, 1551, 488.998, 641.026, 128.949, 0, 0, 100000, 0, 0, 0
1, 4, 199824, 208093, 1545, 1293, 397, 284, 0, 1382, 1563, 503.053, 703.211, 127.775, 0, 0, 316, 316, 0, 0
1, 4, 194804, 204260, 1562, 1611, 390, 10704, 0, 1627, 2578, 499.159, 18.1868, 75.5128, 0, 0, 46, 46, 46, 0
1, 4, 167196, 177744, 1531, 1888, 330, 265, 0, 12888, 1301, 506.188, 630.347, 128.395, 0, 0, 17, 17, 17, 17
1, 4, 200172, 211821, 1509, 2065, 422, 308, 0, 1979, 1550, 473.934, 649.351, 129.032, 0, 0, 10, 10, 10, 10
1, 4, 93504, 106272, 1496, 2467, 191, 214, 0, 32208, 809, 488.544, 436.037, 115.342, 0, 0, 6, 6, 6, 6
*** SUCCESS!!!
</pre>
<p>Such tables are suitable for import into spreadsheets, for easy
graphing of results.
<p>Several test scripts are run during the “make check” of the netCDF
build, in the nc_test4 directory. The following example may be found
in nc_test4/run_bm_elena.sh.
<pre class="example"> #!/bin/sh
# This shell runs some benchmarks that Elena ran as described here:
# http://hdfeos.org/workshops/ws06/presentations/Pourmal/HDF5_IO_Perf.pdf
# $Id: netcdf.texi,v 1.82 2010/05/15 20:43:13 dmh Exp $
set -e
echo ""
echo "*** Testing the benchmarking program bm_file for simple float file, no compression..."
./bm_file -h -d -f 3 -o tst_elena_out.nc -c 0:-1:0:1024:16:256 tst_elena_int_3D.nc
./bm_file -d -f 3 -o tst_elena_out.nc -c 0:-1:0:1024:256:256 tst_elena_int_3D.nc
./bm_file -d -f 3 -o tst_elena_out.nc -c 0:-1:0:512:64:256 tst_elena_int_3D.nc
./bm_file -d -f 3 -o tst_elena_out.nc -c 0:-1:0:512:256:256 tst_elena_int_3D.nc
./bm_file -d -f 3 -o tst_elena_out.nc -c 0:-1:0:256:64:256 tst_elena_int_3D.nc
./bm_file -d -f 3 -o tst_elena_out.nc -c 0:-1:0:256:256:256 tst_elena_int_3D.nc
echo '*** SUCCESS!!!'
exit 0
</pre>
<p>The reading that bm_file does can be tailored to match the expected
access pattern.
<p>The bm_file program is controlled with command line options.
<pre class="example"> ./bm_file
bm_file -v [-s N]|[-t V:S:S:S -u V:C:C:C -r V:I:I:I] -o file_out -f N -h -c V:C:C,V:C:C:C -d -m -p -i -e 1|2 file
[-v] Verbose
[-o file] Output file name
[-f N] Output format (1 - classic, 2 - 64-bit offset, 3 - netCDF-4, 4 - netCDF4/CLASSIC)
[-h] Print output header
[-c V:Z:S:C:C:C[,V:Z:S:C:C:C, etc.]] Deflate, shuffle, and chunking parameters for vars
[-t V:S:S:S[,V:S:S:S, etc.]] Starts for reads/writes
[-u V:C:C:C[,V:C:C:C, etc.]] Counts for reads/writes
[-r V:I:I:I[,V:I:I:I, etc.]] Incs for reads/writes
[-d] Doublecheck output by rereading each value
[-m] Do compare of each data value during doublecheck (slow for large files!)
[-p] Use parallel I/O
[-s N] Denom of fraction of slowest varying dimension read.
[-i] Use MPIIO (only relevant for parallel builds).
[-e 1|2] Set the endianness of output (1=little 2=big).
file Name of netCDF file
</pre>
<div class="node">
<a name="Parallel-Access"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Interoperability-with-HDF5">Interoperability with HDF5</a>,
Previous: <a rel="previous" accesskey="p" href="#Chunking">Chunking</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.10 Parallel Access with NetCDF-4</h3>
<p><a name="index-parallel-access-192"></a>
Use the special parallel open (or create) calls to open (or create) a
file, and then to use parallel I/O to read or write that file. C
programmers see <a href="netcdf-c.html#nc_005fopen_005fpar">nc_open_par</a>, Fortran 77
programmers see <a href="netcdf-f77.html#NF_005fOPEN_005fPAR">NF_OPEN_PAR</a>). Fortran 90 programmers use the optional comm and
info parameters to nf90_open/nf90_create to initiate parallel access.
<p>Note that the chunk cache is turned off if a file is opened for
parallel I/O in read/write mode. Open the file in read-only mode to
engage the chunk cache.
<p>NetCDF uses the HDF5 parallel programming model for parallel I/O
with netCDF-4/HDF5 files. The HDF5 tutorial
(<a href="http://hdfgroup.org/HDF5//HDF5/Tutor">http://hdfgroup.org/HDF5//HDF5/Tutor</a>) is a good reference.
<p>For classic and 64-bit offset files, netCDF uses the parallel-netcdf
(formerly pnetcdf) library from Argonne National Labs/Nortwestern
University. For parallel access of classic and 64-bit offset files,
netCDF must be configured with the –with-pnetcdf option at build
time. See the parallel-netcdf site for more information
(<a href="http://www.mcs.anl.gov/parallel-netcdf">http://www.mcs.anl.gov/parallel-netcdf</a>).
<div class="node">
<a name="Interoperability-with-HDF5"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#DAP-Support">DAP Support</a>,
Previous: <a rel="previous" accesskey="p" href="#Parallel-Access">Parallel Access</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.11 Interoperability with HDF5</h3>
<p><a name="index-interoperability-with-HDF5-193"></a>
To create HDF5 files that can be read by netCDF-4, use HDF5 1.8, which
is not yet released. However most (but not all) of the necessary
features can be found in their latest development snapshot.
<p>HDF5 has some features that will not be supported by netCDF-4, and
will cause problems for interoperability:
<ul>
<li>HDF5 allows a Group to be both an ancestor and a descendant of
another Group, creating cycles in the subgroup graph. HDF5 also
permits multiple parents for a Group. In the netCDF-4 data model,
Groups form a tree with no cycles, so each Group (except the top-level
unnamed Group) has a unique parent.
<li>HDF5 supports "references" which are like pointers to objects and data
regions within a file. The netCDF-4 data model omits references.
<li>HDF5 supports some primitive types that are not included in the
netCDF-4 data model, including H5T_TIME and H5T_BITFIELD.
<li>HDF5 supports multiple names for data objects like Datasets (netCDF-4
variables) with no distinguished name. The netCDF-4 data model
requires that each variable, attribute, dimension, and group have a
single distinguished name.
<li>HDF5 (like netCDF) supports scalar attributes, but netCDF-4 cannot
read scalar HDF5 attributes (unless it is a string attribute). This
limitation will be removed in a future release of netCDF.
</ul>
<p>These are fairly easy requirements to meet, but there is one relating
to shared dimensions which is a little more challenging. Every HDF5
dataset must have a dimension scale attached to each dimension.
<p>Dimension scales are a new feature for HF 1.8, which allow
specification of shared dimensions.
<p>(In the future netCDF-4 will be able to deal with HDF5 files which do
not have dimension scales. However, this is not expected before netCDF
4.1.)
<p>Finally, there is one feature which is missing from all current HDF5
releases, but which will be in 1.8 - the ability to track object
creation order. As you may know, netCDF keeps track of the creation
order of variables, dimensions, etc. HDF5 (currently) does not.
<p>There is a bit of a hack in place in netCDF-4 files for this, but that
hack will go away when HDF5 1.8 comes out.
<p>Without creation order, the files will still be readable to netCDF-4,
it's just that netCDF-4 will number the variables in alphabetical,
rather than creation, order.
<p>Interoperability is a complex task, and all of this is in the alpha
release stage. It is tested in libsrc4/tst_interops.c, which contains
some examples of how to create HDF5 files, modify them in netCDF-4,
and then verify them in HDF5. (And vice versa).
<div class="node">
<a name="DAP-Support"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Interoperability-with-HDF5">Interoperability with HDF5</a>,
Up: <a rel="up" accesskey="u" href="#Structure">Structure</a>
</div>
<h3 class="section">4.12 DAP Support</h3>
<p><a name="index-DAP-support-194"></a>
Beginning with netCDF version 4.1,
optional support is provided for accessing data through
OPeNDAP servers using the DAP protocol.
<p>DAP support is automatically enabled if a usable curl library can be
located using the curl-config program or by the –with-curl-config flag.
It can forcibly be enabled or disabled using the –enable-dap
flag or the –disable-dap flag, respectively. If enabled,
then DAP support requires access to the curl library.
Refer to the installation manual for details
<a href="netcdf-install.html#Top">The NetCDF Installation and Porting Guide</a>.
<p>DAP uses a data model that is different from that supported by netCDF,
either classic or enhanced. Generically, the DAP data model
is encoded textually in a <acronym title="Dataset Descriptor Structure">DDS</acronym> (Dataset Descriptor Structure).
There is a second data model for DAP attributes, which
is encoded textually in a <acronym title="Dataset Attribute Structure">DAS</acronym> (Dataset Attribute Structure).
For detailed information about the DAP DDS and DAS, refer to
the OPeNDAP web site <a href="http://opendap.org">http://opendap.org</a>.
<h4 class="subsection">4.12.1 Accessing OPeNDAP Data</h4>
<p>In order to access an OPeNDAP data source through the netCDF
API, the file name normally used is replaced with a
URL with a specific format.
The URL is composed of four parts.
<ol type=1 start=1>
<li>Client parameters - these are prefixed to the front of the
URL and are of the general form [<name>] or [<name>=value].
Examples include [cache=1] and [netcdf3].
<li>URL - this is a standard form URL such as
http://test.opendap.org:8080/dods/dts/test.01
<li>Constraints - these are suffixed to the URL and
take the form “?<projections>&selections”.
The meaning of the terms projection and selection is somewhat complicated;
and the OPeNDAP web site,
<a href="http://www.opendap.or">http://www.opendap.or</a>,
should be consulted.
The interaction of DAP constraints with netCDF is complex and
at the moment requires an understanding of how DAP is translated
to netCDF.
</ol>
<p>It is possible to see what the translation does to a particular DAP
data source in either of two ways.
First, one can examine the DDS source through a web browser
and then examine the translation using the ncdump -h command
to see the netCDF Classic translation.
The ncdump output will actually be the union of the
DDS with the DAS, so to see the complete translation, it is necessary
to view both.
<p>For example, if a web browser is given the following,
the first URL will return the DDS for the specified dataset,
and the second URL will return the DAS for the specified dataset.
<pre class="example"> http://test.opendap.org:8080/dods/dts/test.01.dds
http://test.opendap.org:8080/dods/dts/test.01.das
</pre>
<p>Then by using the following ncdump command, it is possible to see the
equivalent netCDF Classic translation.
<pre class="example"> ncdump -h http://test.opendap.org:8080/dods/dts/test.01
</pre>
<p>The DDS output from the web server should look like this.
<pre class="verbatim">Dataset {
Byte b;
Int32 i32;
UInt32 ui32;
Int16 i16;
UInt16 ui16;
Float32 f32;
Float64 f64;
String s;
Url u;
} SimpleTypes;
</pre>
<p>The DAS output from the web server should look like this.
<pre class="verbatim">Attributes {
Facility {
String PrincipleInvestigator ``Mark Abbott'', ``Ph.D'';
String DataCenter ``COAS Environmental Computer Facility'';
String DrifterType ``MetOcean WOCE/OCM'';
}
b {
String Description ``A test byte'';
String units ``unknown'';
}
i32 {
String Description ``A 32 bit test server int'';
String units ``unknown'';
}
}
</pre>
<p>The output from ncdump should look like this.
<pre class="verbatim">netcdf test {
dimensions:
stringdim64 = 64 ;
variables:
byte b ;
b:Description = "A test byte" ;
b:units = "unknown" ;
int i32 ;
i32:Description = "A 32 bit test server int" ;
i32:units = "unknown" ;
int ui32 ;
short i16 ;
short ui16 ;
float f32 ;
double f64 ;
char s(stringdim64) ;
char u(stringdim64) ;
}
</pre>
Note that the fields of type String and type URL
have suddenly acquired a dimension. This is because strings
are translated to arrays of char, which requires adding
an extra dimension. The size of the dimension
is determined in a variety of ways and can be specified.
It defaults to 64 and when read, the underlying string is
either padded or truncated to that length.
<p>Also note that the <code>Facility</code> attributes do not appear
in the translation because they are neither global nor
associated with a variable in the DDS.
<p>Alternately, one can get the text of the DDS as a global attribute
by using the client parameters
mechanism . In this case, the parameter “[show=dds]”
can be prefixed to the URL and the data retrieved using
the following command
<pre class="example"> ncdump -h [show=dds]http://test.opendap.org:8080/dods/dts/test.01.dds
</pre>
<p>The ncdump -h command will then show both the translation and the original
DDS. In the above example, the DDS would appear as the global
attribute “_DDS” as follows.
<pre class="verbatim">netcdf test {
...
variables:
:_DDS = "Dataset { Byte b; Int32 i32; UInt32 ui32; Int16 i16;
UInt16 ui16; Float32 f32; Float64 f64;
Strings; Url u; } SimpleTypes;"
byte b ;
...
}
</pre>
<h4 class="subsection">4.12.2 DAP to NetCDF Translation Rules</h4>
<p>Two translations are currently available.
<ul>
<li>DAP 2 Protocol to netCDF-3
<li>DAP 2 Protocol to netCDF-4
</ul>
<h5 class="subsubsection">4.12.2.1 netCDF-3 Translation Rules</h5>
<p>The current default translation code
translates the OPeNDAP protocol to netCDF-3 (classic).
This netCDF-3 translation converts an OPeNDAP
DAP protocol version 2 DDS to netCDF-3 and is designed to mimic
as closely as possible the translation provided by the libnc-dap
system.
In addition, a translation to netCDF-4 (enhanced) is provided
that is entirely new.
<p>For illustrative purposes, the following example will be used.
<pre class="verbatim">Dataset {
Int32 f1;
Structure {
Int32 f11;
Structure {
Int32 f1[3];
Int32 f2;
} FS2[2];
} S1;
Structure {
Grid {
Array:
Float32 temp[lat=2][lon=2];
Maps:
Int32 lat[lat=2];
Int32 lon[lon=2];
} G1;
} S2;
Grid {
Array:
Float32 G2[lat=2][lon=2];
Maps:
Int32 lat[2];
Int32 lon[2];
} G2;
Int32 lat[lat=2];
Int32 lon[lon=2];
} D1;
</pre>
<h5 class="subsubsection">4.12.2.2 Variable Definition</h5>
<p>The set of netCDF variables is derived from the fields with
primitive base types as they occur in
Sequences, Grids, and Structures.
The field names are modified to be fully qualified initially.
For the above, the set of variables are as follows.
The coordinate variables within grids are left out
in order to mimic the behavior of libnc-dap.
<ol type=1 start=1>
<li>f1
<li>S1.f11
<li>S1.FS2.f1
<li>S1.FS2.f2
<li>S2.G1.temp
<li>S2.G2.G2
<li>lat
<li>lon
</ol>
<h5 class="subsubsection">4.12.2.3 Variable Dimension Translation</h5>
<p>A variable's rank is determined from three sources.
<ol type=1 start=1>
<li>The variable has the dimensions associated with the field
it represents (e.g. S1.FS2.f1[3] in the above example).
<li>The variable inherits the dimensions associated with any containing
structure that has a rank greater than zero.
These dimensions precede those of case 1.
Thus, we have in our example, f1[2][3], where the first dimension
comes from the containing Structure FS2[2].
<li>The variable's set of dimensions are altered
if any of its containers is a DAP DDS Sequence.
This is discussed more fully below.
<li>If the type of the netCDF variable is char, then an extra
string dimension is added as the last dimension.
</ol>
<h5 class="subsubsection">4.12.2.4 Dimension translation</h5>
<p>For dimensions, the rules are as follows.
<ol type=1 start=1>
<li>Fields in dimensioned structures inherit the dimension
of the structure; thus the above list would have the following
dimensioned variables.
<ul>
<li>S1.FS2.f1 -> S1.FS2.f1[2][3]
<li>S1.FS2.f2 -> S1.FS2.f2[2]
<li>S2.G1.temp -> S2.G1.temp[lat=2][lon=2]
<li>S2.G1.lat -> S2.G1.lat[lat=2]
<li>S2.G1.lon -> S2.G1.lon[lon=2]
<li>S2.G2.G2 -> S2.G2.lon[lat=2][lon=2]
<li>S2.G2.lat -> S2.G2.lat[lat=2]
<li>S2.G2.lon -> S2.G2.lon[lon=2]
<li>lat -> lat[lat=2]
<li>lon -> lon[lon=2]
</ul>
<li>Collect all of the dimension specifications from the DDS, both
named and anonymous (unnamed)
For each unique anonymous dimension with value NN
create a netCDF dimension of the form "XX_<i>=NN",
where XX is the fully qualified name of the variable and i is the
i'th (inherited) dimension of the array where the anonymous dimension occurs.
For our example, this would create the following dimensions.
<ul>
<li>S1.FS2.f1_0 = 2 ;
<li>S1.FS2.f1_1 = 3 ;
<li>S1.FS2.f2_0 = 2 ;
<li>S2.G2.lat_0 = 2 ;
<li>S2.G2.lon_0 = 2 ;
</ul>
<li>If however, the anonymous dimension is the single dimension
of a MAP vector in a Grid then the dimension is given the
same name as the map vector This leads to the following.
<ul>
<li>S2.G2.lat_0 -> S2.G2.lat
<li>S2.G2.lon_0 -> S2.G2.lon
</ul>
<li>For each unique named dimension "<name>=NN",
create a netCDF dimension of the form "<name>=NN",
where name has the qualifications removed.
If this leads to duplicates (i.e. same name and same value),
then the duplicates are ignored.
This produces the following.
<ul>
<li>S2.G2.lat -> lat
<li>S2.G2.lon -> lon
</ul>
Note that this produces duplicates that will be ignored later.
<li>At this point the only dimensions left to process should be named
dimensions with the same name as some dimension from step number 3,
but with a different value. For those dimensions create a dimension
of the form "<name>M=NN" where M is a counter starting at 1.
The example has no instances of this.
<li>Finally and if needed, define a single UNLIMITED dimension named "unlimited"
with value zero.
Unlimited will be used to handle certain kinds of DAP sequences (see below).
</ol>
This leads to the following set of dimensions.
<pre class="verbatim">dimensions:
unlimited = UNLIMITED;
lat = 2 ;
lon = 2 ;
S1.FS2.f1_0 = 2 ;
S1.FS2.f1_1 = 3 ;
S1.FS2.f2_0 = 2 ;
</pre>
<h5 class="subsubsection">4.12.2.5 Variable Name Translation</h5>
<p>The steps for variable name translation are as follows.
<ol type=1 start=1>
<li>Take the set of variables captured above.
Thus for the above DDS, the following fields would be collected.
<ul>
<li>f1
<li>S1.f11
<li>S1.FS2.f1
<li>S1.FS2.f2
<li>S2.G1.temp
<li>S2.G2.G2
<li>lat
<li>lon
</ul>
<li>All grid array variables are renamed to be the same as the containing
grid and the grid prefix is removed.
In the above DDS, this results in the following changes.
<ol type=1 start=1>
<li>G1.temp -> G1
<li>G2.G2 -> G2
</ol>
</ol>
<p>It is important to note that this process could produce duplicate
variables (i.e. with the same name); in that case they are all assumed
to have the same content and the duplicates are ignored.
If it turns out that the duplicates have different content, then
the translation will not detect this. YOU HAVE BEEN WARNED.
<p>The final netCDF-3 schema (minus attributes) is then as follows.
<pre class="verbatim">netcdf t {
dimensions:
unlimited = UNLIMITED ;
lat = 2 ;
lon = 2 ;
S1.FS2.f1_0 = 2 ;
S1.FS2.f1_1 = 3 ;
S1.FS2.f2_0 = 2 ;
variables:
int f1 ;
int lat(lat) ;
int lon(lon) ;
int S1.f11 ;
int S1.FS2.f1(S1.FS2.f1_0, S1.FS2.f1_1) ;
int S1.FS2.f2(S1_FS2_f2_0) ;
float S2.G1(lat, lon) ;
float G2(lat, lon) ;
}
</pre>
In actuality, the unlimited dimension is dropped because
it is unused.
<p>There are differences with the original libnc-dap here
because libnc-dap technically was incorrect. The original
would have said this, for example.
<pre class="verbatim">int S1.FS2.f1(lat, lat) ;
</pre>
Note that this is incorrect because it dimensions
S1.FS2.f1(2,2) rather than S1.FS2.f1(2,3).
<h5 class="subsubsection">4.12.2.6 Translating DAP DDS Sequences</h5>
<p>Any variable (as determined above) that is contained
directly or indirectly by a Sequence is subject to revision
of its rank using the following rules.
<ol type=1 start=1>
<li>Let the variable be contained in Sequence Q1, where Q1 is the
innermost containing sequence. If Q1 is itself contained
(directly or indirectly) in a sequence,
or Q1 is contained (again directly or indirectly)
in a structure that has rank greater than 0,
then the variable will have an initial UNLIMITED
dimension. Further, all dimensions coming from "above" and including (in
the containment sense) the innermost Sequence, Q1, will be
removed and replaced by that single UNLIMITED dimension. The
size associated with that UNLIMITED is zero, which means
that its contents are inaccessible through the netCDF-3 API.
Again, this differs from libnc-dap, which leaves out such variables.
Again, however, this difference is backward compatible.
<li>If the variable is contained in a single Sequence (i.e. not nested)
and all containing structures have rank 0, then the variable will
have an initial dimension whose size is the record count for that
Sequence. The name of the new dimension will be the name of the
Sequence.
</ol>
<p>Consider this example.
<pre class="verbatim">Dataset {
Structure {
Sequence {
Int32 f1[3];
Int32 f2;
} SQ1;
} S1[2];
Sequence {
Structure {
Int32 x1[7];
} S2[5];
} Q2;
} D;
</pre>
The corresponding netCDF-3 translation is pretty much as follows
(the value for dimension Q2 may differ).
<pre class="verbatim">dimensions:
unlimited = UNLIMITED ; // (0 currently)
S1.SQ1.f1_0 = 2 ;
S1.SQ1.f1_1 = 3 ;
S1.SQ1.f2_0 = 2 ;
Q2.S2.x1_0 = 5 ;
Q2.S2.x1_1 = 7 ;
Q2 = 5 ;
variables:
int S1.SQ1.f1(unlimited, S1.SQ1.f1_1) ;
int S1.SQ1.f2(unlimited) ;
int Q2.S2.x1(Q2, Q2.S2.x1_0, Q2.S2.x1_1) ;
</pre>
Note that for example S1.SQ1.f1_0
is not actually used because it has been folded
into the unlimited dimension.
<p>Note that for sequences without a leading unlimited dimension,
there is a performance cost
because the translation code has to walk the data to determine
how many records are associated with the sequence.
Since libnc-dap did essentially the same thing, it can be assumed that
the cost is not prohibitive.
<h5 class="subsubsection">4.12.2.7 netCDF-4 Translation Rules</h5>
<p>A DAP to netCDF-4 translation also exists, but is not the
default and in any case is only available if the
"–enable-netcdf-4" option is specified at configure time.
This translation includes some elements of the libnc-dap
translation, but attempts to provide a simpler (but not,
unfortunately, simple) set of translation rules than is used
for the netCDF-3 translation. Please note that the
translation is still experimental and will change to respond
to unforeseen problems or to suggested improvements.
<p>This text will use this running example.
<pre class="verbatim">Dataset {
Int32 f1[fdim=10];
Structure {
Int32 f11;
Structure {
Int32 f1[3];
Int32 f2;
} FS2[2];
} S1;
Grid {
Array:
Float32 temp[lat=2][lon=2];
Maps:
Int32 lat[2];
Int32 lon[2];
} G1;
Sequence {
Float64 depth;
} Q1;
} D
</pre>
<h5 class="subsubsection">4.12.2.8 Variable Definition</h5>
<p>The rule for choosing variables is relatively simple.
Start with the names of the top-level fields of the DDS.
The term top-level means that the object is a direct subnode
of the Dataset object. In our example, this produces the set
[f1, S1, G1, Q1].
<h5 class="subsubsection">4.12.2.9 Dimension Definition</h5>
<p>The rules for choosing and defining dimensions is as follows.
<ol type=1 start=1>
<li>Collect the set of dimensions (named and anonymous) directly
associated with the variables as defined above.
This means that dimensions
within user-defined types are ignored. From our example,
the dimension set is [fdim=10,lat=2,lon=2,2,2]. Note that the
unqualified names are used.
<li>All remaining anonymous dimensions are given the
name "<var>_NN", where "<var>" is the
unqualified name of the variable in which the anonymous
dimension appears and NN is the relative position of that
dimension in the dimensions associated with that array.
No instances of this rule occur in the running example.
<li>Remove duplicate dimensions (those with same name and value).
Our dimension set now becomes
[fdim=10,lat=2,lon=2].
<li>The final case occurs when there are dimensions with the same
name but with different values. For this case,
the size of the dimension is appended to the dimension name.
</ol>
<h5 class="subsubsection">4.12.2.10 Type Definition</h5>
<p>The rules for choosing user-defined types are as follows.
<ol type=1 start=1>
<li>For every Structure, Grid, and Sequence, a netCDF-4
compound type is created whose fields are the fields of the
Structure, Sequence, or Grid. With one exception, the name
of the type is the same as the Structure or Grid name
suffixed with "_t". The exception is that the compound
types derived from Sequences are instead suffixed with
"_record_t".
<p>The types of the fields are the types of the corresponding field
of the Structure, Sequence, or Grid. Note that this type
might be itself a user-defined type.
<p>From the example, we get the following compound types.
<pre class="verbatim"> compound FS2_t {
int f1(3);
int f2;
};
compound S1_t {
int f11;
FS2_t FS2(2);
};
compound G1_t {
float temp(2,2);
int lat(2);
int lon(2);
}
compound Q1_record_t {
double depth;
};
</pre>
<li>For all sequences of name X,
also create this type.
<pre class="verbatim"> X_record_t (*) X_t
</pre>
In our example, this produces the following type.
<pre class="verbatim"> Q1_record_t (*) Q1_t
</pre>
<li>If a Sequence, Q has a single field F,
whose type is a primitive type, T,
(e.g., int, float, string), then
do not apply the previous rule, but instead replace the whole
sequence with the the following field.
<pre class="verbatim"> T (*) Q.f
</pre>
</ol>
<h5 class="subsubsection">4.12.2.11 Choosing a Translation</h5>
<p>The decision about whether to translate to netCDF-3
or netCDF-4 is determined by applying the
following rules in order.
<ol type=1 start=1>
<li>If the NC_CLASSIC_MODEL flag is set on nc_open(), then
netCDF-3 translation is used.
<li>If the NC_NETCDF4 flag is set on nc_open(), then netCDF-4
translation is used.
<li>If the URL is prefixed with the client parameter
"[netcdf3]" or "[netcdf-3]"
then netCF-3 translation is used.
<li>If the URL is prefixed with the client parameter
"[netcdf4]" or "[netcdf-4]"
then netCF-4 translation is used.
<li>If none of the above holds, then default to netCDF-3 classic
translation.
</ol>
<h5 class="subsubsection">4.12.2.12 Caching</h5>
<p>In an effort to provide better
performance for some access patterns,
client-side caching of data is available.
The default is no caching, but it may
be enabled by prefixing the URL
with "[cache]".
<p>Caching operates basically as follows.
<ol type=1 start=1>
<li>When a URL is first accessed using nc_open(),
netCDF automatically does a pre-fetch
of selected variables. These include all
variables smaller than a specified (and user definable)
size. This allows, for example, quick access to
coordinate variables.
<li>Whenever a request is made using some variant
of the nc_get_var() API procedures, the complete
variable is fetched and stored in the cache as a new
cache entry. Subsequence requests for any part of that
variable will access the cache entry to obtain the data.
<li>The cache may become too full, either because there are
too many entries or because it is taking up too much disk space.
In this case cache entries are purged until the cache size
limits are reached.
The cache purge algorithm is LRU (least recently used) so that
variables that are repeatedly referenced will tend to stay
in the cache.
<li>The cache is completely purged when nc_close() is invoked.
</ol>
<p>In order to decide if you should enable caching,
you will need to have some understanding of the
access patterns of your program.
<ul>
<li>The ncdump program always dumps one or more
whole variables so it turns on caching.
<li>If your program accesses only parts of a number of variables,
then caching should probably not be used since fetching
whole variables will probably slow down your program
for no purpose.
</ul>
<p>Unfortunately, caching is currently an all or nothing proposition,
so for more complex access patterns, the decision to cache or not
may not have an obvious answer. Probably a good rule of thumb
is to avoid caching initially and later turn it on to see
its effect on performance.
<h5 class="subsubsection">4.12.2.13 Defined Client Parameters</h5>
<p>Currently, a limited set of client parameters is recognized.
Parameters not listed here are ignored, but no error is signalled.
<dl>
<dt><em>Parameter Name Legal Values Semantics</em><br><dt><em>[netcdf-3]|[netcdf-3]</em><dd>Specify translation to netCDF-3.
<br><dt><em>[netcdf-4]|[netcdf-4]</em><dd>Specify translation to netCDF-4.
<br><dt><em>"[log]|[log=<file>]" ""</em><dd>Turn on logging and send the log output to the specified file.
If no file is specified, then output to standard error.
<br><dt><em>"[show=...]" das|dds|url</em><dd>This causes information to appear as specific global attributes.
The currently recognized tags are "dds" to
display the underlying DDS, "das" similarly, and "url" to display
the url used to retrieve the data.
This parameter may be specified multiple times (e.g. “[show=dds][show=url]”).
<br><dt><em>"[show=fetch]"</em><dd>This parameter causes the netCDF code to log a copy of the complete
url for every HTTP get request. If logging is enabled, then
this can be helpful in checking to see the access behavior of the
netCDF code.
<br><dt><em>"[stringlength=NN]"</em><dd>Specify the default string length to use for string dimensions.
The default is 64.
<br><dt><em>"[stringlength_<var>=NN]"</em><dd>Specify the default string length to use for a string dimension
for the specified variable.
The default is 64.
<br><dt><em>"[cache]"</em><dd>This enables caching.
<br><dt><em>"[cachelimit=NN]"</em><dd>Specify the maximum amount of space allowed for the cache.
<br><dt><em>"[cachecount=NN]"</em><dd>Specify the maximum number of entries in the cache.
</dl>
<h4 class="subsection">4.12.3 Notes on Debugging OPeNDAP Access</h4>
<p>The OPeNDAP support makes use of the logging facility of the
underlying oc system. Note that this is currently
separate from the existing netCDF logging facility.
Turning on this logging can sometimes give
important information. Logging can be enabled
by prefixing the url with
the client parameter [log] or [log=filename], where the first
case will send log output to standard error and the second
will send log output to the specified file.
<p>Users should also be aware that the DAP subsystem
creates temporary files of the name dataddsXXXXXX,
where XXXXX is some random string. If the program
using the DAP subsystem crashes, these files may
be left around. It is perfectly safe to delete them.
Also, if you are accessing data over an NFS mount,
you may see some .nfsxxxxx files; those can be ignored
as well.
<h4 class="subsection">4.12.4 HTTP Configuration.</h4>
<p>Limited support for configuring the http connection
is provided via parameters in the
“.httprc” configuration file. Although deprecated, the name
“.dodsrc” may also be used.
The relevant .httprc file is located by first looking in the
current working directory, and if not found, then looking in the
directory specified by the “$HOME” environment variable.
<p>Entries in the .httprc file are of the form:
<pre class="example"> ['['<url>']']<key>=<value>
</pre>
<p>That is, it consists of a key name and value pair
and optionally preceded by a url enclosed in square
brackets.
<p>For given KEY and URL strings, the value chosen is as follows:
<ol type=1 start=1>
<li>If URL is null, then look for the .dodsrc entry that has no url prefix and whose key is same as the KEY for which we are looking.
<li>If the URL is not null, then look for all the .dodsrc entries
that have a url, URL1, say, and for which URL1 is a prefix (in the
string sense) of URL. For example, if URL = http//x.y/a, then it will
match entries of the form
<pre class="example"> 1. [http//x.y/a]KEY=VALUE
2. [http//x.y/a/b]KEY=VALUE
</pre>
<p>It will not match an entry of the form
<pre class="example"> [http//x.y/b]KEY=VALUE
</pre>
<p>because “http://x.y/b” is not a string prefix of “http://x.y/a”.
Finally from the set so constructed, choose the entry with the longest
url prefix: “http//x.y/a/b]KEY=VALUE” in this case.
</ol>
<p>Currently, the supported set of keys (with descriptions) are as follows.
<ul>
<li>HTTP.VERBOSE
<ol type=1 start=1>
<li>Type: boolean ("1"/"0")
<li>Description:
Produce verbose output, especially using SSL.
<li>Related CURL Flags: CURLOPT_VERBOSE
</ol>
<li>HTTP.DEFLATE
<ol type=1 start=1>
<li>Type: boolean ("1"/"0")
<li>Description:
Allow use of compression by the server.
<li>Related CURL Flags: CURLOPT_ENCODING
</ol>
<li>HTTP.COOKIEJAR
<ol type=1 start=1>
<li>Type: String representing file path
<li>Description:
Specify the name of file into which to store cookies.
Defaults to in-memory storage.
<li>Related CURL Flags:CURLOPT_COOKIEJAR
</ol>
<li>HTTP.COOKIEFILE
<ol type=1 start=1>
<li>Type: String representing file path
<li>Description:
Same as HTTP.COOKIEJAR.
<li>Related CURL Flags: CURLOPT_COOKIEFILE
</ol>
<li>HTTP.CREDENTIALS.USER
<ol type=1 start=1>
<li>Type: String representing user name
<li>Description:
Specify the user name for Digest and Basic authentication.
<li>Related CURL Flags:
</ol>
<li>HTTP.CREDENTIALS.PASSWORD
<ol type=1 start=1>
<li>Type: String representing password
<li>Type: boolean ("1"/"0")
<li>Description:
Specify the password for Digest and Basic authentication.
<li>Related CURL Flags:
</ol>
<li>HTTP.SSL.CERTIFICATE
<ol type=1 start=1>
<li>Type: String representing file path
<li>Description:
Path to a file containing a PEM cerficate.
<li>Related CURL Flags: CURLOPT_CERT
</ol>
<li>HTTP.SSL.KEY
<ol type=1 start=1>
<li>Type: String representing file path
<li>Description:
Same as HTTP.SSL.CERTIFICATE, and should usually have the same value.
<li>Related CURL Flags: CURLOPT_SSLKEY
</ol>
<li>HTTP.SSL.KEYPASSWORD
<ol type=1 start=1>
<li>Type: String representing password
<li>Description:
Password for accessing the HTTP.SSL.KEY/HTTP.SSL.CERTIFICATE
<li>Related CURL Flags: CURLOPT_KEYPASSWORD
</ol>
<li>HTTP.SSL.CAPATH
<ol type=1 start=1>
<li>Type: String representing directory
<li>Description:
Path to a directory containing trusted certificates for validating
server sertificates.
<li>Related CURL Flags: CURLOPT_CAPATH
</ol>
<li>HTTP.SSL.VALIDATE
<ol type=1 start=1>
<li>Type: boolean ("1"/"0")
<li>Description:
Cause the client to verify the server's presented certificate.
<li>Related CURL Flags: CURLOPT_SSL_VERIFYPEER, CURLOPT_SSL_VERIFYHOST
</ol>
<li>HTTP.TIMEOUT
<ol type=1 start=1>
<li>Type: String ("dddddd")
<li>Description:
Specify the maximum time in seconds that you allow the http
transfer operation to take.
<li>Related CURL Flags:
CURLOPT_TIMEOUT, CURLOPT_NOSIGNAL
</ol>
<li>HTTP.PROXY_SERVER
<ol type=1 start=1>
<li>Type: String representing url to access the proxy:
(e.g.http://[username:password@]host[:port])
<li>Description:
Specify the needed information for accessing a proxy.
<li>Related CURL Flags: CURLOPT_PROXY, CURLOPT_PROXYHOST, CURLOPT_PROXYUSERPWD
</ol>
</ul>
<p>The related curl flags line indicates the curl flags modified
by this key. See the libcurl documentation of the curl_easy_setopt()
function for more detail
<a href="http://curl.haxx.se/libcurl/c/curl_easy_setopt.html">http://curl.haxx.se/libcurl/c/curl_easy_setopt.html</a>.
<p>For ESG, the following entries must be specified:
<ul>
<li>HTTP.SSL.VALIDATE
<li>HTTP.COOKIEJAR
<li>HTTP.SSL.CERTIFICATE
<li>HTTP.SSL.KEY
<li>HTTP.SSL.CAPATH
</ul>
Additionally, for ESG, the HTTP.SSL.CERTIFICATE and HTTP.SSL.KEY
entries should have same value, which is the file path for the
certificate produced by MyProxyLogon. The HTTP.SSL.CAPATH entry
should be the path to the "certificates" directory produced by
MyProxyLogon.
<div class="node">
<a name="NetCDF-Utilities"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Units">Units</a>,
Previous: <a rel="previous" accesskey="p" href="#Structure">Structure</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="chapter">5 NetCDF Utilities</h2>
<p><a name="index-utilities-195"></a><a name="index-ncgen-and-ncgen3_002c-overview-196"></a><a name="index-ncdump_002c-overview-197"></a><a name="index-nccopy_002c-overview-198"></a><a name="index-software-list-199"></a><a name="index-applications_002c-generic_002c-reasons-for-netCDF-200"></a>
One of the primary reasons for using the netCDF interface for
applications that deal with arrays is to take advantage of
higher-level netCDF utilities and generic applications for netCDF
data. Currently three netCDF utilities are available as part of the
netCDF software distribution:
<dl>
<dt><code>ncdump</code><dd>reads a netCDF dataset and prints a textual representation of
the information in the dataset
<br><dt><code>ncgen</code><dd>reads a textual representation of a netCDF dataset and generates
the corresponding binary netCDF file or a program to
create the netCDF dataset
<br><dt><code>nccopy</code><dd>reads a netCDF dataset using the netCDF programming interface and
copies it, optionally to a different kind of netCDF dataset, and
optionally with compression or chunking
</dl>
<p>Users have contributed other netCDF utilities, and various
visualization and analysis packages are available that access netCDF
data. For an up-to-date list of freely-available and commercial
software that can access or manipulate netCDF data, see the netCDF
Software list,
<a href="http://www.unidata.ucar.edu/netcdf/software.html">http://www.unidata.ucar.edu/netcdf/software.html</a>.
<p>This chapter describes the ncgen, ncdump, and nccopy utilities. These
tools convert between binary netCDF datasets and a text representation
of netCDF datasets, or between netCDF data format variants. The output
of ncdump and the input to ncgen is a text description of a netCDF
dataset in a tiny language known as CDL (network Common data form
Description Language).
<ul class="menu">
<li><a accesskey="1" href="#CDL-Syntax">CDL Syntax</a>: Creating a File without Code
<li><a accesskey="2" href="#CDL-Data-Types">CDL Data Types</a>: Describing Types in CDL
<li><a accesskey="3" href="#CDL-Constants">CDL Constants</a>: Constant Values in CDL
<li><a accesskey="4" href="#ncgen">ncgen</a>: Turning CDL into Classic or Enhanced Data Files
<li><a accesskey="5" href="#ncdump">ncdump</a>: Turning Data Files into CDL (or XML)
<li><a accesskey="6" href="#nccopy">nccopy</a>: Copying, Converting, Compressing, and Chunking Data Files
<li><a accesskey="7" href="#ncgen3">ncgen3</a>: Turning CDL into Classic Data Files
</ul>
<div class="node">
<a name="CDL-Syntax"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#CDL-Data-Types">CDL Data Types</a>,
Previous: <a rel="previous" accesskey="p" href="#NetCDF-Utilities">NetCDF Utilities</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Utilities">NetCDF Utilities</a>
</div>
<h3 class="section">5.1 CDL Syntax</h3>
<p><a name="index-CDL-syntax-201"></a><a name="index-attributes_002c-CDL_002c-defining-202"></a><a name="index-attributes_002c-CDL_002c-global-203"></a><a name="index-dimensions_002c-CDL_002c-defining-204"></a><a name="index-variables_002c-CDL_002c-defining-205"></a><a name="index-CDL-attributes_002c-defining-206"></a><a name="index-CDL-dimensions_002c-defining-207"></a><a name="index-CDL-variables_002c-defining-208"></a>
Below is an example of CDL, describing a netCDF dataset with several
named dimensions (lat, lon, time), variables (z, t, p, rh, lat, lon,
time), variable attributes (units, _FillValue, valid_range), and some
data.
<pre class="example"> netcdf foo { // example netCDF specification in CDL
dimensions:
lat = 10, lon = 5, time = unlimited;
variables:
int lat(lat), lon(lon), time(time);
float z(time,lat,lon), t(time,lat,lon);
double p(time,lat,lon);
int rh(time,lat,lon);
lat:units = "degrees_north";
lon:units = "degrees_east";
time:units = "seconds";
z:units = "meters";
z:valid_range = 0., 5000.;
p:_FillValue = -9999.;
rh:_FillValue = -1;
data:
lat = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90;
lon = -140, -118, -96, -84, -52;
}
</pre>
<p>All CDL statements are terminated by a semicolon. Spaces, tabs, and
newlines can be used freely for readability. Comments may follow the
double slash characters '//' on any line.
<p>A CDL description for a classic model file consists of three optional
parts: dimensions, variables, and data. The variable part may contain
variable declarations and attribute assignments. For the enhanced
model supported by netCDF-4, a CDL decription may also includes
groups, subgroups, and user-defined types.
<p>A dimension is used to define the shape of one or more of the
multidimensional variables described by the CDL description. A
dimension has a name and a length. At most one dimension in a classic CDL
description can have the unlimited length, which means a variable
using this dimension can grow to any length (like a record number in a
file). Any number of dimensions can be declared of unlimited length
in CDL for an enhanced model file.
<p>A variable represents a multidimensional array of values of the same
type. A variable has a name, a data type, and a shape described by its
list of dimensions. Each variable may also have associated attributes
(see below) as well as data values. The name, data type, and shape of
a variable are specified by its declaration in the variable section of
a CDL description. A variable may have the same name as a dimension;
by convention such a variable contains coordinates of the dimension it
names.
<p>An attribute contains information about a variable or about the whole
netCDF dataset or containing group. Attributes may be used to specify
such properties as
units, special values, maximum and minimum valid values, and packing
parameters. Attribute information is represented by single values or
one-dimensional arrays of values. For example, “units” might be an attribute
represented by a string such as “celsius”. An attribute has an associated
variable, a name, a data type, a length, and a value. In contrast to
variables that are intended for data, attributes are intended for
ancillary data or metadata (data about data).
<p>In CDL, an attribute is designated by a variable and attribute name,
separated by a colon (':'). It is possible to assign global attributes
to the netCDF dataset as a whole by omitting the variable name and
beginning the attribute name with a colon (':'). The data type of an
attribute in CDL, if not explicitly specified, is derived from the
type of the value assigned to
it. The length of an attribute is the number of data values or the
number of characters in the character string assigned to it. Multiple
values are assigned to non-character attributes by separating the
values with commas (','). All values assigned to an attribute must be
of the same type. In the netCDF-4 enhanced model, attributes may be declared
to be of user-defined type, like variables.
<p>In CDL, just as for netCDF, the names of dimensions, variables and
attributes (and, in netCDF-4 files, groups, user-defined types,
compound member names, and enumeration symbols) consist of arbitrary
sequences of alphanumeric characters, underscore '_', period '.', plus
'+', hyphen '-', or at sign '@', but beginning with a letter or
underscore. However names commencing with underscore are reserved for
system use. Case is significant in netCDF names. A zero-length name
is not allowed. Some widely used conventions restrict names to only
alphanumeric characters or underscores. Names that have trailing
space characters are also not permitted.
<p>Beginning with versions 3.6.3 and 4.0, names may also include UTF-8
encoded Unicode characters as well as other special characters, except
for the character '/', which may not appear in a name (because it is
reserved for path names of nested groups). In CDL, most special
characters are escaped with a backslash '\' character, but that
character is not actually part of the netCDF name. The special
characters that do not need to be escaped in CDL names are underscore
'_', period '.', plus '+', hyphen '-', or at sign '@'. For the
formal specification of CDL name syntax See <a href="#Format">Format</a>. Note that by
using special characters in names, you may make your data not
compliant with conventions that have more stringent requirements on
valid names for netCDF components, for example the CF Conventions.
<p>The names for the primitive data types are reserved words in CDL, so
names of variables, dimensions, and attributes must not be primitive
type names.
<p>The optional data section of a CDL description is where netCDF
variables may be initialized. The syntax of an initialization is
simple:
<pre class="example"> variable = value_1, value_2, ...;
</pre>
<p>The comma-delimited list of constants may be separated by spaces,
tabs, and newlines. For multidimensional arrays, the last dimension
varies fastest. Thus, row-order rather than column order is used for
matrices. If fewer values are supplied than are needed to fill a
variable, it is extended with the fill value. The types of constants
need not match the type declared for a variable; coercions are done to
convert integers to floating point, for example. All meaningful type
conversions among primitive types are supported.
<p>A special notation for fill values is supported: the ‘<samp><span class="samp">_</span></samp>’ character
designates a fill value for variables.
<div class="node">
<a name="CDL-Data-Types"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#CDL-Constants">CDL Constants</a>,
Previous: <a rel="previous" accesskey="p" href="#CDL-Syntax">CDL Syntax</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Utilities">NetCDF Utilities</a>
</div>
<h3 class="section">5.2 CDL Data Types</h3>
<p><a name="index-CDL-data-types-209"></a><a name="index-byte_002c-CDL-data-type-210"></a><a name="index-char_002c-CDL-data-type-211"></a><a name="index-short_002c-CDL-data-type-212"></a><a name="index-int_002c-CDL-data-type-213"></a><a name="index-long_002c-CDL-data-type-214"></a><a name="index-float_002c-CDL-data-type-215"></a><a name="index-real_002c-CDL-data-type-216"></a><a name="index-double_002c-CDL-data-type-217"></a>
The CDL primitive data types for the classic model are:
<dl>
<dt><code>char</code><a name="index-char-218"></a><dd>Characters.
<br><dt><code>byte</code><a name="index-byte-219"></a><dd>Eight-bit integers.
<br><dt><code>short</code><a name="index-short-220"></a><dd>16-bit signed integers.
<br><dt><code>int</code><a name="index-int-221"></a><dd>32-bit signed integers.
<br><dt><code>long</code><a name="index-long-222"></a><dd>(Deprecated, synonymous with int)
<br><dt><code>float</code><a name="index-float-223"></a><dd>IEEE single-precision floating point (32 bits).
<br><dt><code>real</code><a name="index-real-224"></a><dd>(Synonymous with float).
<br><dt><code>double</code><a name="index-double-225"></a><dd>IEEE double-precision floating point (64 bits).
</dl>
<p>NetCDF-4 supports the additional primitive types:
<dl>
<dt><code>ubyte</code><a name="index-ubyte-226"></a><dd>Unsigned eight-bit integers.
<br><dt><code>ushort</code><a name="index-ushort-227"></a><dd>Unsigned 16-bit integers.
<br><dt><code>uint</code><a name="index-uint-228"></a><dd>Unsigned 32-bit integers.
<br><dt><code>int64</code><a name="index-int64-229"></a><dd>64-bit singed integers.
<br><dt><code>uint64</code><a name="index-uint64-230"></a><dd>Unsigned 64-bit singed integers.
<br><dt><code>string</code><a name="index-string-231"></a><dd>Variable-length string of characters
</dl>
<p>Except for the added data-type byte, CDL supports the same primitive
data types as C. For
backward compatibility, in declarations primitive type names may be
specified in either upper or lower case.
<p>The byte type differs from the char type in that it is intended for
numeric data, and the zero byte has no special significance, as it may
for character data. The short type holds values between -32768 and
32767. The ushort type holds values between 0 and 65536. The int
type can hold values between -2147483648 and 2147483647. The uint
type holds values between 0 and 4294967296. The int64 type can hold
values between -9223372036854775808 and 9223372036854775807. The
uint64 type can hold values between 0 and 18446744073709551616.
<p>The float type can hold values between about -3.4+38 and 3.4+38, with
external representation as 32-bit IEEE normalized single-precision
floating-point numbers. The double type can hold values between about
-1.7+308 and 1.7+308, with external representation as 64-bit IEEE
standard normalized double-precision, floating-point numbers.
The string type holds variable length strings.
<div class="node">
<a name="CDL-Constants"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#ncgen">ncgen</a>,
Previous: <a rel="previous" accesskey="p" href="#CDL-Data-Types">CDL Data Types</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Utilities">NetCDF Utilities</a>
</div>
<h3 class="section">5.3 CDL Notation for Data Constants</h3>
<p><a name="index-CDL-constants-232"></a><a name="index-attributes_002c-CDL_002c-initializing-233"></a><a name="index-dimensions_002c-CDL_002c-initializing-234"></a><a name="index-variables_002c-CDL_002c-initializing-235"></a><a name="index-attributes_002c-data-types_002c-CDL-236"></a><a name="index-variables_002c-data-types_002c-CDL-237"></a><a name="index-attributes_002c-length_002c-CDL-238"></a><a name="index-dimensions_002c-length_002c-CDL-239"></a><a name="index-byte-CDL-constant-240"></a><a name="index-initializing-CDL-241"></a>
This section describes the CDL notation for constants.
<p>Attributes are initialized in the variables section of a CDL
description by providing a list of constants that determines the
attribute's length and type (if primitive and not explicitly declared).
CDL defines a syntax
for constant values that permits distinguishing among different netCDF
primitive types. The syntax for CDL constants is similar to C syntax, with
type suffixes appended to bytes, shorts, and floats to distinguish
them from ints and doubles.
<p>A byte constant is represented by a single character or multiple
character escape sequence enclosed in single quotes. For example:
<pre class="example"> 'a' // ASCII a
'\0' // a zero byte
'\n' // ASCII newline character
'\33' // ASCII escape character (33 octal)
'\x2b' // ASCII plus (2b hex)
'\376' // 377 octal = -127 (or 254) decimal
</pre>
<p>Character constants are enclosed in double quotes. A character array
may be represented as a string enclosed in double quotes. Multiple
strings are concatenated into a single array of characters, permitting
long character arrays to appear on multiple lines. To support multiple
variable-length string values, a conventional delimiter such as ','
may be used, but interpretation of any such convention for a string
delimiter must be implemented in software above the netCDF library
layer. The usual escape conventions for C strings are honored. For
example:
<pre class="example"> "a" // ASCII 'a'
"Two\nlines\n" // a 10-character string with two embedded newlines
"a bell:\007" // a string containing an ASCII bell
"ab","cde" // the same as "abcde"
</pre>
<p>The form of a short constant is an integer constant with an 's' or 'S'
appended. If a short constant begins with '0', it is interpreted as
octal. When it begins with '0x', it is interpreted as a hexadecimal
constant. For example:
<pre class="example"> 2s // a short 2
0123s // octal
0x7ffs // hexadecimal
</pre>
<p>The form of an int constant is an ordinary integer constant. If an int
constant begins with '0', it is interpreted as octal. When it begins
with '0x', it is interpreted as a hexadecimal constant. Examples of
valid int constants include:
<pre class="example"> -2
0123 // octal
0x7ff // hexadecimal
1234567890L // deprecated, uses old long suffix
</pre>
<p>The float type is appropriate for representing data with about seven
significant digits of precision. The form of a float constant is the
same as a C floating-point constant with an 'f' or 'F' appended. A
decimal point is required in a CDL float to distinguish it from an
integer. For example, the following are all acceptable float
constants:
<pre class="example"> -2.0f
3.14159265358979f // will be truncated to less precision
1.f
.1f
</pre>
<p>The double type is appropriate for representing floating-point data
with about 16 significant digits of precision. The form of a double
constant is the same as a C floating-point constant. An optional 'd'
or 'D' may be appended. A decimal point is required in a CDL double to
distinguish it from an integer. For example, the following are all
acceptable double constants:
<pre class="example"> -2.0
3.141592653589793
1.0e-20
1.d
</pre>
<div class="node">
<a name="ncgen"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#ncdump">ncdump</a>,
Previous: <a rel="previous" accesskey="p" href="#CDL-Constants">CDL Constants</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Utilities">NetCDF Utilities</a>
</div>
<h3 class="section">5.4 ncgen</h3>
<p><a name="index-ncgen-242"></a><a name="index-C-code-via-ncgen_002c-generating-243"></a><a name="index-generating-C-code-via-ncgen-244"></a>
The ncgen tool generates a netCDF file or a C or FORTRAN program that
creates a netCDF dataset. If no options are specified in invoking
ncgen, the program merely checks the syntax of the CDL input,
producing error messages for any violations of CDL syntax.
<p>The ncgen tool is now is capable of producing netcdf-4 files.
It operates essentially identically to the original ncgen.
<p>The CDL input to ncgen may include data model constructs
from the netcdf- data model. In particular, it includes
new primitive types such as unsigned integers and strings,
opaque data, enumerations, and user-defined constructs using
vlen and compound types.
The ncgen man page should be consulted for more detailed information.
<p>UNIX syntax for invoking ncgen:
<pre class="example"> ncgen [-b] [-o netcdf-file] [-c] [-f] [-k<kind>] [-l<language>] [-x] [input-file]
</pre>
<p>where:
<dl>
<dt><code>-b</code><dd>Create a (binary) netCDF file. If the '-o' option is absent, a default
file name will be constructed from the netCDF name (specified after
the netcdf keyword in the input) by appending the '.nc'
extension. Warning: if a file already exists with the specified name
it will be overwritten.
<br><dt><code>-o netcdf-file</code><dd>Name for the netCDF file created. If this option is specified, it
implies the '-b' option. (This option is necessary because netCDF
files are direct-access files created with seek calls, and hence
cannot be written to standard output.)
<br><dt><code>-c</code><dd>Generate C source code that will create a netCDF dataset matching the
netCDF specification. The C source code is written to standard
output. This is only useful for relatively small CDL files, since all
the data is included in variable initializations in the generated
program.
The -c flag is deprecated and the -lc flag should be used intstead.
<br><dt><code>-f</code><dd>Generate FORTRAN source code that will create a netCDF dataset
matching the netCDF specification. The FORTRAN source code is written
to standard output. This is only useful for relatively small CDL
files, since all the data is included in variable initializations in
the generated program.
The -f flag is deprecated and the -lf77 flag should be used intstead.
<br><dt><code>-k</code><dd>The -k file specifies the kind of netCDF file to generate.
The arguments to the -k flag can be as follows.
<ul>
<li>1, classic
– Produce a netcdf classic file format file."
<li>2, 64-bit-offset, '64-bit offset'
– Produce a netcdf 64 bit classic file format file.
<li>3, hdf5, netCDF-4, enhanced
– Produce a netcdf-4 format file.
<li>4, hdf5-nc3, 'netCDF-4 classic model', enhanced-nc3
– Produce a netcdf-4 file format, but restricted to
netcdf-3 classic CDL input.
</ul>
Note that the -v flag is a deprecated alias for -k.
<br><dt><code>-l</code><dd>The -l file specifies that ncgen should output (to
standard output) the text of a program that, when
compiled and executed, will produce the corresponding
binary .nc file.
The arguments to the -l flag can be as follows.
<ul>
<li>c|C
=> C language output.
<li>f77|fortran77
=> FORTRAN 77 language output; note that currently
only the classic model is supported for fortran output.
<li>cml|CML
=> (experimental) NcML language output
<li>j|java
=> (experimental) Java language output; the generated
java code targets the existing Unidata Java interface,
which means that only the classic model is supported.
</ul>
<br><dt><code>-x</code><dd>Use “no fill” mode, omitting the initialization of variable values
with fill values. This can make the creation of large files much
faster, but it will also eliminate the possibility of detecting the
inadvertent reading of values that haven't been written.
</dl>
<h3 class="heading">Examples</h3>
<p>Check the syntax of the CDL file foo.cdl:
<pre class="example"> ncgen foo.cdl
</pre>
<p>From the CDL file foo.cdl, generate an equivalent binary netCDF file
named bar.nc:
<pre class="example"> ncgen -o bar.nc foo.cdl
</pre>
<p>From the CDL file foo.cdl, generate a C program containing netCDF
function invocations that will create an equivalent binary netCDF
dataset:
<pre class="example"> ncgen -c foo.cdl > foo.c
</pre>
<div class="node">
<a name="ncdump"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#nccopy">nccopy</a>,
Previous: <a rel="previous" accesskey="p" href="#ncgen">ncgen</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Utilities">NetCDF Utilities</a>
</div>
<h3 class="section">5.5 ncdump</h3>
<p><a name="index-ncdump-245"></a>
The ncdump tool generates the CDL text representation of a netCDF
dataset on standard output, optionally excluding some or all of the
variable data in the output. The output from ncdump is intended to be
acceptable as input to ncgen. Thus ncdump and ncgen can be used as
inverses to transform data representation between binary and text
representations.
<p>As of netCDF version 4.1, ncdump can also access DAP data sources
if DAP support is enabled in the underlying netCDF library.
Instead of specifying a file name as argument to ncdump, the user
specifies a URL to a DAP source.
<p>ncdump may also be used as a simple browser for netCDF datasets, to
display the dimension names and lengths; variable names, types, and
shapes; attribute names and values; and optionally, the values of data
for all variables or selected variables in a netCDF dataset.
<p>ncdump defines a default format used for each type of netCDF variable
data, but this can be overridden if a C_format attribute is defined
for a netCDF variable. In this case, ncdump will use the C_format
attribute to format values for that variable. For example, if
floating-point data for the netCDF variable Z is known to be accurate
to only three significant digits, it might be appropriate to use this
variable attribute:
<pre class="example"> Z:C_format = "%.3g"
</pre>
<p>Ncdump uses '_' to represent data values that are equal to the
_FillValue attribute for a variable, intended to represent data that
has not yet been written. If a variable has no _FillValue attribute,
the default fill value for the variable type is used unless the
variable is of byte type.
<p>UNIX syntax for invoking ncdump:
<pre class="example"> ncdump [ -c | -h] [-v var1,...] [-b lang] [-f lang]
[-l len] [ -p fdig[,ddig]] [ -s ] [ -n name] [input-file]
</pre>
<p>where:
<dl>
<dt><code>-c</code><dd>Show the values of coordinate variables (variables that are also
dimensions) as well as the declarations of all dimensions, variables,
and attribute values. Data values of non-coordinate variables are not
included in the output. This is often the most suitable option to use
for a brief look at the structure and contents of a netCDF dataset.
<br><dt><code>-h</code><dd>Show only the header information in the output, that is, output only
the declarations for the netCDF dimensions, variables, and attributes
of the input file, but no data values for any variables. The output is
identical to using the '-c' option except that the values of
coordinate variables are not included. (At most one of '-c' or '-h'
options may be present.)
<br><dt><code>-v var1,...</code><dd>The output will include data values for the specified variables, in
addition to the declarations of all dimensions, variables, and
attributes. One or more variables must be specified by name in the
comma-delimited list following this option. The list must be a single
argument to the command, hence cannot contain blanks or other white
space characters. The named variables must be valid netCDF variables
in the input-file. The default, without this option and in the absence
of the '-c' or '-h' options, is to include data values for all
variables in the output.
<br><dt><code>-b lang</code><dd>A brief annotation in the form of a CDL comment (text beginning with
the characters '//') will be included in the data section of the
output for each 'row' of data, to help identify data values for
multidimensional variables. If lang begins with 'C' or 'c', then C
language conventions will be used (zero-based indices, last dimension
varying fastest). If lang begins with 'F' or 'f', then FORTRAN
language conventions will be used (one-based indices, first dimension
varying fastest). In either case, the data will be presented in the
same order; only the annotations will differ. This option may be
useful for browsing through large volumes of multidimensional data.
<br><dt><code>-f lang</code><dd>Full annotations in the form of trailing CDL comments (text beginning
with the characters '//') for every data value (except individual
characters in character arrays) will be included in the data
section. If lang begins with 'C' or 'c', then C language conventions
will be used (zero-based indices, last dimension varying fastest). If
lang begins with 'F' or 'f', then FORTRAN language conventions will be
used (one-based indices, first dimension varying fastest). In either
case, the data will be presented in the same order; only the
annotations will differ. This option may be useful for piping data
into other filters, since each data value appears on a separate line,
fully identified. (At most one of '-b' or '-f' options may be
present.)
<br><dt><code>-l len</code><dd>Changes the default maximum line length (80) used in formatting lists
of non-character data values.
<br><dt><code>-p float_digits[,double_digits]</code><dd>Specifies default precision (number of significant digits) to use in
displaying floating-point or double precision data values for
attributes and variables. If specified, this value overrides the value
of the C_format attribute, if any, for a variable. Floating-point data
will be displayed with float_digits significant digits. If
double_digits is also specified, double-precision values will be
displayed with that many significant digits. In the absence of any
'-p' specifications, floating-point and double-precision data are
displayed with 7 and 15 significant digits respectively. CDL files can
be made smaller if less precision is required. If both floating-point
and double precisions are specified, the two values must appear
separated by a comma (no blanks) as a single argument to the command.
<br><dt><code>-n name</code><dd>CDL requires a name for a netCDF dataset, for use by 'ncgen -b' in
generating a default netCDF dataset name. By default, ncdump
constructs this name from the last component of the file name of the
input netCDF dataset by stripping off any extension it has. Use the
'-n' option to specify a different name. Although the output file name
used by 'ncgen -b' can be specified, it may be wise to have ncdump
change the default name to avoid inadvertently overwriting a valuable
netCDF dataset when using ncdump, editing the resulting CDL file, and
using 'ncgen -b' to generate a new netCDF dataset from the edited CDL
file.
<br><dt><code>-s</code><dd>Specifies that special virtual attributes should be output for the
file format variant and for variable properties such as compression,
chunking, and other properties specific to the format implementation
that are primarily related to performance rather than the logical
schema of the data. All the special virtual attributes begin with '_'
followed by an upper-case letter. Currently they include the global
attribute “_Format” and the variable attributes “_Fletcher32”,
“_ChunkSizes”, “_Endianness”, “_DeflateLevel”, “_Shuffle”,
“_Storage”, and “_NoFill”. The ncgen utility recognizes these
attributes and supports them appropriately.
<br><dt><code>-t</code><dd>Controls display of time data, if stored in a variable that uses a
udunits compliant time representation such as “days since
1970-01-01” or “seconds since 2009-03-15 12:01:17”. If this option
is specified, time values are displayed as human-readable date-time
strings rather than numerical values, interpreted in terms of a
“calendar” variable attribute, if specified. Calendar attribute
values interpreted with this option include the CF Conventions values
“gregorian” or “standard”, “proleptic_gregorian”, “noleap” or
“365_day”, “all_leap” or “366_day”, “360_day”, and “julian”.
</dl>
<h3 class="heading">Examples</h3>
<p>Look at the structure of the data in the netCDF dataset foo.nc:
<p>ncdump -c foo.nc
<p>Produce an annotated CDL version of the structure and data in the
netCDF dataset foo.nc, using C-style indexing for the annotations:
<p>ncdump -b c foo.nc > foo.cdl
<p>Output data for only the variables uwind and vwind from the netCDF
dataset foo.nc, and show the floating-point data with only three
significant digits of precision:
<p>ncdump -v uwind,vwind -p 3 foo.nc
<p>Produce a fully-annotated (one data value per line) listing of the
data for the variable omega, using FORTRAN conventions for indices,
and changing the netCDF dataset name in the resulting CDL file to
omega:
<p>ncdump -v omega -f fortran -n omega foo.nc > Z.cdl
<p>Examine the translated DDS for the DAP source from the specified URL.
<p>ncdump -h http://test.opendap.org:8080/dods/dts/test.01
<div class="node">
<a name="nccopy"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#ncgen3">ncgen3</a>,
Previous: <a rel="previous" accesskey="p" href="#ncdump">ncdump</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Utilities">NetCDF Utilities</a>
</div>
<h3 class="section">5.6 nccopy</h3>
<p><a name="index-nccopy-246"></a>
The nccopy utility copies an input netCDF file to an output netCDF
file, in any of the four format variants, if possible. For example,
if built with the netCDF-3 library, a netCDF classic file may be
copied to a netCDF 64-bit offset file, permitting larger variables.
If built with the netCDF-4 library, a netCDF classic file may be
copied to a netCDF-4 file or to a netCDF-4 classic model file as well,
permitting data compression, data chunking, efficient schema changes, larger
variable sizes, and use of other netCDF-4 features in case the output
uses the enhanced netCDF model.
<p>The nccopy source also serves as an example of a <dfn>generic</dfn>
netCDF-4 program, with its ability to read any valid netCDF file and
handle strings, arbitrarily nested groups, any user-defined types,
(including arbitrarily nested compound types and variable-length
types), and data of any valid netCDF-4 type. Functions from and
fragments of the nccopy source may be useful to other developers for
writing generic programs that handle or write arbitrary netCDF data.
<p>As of netCDF version 4.1, and if DAP support was enabled when nccopy
was built, the input file name on which nccopy is invoked may specify
a DAP URL. This allows nccopy to convert data on DAP servers to local
netCDF files.
<p>UNIX syntax for invoking nccopy:
<pre class="example"> nccopy [ -k kind] [ -d n] [ -s ] [ -u ] [ -c chunkspec ]
[ -m bufsize] input output
</pre>
<p>where:
<dl>
<dt><code>-k kind</code><dd>Specifies the kind of file to be created
and, by inference,
the data model (i.e. netcdf-3 (classic) versus
netcdf-4 (enhanced)).
The possible arguments are as follows.
<ul>
<li>“1” or “classic”
write a netCDF classic file format file
<li>“2”, “64-bit-offset”, or “64-bit offset”
write a netCDF 64 bit classic file format file
<li>“3”, “hdf5”, “netCDF-4”, or “enhanced”
write a netCDF-4 format file
<li>“4”, “hdf5-nc3”, “netCDF-4 classic model”, or “enhanced-nc3”
write a netCDF-4 classic model file format, which is restricted to
netCDF-3 classic data model but may use netCDF-4/HDF5 features such as
compression and chunking.
</ul>
If no value for -k is specified, then the output will use the same
format as the input. However, if the input is classic or 64-bit
offset and a compression level is specified with the -d option or
chunking is specified with the -c option, then
the output will be netCDF-4 classic model format. Note that attempting some
kinds of format conversion will result in an error, if the conversion
is not possible. For example, an attempt to copy a netCDF-4 file that
uses features of the enhanced model to any of the other kinds of
netCDF formats that use the classic model will result in an error.
<br><dt><code>-d n</code><dd>Specify deflation level (level of compression) for variable data in
output. 0 corresponds to no compression and 9 to maximum compression,
with higher levels of compression requiring marginally more time to
compress or uncompress than lower levels. Compression achieved may
also depend on chunking parameters, which will use default chunking in
the current nccopy implementation. If this option is specified for a
classic format or 64-bit offset format input file, it is not necessary
to also specify that the output should be netCDF-4 classic model, as
that will be the default. If this option is not specified and the
input file has compressed variables, the compression will still be
preserved in the output, using the same chunking as in the input
unless the -c option is used to specify different chunking.
<p>Note that nccopy requires all variables to be compressed using
the same compression level, but the API has no such restriction. With
a program you can customize compression for each variable independently.
<br><dt><code>-s</code><dd>Specify shuffling of variable data bytes before compression or after
decompression. This option is ignored unless a non-zero deflation
level is specified. Turning shuffling on sometimes improves
compression.
<br><dt><code>-u</code><dd>Convert any unlimited size dimensions in the input to fixed size
dimensions in the output.
<br><dt><code>-c chunkspec</code><dd>Specify chunking (multidimensional tiling) for variable data in the
output, useful to specify the units of disk access, compression, or
other filters such as checksums. The chunkspec argument is a string
of comma-separated associations, each specifying a dimension name, a
`/' character, and optionally the corresponding chunk length for that
dimension. No blanks should appear in the chunkspec string, except
possibly escaped blanks that are part of a dimension name. A
chunkspec must name at least one dimension, and may omit dimensions
which are not to be chunked or for which the default chunk length is
desired. If a dimension name is followed by a `/' character but no
subsequent chunk length, the actual dimension length is assumed. If
copying a classic model file to a netCDF-4 output file and not naming
all dimensions in the chunkspec, unnamed dimensions will also use the
actual dimension length for the chunk length.
<p>By default, fixed-size variables smaller than 1024 bytes of data will
not be chunked even if they use dimensions mentioned in the chunkspec
string.
<p>An example of a chunkspec for variables that use the `m' and `n'
dimensions might be `m/100,n/200' to specify 100 by 200 chunks. To
see the chunking resulting from copying with a chunkspec, use ncdump
with the `-s' option (and typically with the `-h' option) on the
output file.
<p>Note that nccopy requires variables that share a dimension to
also share the chunk size associated with that dimension, but the API
has no such restriction. With a program you can customize chunking
for each variable independently.
<br><dt><code>-m bufsize</code><dd>Specifies the size, in bytes, of the copy buffer used to
to copy large variables, by copying them in smaller pieces, each no
larger than <dfn>bufsize</dfn>. A suffix of k, m, or g multiplies
the copy buffer size by one thousand, million, or billion, respectively.
The default is 5 million bytes,
but will be increased if necessary to hold at least one chunk of
netCDF-4 chunked variables in the input file. You may want to specify
a value larger than the default for OPeNDAP copies of large files over high
latency networks.
</dl>
<h3 class="heading">Examples</h3>
<h5 class="subsubheading">Simple copy, check for corruption or truncation</h5>
<p>Make a copy of foo1.nc, a netCDF file of any type, to foo2.nc, a
netCDF file of the same type:
<pre class="example"> nccopy foo1.nc foo2.nc
</pre>
<p>This also can be used to check foo1.nc for corruption of metadata
or for truncation, because such problems will usually be detected in
trying to parse and read through the data.
<p>Note that the above copy will not be as fast as use of a simple copy
utility, because the file is copied using only the netCDF API. If the
input file has extra bytes after the end of the netCDF data, those
will not be copied, because they are not accessible through the netCDF
interface. If the original file was generated in `No fill' mode so
that fill values are not stored for padding for data alignment, the
output file may have different padding bytes.
<h5 class="subsubheading">Uncompress and convert to classic format</h5>
<p>Convert a netCDF-4 classic model file that uses compression (compressed.nc)
to a netCDF-3 file (classic.nc):
<pre class="example"> nccopy -k classic compressed.nc classic.nc
</pre>
<p>Note that “1” could be used instead of “classic”.
<h5 class="subsubheading">Copy a subset of data on an OPeNDAP server to a netCDF file</h5>
<p>Download the variable `time_bnds' and it's associated attributes from
an OPeNDAP server and copy the result to a netCDF file named `tb.nc':
<pre class="example"> nccopy 'http://test.opendap.org/opendap/data/nc/sst.mnmean.nc.gz?time_bnds' tb.nc
</pre>
<p>Note that URLs that name specific variables as command-line arguments
should generally be quoted, to avoid the shell interpreting special
characters in OPeNDAP syntax, such as `?'.
<h5 class="subsubheading">Apply compression to a netCDF file</h5>
<p>Compress all the variables in the input file foo.nc, a netCDF file of any
type, to the output file bar.nc:
<pre class="example"> nccopy -d1 foo.nc bar.nc
</pre>
<p>If foo.nc was a classic or 64-bit offset netCDF file, bar.nc will be a
netCDF-4 classic model netCDF file, because the classic and 64-bit
offset format variants don't support compression. If foo.nc was a
netCDF-4 file with some variables compressed using various deflation
levels, the output will also be a netCDF-4 file of the same type, but
all the variables, including any uncompressed variables in the input,
will now use deflation level 1.
<div class="node">
<a name="ncgen3"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#nccopy">nccopy</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Utilities">NetCDF Utilities</a>
</div>
<h3 class="section">5.7 ncgen3</h3>
<p><a name="index-ncgen3-247"></a><a name="index-C-code-via-ncgen3_002c-generating-248"></a><a name="index-generating-C-code-via-ncgen3-249"></a>
The ncgen3 tool is the new name for the older, original
ncgen utility.
<p>The ncgen3 tool generates a netCDF file or a C or FORTRAN program that
creates a netCDF dataset. If no options are specified in invoking
ncgen3, the program merely checks the syntax of the CDL input,
producing error messages for any violations of CDL syntax.
<p>The ncgen3 utility can only generate
classic-model netCDF-4 files or programs.
<p>UNIX syntax for invoking ncgen3:
<pre class="example"> ncgen3 [-b] [-o netcdf-file] [-c] [-f] [-v2|-v3] [-x] [input-file]
</pre>
<p>where:
<dl>
<dt><code>-b</code><dd>Create a (binary) netCDF file. If the '-o' option is absent, a default
file name will be constructed from the netCDF name (specified after
the netcdf keyword in the input) by appending the '.nc'
extension. Warning: if a file already exists with the specified name
it will be overwritten.
<br><dt><code>-o netcdf-file</code><dd>Name for the netCDF file created. If this option is specified, it
implies the '-b' option. (This option is necessary because netCDF
files are direct-access files created with seek calls, and hence
cannot be written to standard output.)
<br><dt><code>-c</code><dd>Generate C source code that will create a netCDF dataset matching the
netCDF specification. The C source code is written to standard
output. This is only useful for relatively small CDL files, since all
the data is included in variable initializations in the generated
program.
<br><dt><code>-f</code><dd>Generate FORTRAN source code that will create a netCDF dataset
matching the netCDF specification. The FORTRAN source code is written
to standard output. This is only useful for relatively small CDL
files, since all the data is included in variable initializations in
the generated program.
<br><dt><code>-v2</code><dd>The generated netCDF file or program will use the version of the
format with 64-bit offsets, to allow for the creation of very large
files. These files are not as portable as classic format netCDF
files, because they require version 3.6.0 or later of the netCDF
library.
<br><dt><code>-v3</code><dd>The generated netCDF file will be in netCDF-4/HDF5 format. These files
are not as portable as classic format netCDF files, because they
require version 4.0 or later of the netCDF library.
<br><dt><code>-x</code><dd>Use “no fill” mode, omitting the initialization of variable values
with fill values. This can make the creation of large files much
faster, but it will also eliminate the possibility of detecting the
inadvertent reading of values that haven't been written.
</dl>
<div class="node">
<a name="Units"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Attribute-Conventions">Attribute Conventions</a>,
Previous: <a rel="previous" accesskey="p" href="#NetCDF-Utilities">NetCDF Utilities</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="appendix">Appendix A Units</h2>
<p><a name="index-units-library-250"></a><a name="index-udunits-251"></a><a name="index-applications_002c-generic_002c-units-252"></a>
The Unidata Program Center has developed a units library to convert
between formatted and binary forms of units specifications and perform
unit algebra on the binary form. Though the units library is
self-contained and there is no dependency between it and the netCDF
library, it is nevertheless useful in writing generic netCDF programs
and we suggest you obtain it. The library and associated documentation
is available from <a href="http://www.unidata.ucar.edu/packages/udunits/">http://www.unidata.ucar.edu/packages/udunits/</a>.
<p>The following are examples of units strings that can be interpreted by
the utScan() function of the Unidata units library:
<pre class="example"> 10 kilogram.meters/seconds2
10 kg-m/sec2
10 kg m/s^2
10 kilogram meter second-2
(PI radian)2
degF
100rpm
geopotential meters
33 feet water
milliseconds since 1992-12-31 12:34:0.1 -7:00
</pre>
<p>A unit is specified as an arbitrary product of constants and
unit-names raised to arbitrary integral powers. Division is indicated
by a slash '/'. Multiplication is indicated by white space, a period
'.', or a hyphen '-'. Exponentiation is indicated by an integer suffix
or by the exponentiation operators '^' and '**'. Parentheses may be
used for grouping and disambiguation. The time stamp in the last
example is handled as a special case.
<p>Arbitrary Galilean transformations (i.e., y = ax + b) are allowed. In
particular, temperature conversions are correctly handled. The
specification:
<pre class="example"> degF 32
</pre>
<p>indicates a Fahrenheit scale with the origin shifted to thirty-two
degrees Fahrenheit (i.e., to zero Celsius). Thus, the Celsius scale is
equivalent to the following unit:
<pre class="example"> 1.8 degF 32
</pre>
<p>Note that the origin-shift operation takes precedence over
multiplication. In order of increasing precedence, the operations are
division, multiplication, origin-shift, and exponentiation.
<p>utScan() understands all the SI prefixes (e.g. "mega" and "milli")
plus their abbreviations (e.g. "M" and "m")
<p>The function utPrint() always encodes a unit specification one way. To
reduce misunderstandings, it is recommended that this encoding style
be used as the default. In general, a unit is encoded in terms of
basic units, factors, and exponents. Basic units are separated by
spaces, and any exponent directly appends its associated unit. The
above examples would be encoded as follows:
<pre class="example"> 10 kilogram meter second-2
9.8696044 radian2
0.555556 kelvin 255.372
10.471976 radian second-1
9.80665 meter2 second-2
98636.5 kilogram meter-1 second-2
0.001 seconds since 1992-12-31 19:34:0.1000 UTC
</pre>
<p>(Note that the Fahrenheit unit is encoded as a deviation, in
fractional kelvins, from an origin at 255.372 kelvin, and that the
time in the last example has been referenced to UTC.)
<p>The database for the units library is a formatted file containing unit
definitions and is used to initialize this package. It is the first
place to look to discover the set of valid names and symbols.
<p>The format for the units-file is documented internally and the file
may be modified by the user as necessary. In particular, additional
units and constants may be easily added (including variant spellings
of existing units or constants).
<p>utScan() is case-sensitive. If this causes difficulties, you might try
making appropriate additional entries to the units-file.
<p>Some unit abbreviations in the default units-file might seem
counter-intuitive. In particular, note the following:
<p><table summary="">
<tr align="left"><td valign="top" width="25%">For </td><td valign="top" width="25%">Use </td><td valign="top" width="25%">Not </td><td valign="top" width="25%">Which Instead Means
<p><br></td></tr><tr align="left"><td valign="top" width="25%">Celsius </td><td valign="top" width="25%">Celsius </td><td valign="top" width="25%">C </td><td valign="top" width="25%">coulomb
<p><br></td></tr><tr align="left"><td valign="top" width="25%">gram </td><td valign="top" width="25%">gram </td><td valign="top" width="25%">g </td><td valign="top" width="25%"><standard free fall>
<p><br></td></tr><tr align="left"><td valign="top" width="25%">gallon </td><td valign="top" width="25%">gallon </td><td valign="top" width="25%">gal </td><td valign="top" width="25%"><acceleration>
<p><br></td></tr><tr align="left"><td valign="top" width="25%">radian </td><td valign="top" width="25%">radian </td><td valign="top" width="25%">rad </td><td valign="top" width="25%"><absorbed dose>
<p><br></td></tr><tr align="left"><td valign="top" width="25%">Newton </td><td valign="top" width="25%">newton or N </td><td valign="top" width="25%">nt </td><td valign="top" width="25%">nit (unit of photometry)
<br></td></tr></table>
<p>For additional information on this units library, please consult the
manual pages that come with its distribution.
<div class="node">
<a name="Attribute-Conventions"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#File-Format">File Format</a>,
Previous: <a rel="previous" accesskey="p" href="#Units">Units</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="appendix">Appendix B Attribute Conventions</h2>
<p><a name="index-attribute-conventions-253"></a><a name="index-applications_002c-generic_002c-conventions-254"></a><a name="index-conventions_002c-attributes-255"></a>
Names commencing with underscore ('_') are reserved for use by the
netCDF library. Most generic applications that process netCDF datasets
assume standard attribute conventions and it is strongly recommended
that these be followed unless there are good reasons for not doing
so. Below we list the names and meanings of recommended standard
attributes that have proven useful. Note that some of these
(e.g. units, valid_range, scale_factor) assume numeric data and should
not be used with character data.
<dl>
<dt><code>units</code><a name="index-units-256"></a><dd>A character string that specifies the units used for the variable's
data. Unidata has developed a freely-available library of routines to
convert between character string and binary forms of unit
specifications and to perform various useful operations on the binary
forms. This library is used in some netCDF applications. Using the
recommended units syntax permits data represented in conformable units
to be automatically converted to common units for arithmetic
operations. For more information see <a href="#Units">Units</a>.
<br><dt><code>long_name</code><a name="index-long_005fname-257"></a><dd>A long descriptive name. This could be used for labeling plots, for
example. If a variable has no long_name attribute assigned, the
variable name should be used as a default.
<br><dt><code>_FillValue</code><a name="index-g_t_005fFillValue-258"></a><dd>The _FillValue attribute specifies the fill value used to pre-fill
disk space allocated to the variable. Such pre-fill occurs unless
nofill mode is set using nc_set_fill in C (see <a href="netcdf-c.html#nc_005fset_005ffill">nc_set_fill</a>) or NF_SET_FILL in Fortran
(see <a href="netcdf-f77.html#NF_005fSET_005fFILL">NF_SET_FILL</a>). The fill value
is returned when reading values that were never written. If _FillValue
is defined then it should be scalar and of the same type as the
variable. If the variable is packed using scale_factor and
add_offset attributes (see below), the _FillValue attribute should
have the data type of the packed data.
<p>It is not necessary to define your own _FillValue attribute for a
variable if the default fill value for the type of the variable is
adequate. However, use of the default fill value for data type byte is
not recommended. Note that if you change the value of this attribute,
the changed value applies only to subsequent writes; previously
written data are not changed.
<p>Generic applications often need to write a value to represent
undefined or missing values. The fill value provides an appropriate
value for this purpose because it is normally outside the valid range
and therefore treated as missing when read by generic applications. It
is legal (but not recommended) for the fill value to be within the
valid range.
<p>For more information for C programmers see <a href="netcdf-c.html#Fill-Values">Fill Values</a>. For more information for Fortran
programmers see <a href="netcdf-f77.html#Fill-Values">Fill Values</a>.
<br><dt><code>missing_value</code><a name="index-missing_005fvalue-259"></a><dd>This attribute is not treated in any special way by the
library or conforming generic applications, but is often useful
documentation and may be used by specific applications. The
missing_value attribute can be a scalar or vector containing values
indicating missing data. These values should all be outside the valid
range so that generic applications will treat them as missing.
<p>When scale_factor and add_offset are used for packing, the value(s) of
the missing_value attribute should be specified in the domain of the
data in the file (the packed data), so that missing values can be
detected before the scale_factor and add_offset are applied.
<br><dt><code>valid_min</code><a name="index-valid_005fmin-260"></a><dd>A scalar specifying the minimum valid value for this variable.
<br><dt><code>valid_max</code><a name="index-valid_005fmax-261"></a><dd>A scalar specifying the maximum valid value for this variable.
<br><dt><code>valid_range</code><a name="index-valid_005frange-262"></a><dd>A vector of two numbers specifying the minimum and maximum valid
values for this variable, equivalent to specifying values for both
valid_min and valid_max attributes. Any of these attributes define the
valid range. The attribute valid_range must not be defined if either
valid_min or valid_max is defined.
<p>Generic applications should treat values outside the valid range as
missing. The type of each valid_range, valid_min and valid_max
attribute should match the type of its variable (except that for byte
data, these can be of a signed integral type to specify the intended
range).
<p>If neither valid_min, valid_max nor valid_range is defined then
generic applications should define a valid range as follows. If the
data type is byte and _FillValue is not explicitly defined, then the
valid range should include all possible values. Otherwise, the valid
range should exclude the _FillValue (whether defined explicitly or by
default) as follows. If the _FillValue is positive then it defines a
valid maximum, otherwise it defines a valid minimum. For integer
types, there should be a difference of 1 between the _FillValue and
this valid minimum or maximum. For floating point types, the
difference should be twice the minimum possible (1 in the least
significant bit) to allow for rounding error.
<p>If the variable is packed using scale_factor and add_offset attributes
(see below), the _FillValue, missing_value, valid_range, valid_min, or
valid_max attributes should have the data type of the packed data.
<br><dt><code>scale_factor</code><a name="index-scale_005ffactor-263"></a><dd>If present for a variable, the data are to be multiplied by this
factor after the data are read by the application that accesses the
data.
<p>If valid values are specified using the valid_min, valid_max,
valid_range, or _FillValue attributes, those values should be
specified in the domain of the data in the file (the packed data),
so that they can be interpreted before the scale_factor and add_offset
are applied.
<br><dt><code>add_offset</code><a name="index-add_005foffset-264"></a><dd>If present for a variable, this number is to be added to the data
after it is read by the application that accesses the data. If both
scale_factor and add_offset attributes are present, the data are first
scaled before the offset is added. The attributes scale_factor and
add_offset can be used together to provide simple data compression to
store low-resolution floating-point data as small integers in a netCDF
dataset. When scaled data are written, the application should first
subtract the offset and then divide by the scale factor, rounding the
result to the nearest integer to avoid a bias caused by truncation
towards zero.
<p>When scale_factor and add_offset are used for packing, the associated
variable (containing the packed data) is typically of type byte or
short, whereas the unpacked values are intended to be of type float or
double. The attributes scale_factor and add_offset should both be of
the type intended for the unpacked data, e.g. float or double.
<br><dt><code>signedness</code><a name="index-signedness-265"></a><dd>Deprecated attribute, originally designed to indicate whether byte
values should be treated as signed or unsigned. The attributes
valid_min and valid_max may be used for this purpose. For example, if
you intend that a byte variable store only non-negative values, you can
use valid_min = 0 and valid_max = 255. This attribute is ignored by
the netCDF library.
<br><dt><code>C_format</code><a name="index-C_005fformat-266"></a><dd>A character array providing the format that should be used by C
applications to print values for this variable. For example, if you
know a variable is only accurate to three significant digits, it would
be appropriate to define the C_format attribute as "%.3g". The ncdump
utility program uses this attribute for variables for which it is
defined. The format applies to the scaled (internal) type and value,
regardless of the presence of the scaling attributes scale_factor and
add_offset.
<br><dt><code>FORTRAN_format</code><a name="index-FORTRAN_005fformat-267"></a><dd>A character array providing the format that should be used by FORTRAN
applications to print values for this variable. For example, if you
know a variable is only accurate to three significant digits, it would
be appropriate to define the FORTRAN_format attribute as "(G10.3)".
<br><dt><code>title</code><a name="index-title-268"></a><dd>A global attribute that is a character array providing a succinct
description of what is in the dataset.
<br><dt><code>history</code><a name="index-history-269"></a><dd>A global attribute for an audit trail. This is a character array with
a line for each invocation of a program that has modified the
dataset. Well-behaved generic netCDF applications should append a line
containing: date, time of day, user name, program name and command
arguments.
<br><dt><code>Conventions</code><a name="index-Conventions-270"></a><dd>If present, 'Conventions' is a global attribute that is a character
array for the name of the conventions followed by the dataset.
Originally, these conventions were named by a string that was
interpreted as a directory name relative to the directory
/pub/netcdf/Conventions/ on the host ftp.unidata.ucar.edu. The web
page http://www.unidata.ucar.edu/netcdf/conventions.html is now the preferred and
authoritative location for registering a URI reference to a set of
conventions maintained elsewhere. The FTP site will be preserved for
compatibility with existing references, but authors of new conventions
should submit a request to support-netcdf@unidata.ucar.edu for listing
on the Unidata conventions web page.
<p>It may be convenient for defining institutions and groups to use a
hierarchical structure for general conventions and more specialized
conventions.
For example, if a group named NUWG agrees upon a set of conventions
for dimension names, variable names, required attributes, and netCDF
representations for certain discipline-specific data structures, they
may store a document describing the agreed-upon conventions in a
dataset in the NUWG/ subdirectory of the Conventions
directory. Datasets that followed these conventions would contain a
global Conventions attribute with value "NUWG".
<p>Later, if the group agrees upon some additional conventions for a
specific subset of NUWG data, for example time series data, the
description of the additional conventions might be stored in the
NUWG/Time_series/ subdirectory, and datasets that adhered to these
additional conventions would use the global Conventions attribute with
value "NUWG/Time_series", implying that this dataset adheres to the
NUWG conventions and also to the additional NUWG time-series
conventions.
<p>It is possible for a netCDF file to adhere to more than one set of
conventions, even when there is no inheritance relationship among the
conventions. In this case, the value of the `Conventions' attribute
may be a single text string containing a list of the convention names
separated by blank space (recommended) or commas (if a convention name
contains blanks).
<p>Typical conventions web sites will include references to documents in
some form agreed upon by the community that supports the conventions
and examples of netCDF file structures that follow the conventions.
</dl>
<div class="node">
<a name="File-Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Internal-Dispatch-Table">Internal Dispatch Table</a>,
Previous: <a rel="previous" accesskey="p" href="#Attribute-Conventions">Attribute Conventions</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="appendix">Appendix C File Format Specification</h2>
<p><a name="index-file-format-271"></a>
In different contexts, “netCDF” may refer to an abstract data model,
a software implementation with associated application program
interfaces (APIs), or a data format. Confusion may easily arise in
discussions of different versions of the data models, software, and
formats, because the relationships among versions of these entities is
more complex than a simple one-to-one correspondence by version. For
example, compatibility commitments require that new versions of the
software support all previous variants of the format and data model.
<p>To avoid this potential confusion, we assign distinct names to
versions of the formats, data models, and software releases that will
be used consistently in the remainder of this appendix.
<p>In this appendix, two format variants are specified formally, the
<dfn>classic format</dfn> and the <dfn>64-bit offset format</dfn> for netCDF
data. Two additional format variants are discussed less formally, the
<dfn>netCDF-4 format</dfn> and the <dfn>netCDF-4 classic model format</dfn>.
<p>The classic format was the only format for netCDF data created between
1989 and 2004 by various versions of the reference software from
Unidata. In 2004, the 64-bit offset format variant was introduced for
creation of and access to much larger files. The reference software,
available for C-based and Java-based programs, supported use of the
same APIs for accessing either classic or 64-bit offset files, so
programs reading the files would not have to depend on which format
was used.
<p>There are only two netCDF data models, the <dfn>classic model</dfn> and the
<dfn>enhanced model</dfn>. The classic model is the simpler of the two, and is
used for all data stored in classic format, 64-bit offset format, or
netCDF-4 classic model format. The enhanced model (also referred to as
the netCDF- 4 data model) was introduced in 2008 as an extension of
the classic model that adds more powerful forms of data representation
and data types at the expense of some additional complexity. Although
data represented with the classic model can also be represented using
the enhanced model, datasets that use features of the enhanced model,
such as user-defined nested data types, cannot be represented with the
classic model. Use of added features of the enhanced model requires
that data be stored in the netCDF-4 format.
<p>Versions 1.0 through 3.5 of the Unidata C-based reference software,
released between 1989 and 2000, supported only the classic data model
and classic format. Version 3.6, released in late 2004, first provided
support for the 64-bit offset format, but still used the classic data
model. With version 4.0, released in 2008, the enhanced data model
was introduced along with the two new HDF5-based format variants, the
netCDF-4 format and the netCDF-4 classic model format. Evolution of
the data models, formats, and APIs will continue the commitment to support
all previous netCDF data models, data format variants, and APIs in
future software releases.
<p>Use of the HDF5 storage layer in netCDF-4 software provides features
for improved performance, independent of the data model used, for
example compression and dynamic schema changes. Such performance
improvements are available for data stored in the netCDF-4 classic
model format, even when accessed by programs that only support the
classic model.
<p>Related formats not discussed in this appendix include
CDL (“Common Data Language”, the original ASCII form of binary netCDF
data), and NcML (NetCDF Markup Language, an XML-based representation
for netCDF metadata and data).
<p>Knowledge of format details is not required to read or write netCDF
datasets. Software that reads netCDF data using the reference
implementation automatically detects and uses the correct version of
the format for accessing data. Understanding details may be helpful
for understanding performance issues related to disk or server access.
<p>The netCDF reference library, developed and supported by Unidata, is
written in C, with Fortran77, Fortran90, and C++ interfaces. A number
of community and commercially supported interfaces to other languages
are also available, including IDL, Matlab, Perl, Python, and Ruby. An
independent implementation, also developed and supported by Unidata,
is written entirely in Java.
<ul class="menu">
<li><a accesskey="1" href="#NetCDF-Classic-Format">NetCDF Classic Format</a>: The Original Binary Format
<li><a accesskey="2" href="#g_t64_002dbit-Offset-Format">64-bit Offset Format</a>: Supporting Larger Variables
<li><a accesskey="3" href="#NetCDF_002d4-Format">NetCDF-4 Format</a>: Uses HDF5
<li><a accesskey="4" href="#NetCDF_002d4-Classic-Model-Format">NetCDF-4 Classic Model Format</a>: HDF5 with NetCDF Limitations
<li><a accesskey="5" href="#HDF4-SD-Format">HDF4 SD Format</a>
</ul>
<div class="node">
<a name="NetCDF-Classic-Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#g_t64_002dbit-Offset-Format">64-bit Offset Format</a>,
Previous: <a rel="previous" accesskey="p" href="#File-Format">File Format</a>,
Up: <a rel="up" accesskey="u" href="#File-Format">File Format</a>
</div>
<h3 class="section">C.1 The NetCDF Classic Format Specification</h3>
<p>To present the format more formally, we use a BNF grammar notation. In
this notation:
<ul>
<li>Non-terminals (entities defined by grammar rules) are in lower case.
<li>Terminals (atomic entities in terms of which the format specification
is written) are in upper case, and are specified literally as US-ASCII
characters within single-quote characters or are described with text
between angle brackets (‘<samp><span class="samp"><</span></samp>’ and ‘<samp><span class="samp">></span></samp>’).
<li>Optional entities are enclosed between braces (‘<samp><span class="samp">[</span></samp>’ and ‘<samp><span class="samp">]</span></samp>’).
<li>A sequence of zero or more occurrences of an entity is denoted by
‘<samp><span class="samp">[entity ...]</span></samp>’.
<li>A vertical line character (‘<samp><span class="samp">|</span></samp>’) separates alternatives. Alternation
has lower precedence than concatenation.
<li>Comments follow ‘<samp><span class="samp">//</span></samp>’ characters.
<li>A single byte that is not a printable character is denoted using a
hexadecimal number with the notation ‘<samp><span class="samp">\xDD</span></samp>’, where each D is a
hexadecimal digit.
<li>A literal single-quote character is denoted by ‘<samp><span class="samp">\'</span></samp>’, and a literal
back-slash character is denoted by ‘<samp><span class="samp">\\</span></samp>’.
</ul>
<p>Following the grammar, a few additional notes are included to specify
format characteristics that are impractical to capture in a BNF
grammar, and to note some special cases for implementers. Comments in
the grammar point to the notes and special cases, and help to clarify
the intent of elements of the format.
<ul class="menu">
<li><a accesskey="1" href="#Classic-Format-Spec">Classic Format Spec</a>: Detailed Format Information
<li><a accesskey="2" href="#Computing-Offsets">Computing Offsets</a>: How to Get the Data You Want
<li><a accesskey="3" href="#Examples">Examples</a>: The Binary Layout of some Simple Files
</ul>
<div class="node">
<a name="Classic-Format-Spec"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Computing-Offsets">Computing Offsets</a>,
Previous: <a rel="previous" accesskey="p" href="#NetCDF-Classic-Format">NetCDF Classic Format</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Classic-Format">NetCDF Classic Format</a>
</div>
<h4 class="unnumberedsubsec">The Format in Detail</h4>
<pre class="example"> netcdf_file = header data
header = magic numrecs dim_list gatt_list var_list
magic = 'C' 'D' 'F' VERSION
VERSION = \x01 | // classic format
\x02 // 64-bit offset format
numrecs = NON_NEG | STREAMING // length of record dimension
dim_list = ABSENT | NC_DIMENSION nelems [dim ...]
gatt_list = att_list // global attributes
att_list = ABSENT | NC_ATTRIBUTE nelems [attr ...]
var_list = ABSENT | NC_VARIABLE nelems [var ...]
ABSENT = ZERO ZERO // Means list is not present
ZERO = \x00 \x00 \x00 \x00 // 32-bit zero
NC_DIMENSION = \x00 \x00 \x00 \x0A // tag for list of dimensions
NC_VARIABLE = \x00 \x00 \x00 \x0B // tag for list of variables
NC_ATTRIBUTE = \x00 \x00 \x00 \x0C // tag for list of attributes
nelems = NON_NEG // number of elements in following sequence
dim = name dim_length
name = nelems namestring
// Names a dimension, variable, or attribute.
// Names should match the regular expression
// ([a-zA-Z0-9_]|{MUTF8})([^\x00-\x1F/\x7F-\xFF]|{MUTF8})*
// For other constraints, see "Note on names", below.
namestring = ID1 [IDN ...] padding
ID1 = alphanumeric | '_'
IDN = alphanumeric | special1 | special2
alphanumeric = lowercase | uppercase | numeric | MUTF8
lowercase = 'a'|'b'|'c'|'d'|'e'|'f'|'g'|'h'|'i'|'j'|'k'|'l'|'m'|
'n'|'o'|'p'|'q'|'r'|'s'|'t'|'u'|'v'|'w'|'x'|'y'|'z'
uppercase = 'A'|'B'|'C'|'D'|'E'|'F'|'G'|'H'|'I'|'J'|'K'|'L'|'M'|
'N'|'O'|'P'|'Q'|'R'|'S'|'T'|'U'|'V'|'W'|'X'|'Y'|'Z'
numeric = '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
// special1 chars have traditionally been
// permitted in netCDF names.
special1 = '_'|'.'|'@'|'+'|'-'
// special2 chars are recently permitted in
// names (and require escaping in CDL).
// Note: '/' is not permitted.
special2 = ' ' | '!' | '"' | '#' | '$' | '%' | '&' | '\'' |
'(' | ')' | '*' | ',' | ':' | ';' | '<' | '=' |
'>' | '?' | '[' | '\\' | ']' | '^' | '`' | '{' |
'|' | '}' | '~'
MUTF8 = <multibyte UTF-8 encoded, NFC-normalized Unicode character>
dim_length = NON_NEG // If zero, this is the record dimension.
// There can be at most one record dimension.
attr = name nc_type nelems [values ...]
nc_type = NC_BYTE |
NC_CHAR |
NC_SHORT |
NC_INT |
NC_FLOAT |
NC_DOUBLE
var = name nelems [dimid ...] vatt_list nc_type vsize begin
// nelems is the dimensionality (rank) of the
// variable: 0 for scalar, 1 for vector, 2
// for matrix, ...
dimid = NON_NEG // Dimension ID (index into dim_list) for
// variable shape. We say this is a "record
// variable" if and only if the first
// dimension is the record dimension.
vatt_list = att_list // Variable-specific attributes
vsize = NON_NEG // Variable size. If not a record variable,
// the amount of space in bytes allocated to
// the variable's data. If a record variable,
// the amount of space per record. See "Note
// on vsize", below.
begin = OFFSET // Variable start location. The offset in
// bytes (seek index) in the file of the
// beginning of data for this variable.
data = non_recs recs
non_recs = [vardata ...] // The data for all non-record variables,
// stored contiguously for each variable, in
// the same order the variables occur in the
// header.
vardata = [values ...] // All data for a non-record variable, as a
// block of values of the same type as the
// variable, in row-major order (last
// dimension varying fastest).
recs = [record ...] // The data for all record variables are
// stored interleaved at the end of the
// file.
record = [varslab ...] // Each record consists of the n-th slab
// from each record variable, for example
// x[n,...], y[n,...], z[n,...] where the
// first index is the record number, which
// is the unlimited dimension index.
varslab = [values ...] // One record of data for a variable, a
// block of values all of the same type as
// the variable in row-major order (last
// index varying fastest).
values = bytes | chars | shorts | ints | floats | doubles
string = nelems [chars]
bytes = [BYTE ...] padding
chars = [CHAR ...] padding
shorts = [SHORT ...] padding
ints = [INT ...]
floats = [FLOAT ...]
doubles = [DOUBLE ...]
padding = <0, 1, 2, or 3 bytes to next 4-byte boundary>
// Header padding uses null (\x00) bytes. In
// data, padding uses variable's fill value.
// See "Note on padding", below, for a special
// case.
NON_NEG = <non-negative INT>
STREAMING = \xFF \xFF \xFF \xFF // Indicates indeterminate record
// count, allows streaming data
OFFSET = <non-negative INT> | // For classic format or
<non-negative INT64> // for 64-bit offset format
BYTE = <8-bit byte> // See "Note on byte data", below.
CHAR = <8-bit byte> // See "Note on char data", below.
SHORT = <16-bit signed integer, Bigendian, two's complement>
INT = <32-bit signed integer, Bigendian, two's complement>
INT64 = <64-bit signed integer, Bigendian, two's complement>
FLOAT = <32-bit IEEE single-precision float, Bigendian>
DOUBLE = <64-bit IEEE double-precision float, Bigendian>
// following type tags are 32-bit integers
NC_BYTE = \x00 \x00 \x00 \x01 // 8-bit signed integers
NC_CHAR = \x00 \x00 \x00 \x02 // text characters
NC_SHORT = \x00 \x00 \x00 \x03 // 16-bit signed integers
NC_INT = \x00 \x00 \x00 \x04 // 32-bit signed integers
NC_FLOAT = \x00 \x00 \x00 \x05 // IEEE single precision floats
NC_DOUBLE = \x00 \x00 \x00 \x06 // IEEE double precision floats
// Default fill values for each type, may be
// overridden by variable attribute named
// `_FillValue'. See "Note on fill values",
// below.
FILL_CHAR = \x00 // null byte
FILL_BYTE = \x81 // (signed char) -127
FILL_SHORT = \x80 \x01 // (short) -32767
FILL_INT = \x80 \x00 \x00 \x01 // (int) -2147483647
FILL_FLOAT = \x7C \xF0 \x00 \x00 // (float) 9.9692099683868690e+36
FILL_DOUBLE = \x47 \x9E \x00 \x00 \x00 \x00 //(double)9.9692099683868690e+36
</pre>
<p>Note on <code>vsize</code>: This number is the product of the dimension lengths
(omitting the record dimension) and the number of bytes per value
(determined from the type), increased to the next multiple of 4, for
each variable. If a record variable, this is the amount of space per
record (except that, for backward compatibility, it always includes
padding to the next multiple of 4 bytes, even in the exceptional case
noted below under “Note on padding”). The netCDF “record size” is
calculated as the sum of the <code>vsize</code>'s of all the record variables.
<p>The <code>vsize</code> field is actually redundant, because its value may be
computed from other information in the header. The 32-bit <code>vsize</code> field
is not large enough to contain the size of variables that require more
than 2^32 - 4 bytes, so 2^32 - 1 is used in the <code>vsize</code> field for such
variables.
<p>Note on names: Earlier versions of the netCDF C-library reference
implementation enforced a more restricted set of characters in
creating new names, but permitted reading names containing arbitrary
bytes. This specification extends the permitted characters in names
to include multi-byte UTF-8 encoded Unicode and additional printing
characters from the US-ASCII alphabet. The first character of a name
must be alphanumeric, a multi-byte UTF-8 character, or '_'
(reserved for special names with meaning to implementations,
such as the “_FillValue” attribute). Subsequent characters may also
include printing special characters, except for '/' which is not
allowed in names. Names that have trailing space characters are also
not permitted.
<p>Implementations of the netCDF classic and 64-bit offset format must
ensure that names are normalized according to Unicode NFC
normalization rules during encoding as UTF-8 for storing in the file
header. This is necessary to ensure that gratuitous differences in
the representation of Unicode names do not cause anomalies in
comparing files and querying data objects by name.
<p>Note on streaming data: The largest possible record count, 2^32
- 1, is reserved to indicate an indeterminate number of records.
This means that the number of records in the file must be determined
by other means, such as reading them or computing the current number
of records from the file length and other information in the header.
It also means that the numrecs field in the header will not be updated
as records are added to the file. [This feature is not yet
implemented].
<p>Note on padding: In the special case when there is only one record
variable and it is of type character, byte, or short, no padding is
used between record slabs, so records after the first record do not
necessarily start on four-byte boundaries. However, as noted above
under “Note on <code>vsize</code>”, the <code>vsize</code> field is computed to
include padding to the next multiple of 4 bytes. In this case,
readers should ignore <code>vsize</code> and assume no padding. Writers
should store <code>vsize</code> as if padding were included.
<p>Note on byte data: It is possible to interpret byte data as either
signed (-128 to 127) or unsigned (0 to 255). When reading byte data
through an interface that converts it into another numeric type, the
default interpretation is signed. There are various attribute
conventions for specifying whether bytes represent signed or unsigned
data, but no standard convention has been established. The variable
attribute “_Unsigned” is reserved for this purpose in future
implementations.
<p>Note on char data: Although the characters used in netCDF names must
be encoded as UTF-8, character data may use other encodings. The
variable attribute “_Encoding” is reserved for this purpose in future
implementations.
<p>Note on fill values: Because data variables may be created before
their values are written, and because values need not be written
sequentially in a netCDF file, default “fill values” are defined for
each type, for initializing data values before they are explicitly
written. This makes it possible to detect reading values that were
never written. The variable attribute “_FillValue”, if present,
overrides the default fill value for a variable. If _FillValue is
defined then it should be scalar and of the same type as the variable.
<p>Fill values are not required, however, because netCDF libraries have
traditionally supported a “no fill” mode when writing, omitting the
initialization of variable values with fill values. This makes the
creation of large files faster, but also eliminates the possibility of
detecting the inadvertent reading of values that haven't been written.
<div class="node">
<a name="Computing-Offsets"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Examples">Examples</a>,
Previous: <a rel="previous" accesskey="p" href="#Classic-Format-Spec">Classic Format Spec</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Classic-Format">NetCDF Classic Format</a>
</div>
<h4 class="unnumberedsubsec">Notes on Computing File Offsets</h4>
<p>The offset (position within the file) of a specified data value in a
classic format or 64-bit offset data file is completely determined by
the variable start location (the offset in the <code>begin</code> field), the
external type of the variable (the <code>nc_type</code> field), and the
dimension indices (one for each of the variable's dimensions) of the
value desired.
<p>The external size in bytes of one data value for each possible
netCDF type, denoted <code>extsize</code> below, is:
<p><table summary=""><tr align="left"><td valign="top" width="1%"><code>NC_BYTE</code>
</td><td valign="top" width="10%">1
<br></td></tr><tr align="left"><td valign="top" width="1%"><code>NC_CHAR</code>
</td><td valign="top" width="10%">1
<br></td></tr><tr align="left"><td valign="top" width="1%"><code>NC_SHORT</code>
</td><td valign="top" width="10%">2
<br></td></tr><tr align="left"><td valign="top" width="1%"><code>NC_INT</code>
</td><td valign="top" width="10%">4
<br></td></tr><tr align="left"><td valign="top" width="1%"><code>NC_FLOAT</code>
</td><td valign="top" width="10%">4
<br></td></tr><tr align="left"><td valign="top" width="1%"><code>NC_DOUBLE</code>
</td><td valign="top" width="10%">8
<br></td></tr></table>
<p>The record size, denoted by <code>recsize</code> below, is the sum of the <code>vsize</code>
fields of record variables (variables that use the unlimited
dimension), using the actual value determined by dimension sizes and
variable type in case the <code>vsize</code> field is too small for the variable
size.
<p>To compute the offset of a value relative to the beginning of a
variable, it is helpful to precompute a “product vector” from the
dimension lengths. Form the products of the dimension lengths for the
variable from right to left, skipping the leftmost (record) dimension
for record variables, and storing the results as the product vector
for each variable.
<p>For example:
<p>Non-record variable:
<p>dimension lengths: [ 5 3 2 7]
product vector: [210 42 14 7]
<p>Record variable:
<p>dimension lengths: [0 2 9 4]
product vector: [0 72 36 4]
<p>At this point, the leftmost product, when rounded up to the next
multiple of 4, is the variable size, <code>vsize</code>, in the grammar above. For
example, in the non-record variable above, the value of the <code>vsize</code>
field is 212 (210 rounded up to a multiple of 4). For the record
variable, the value of <code>vsize</code> is just 72, since this is already a
multiple of 4.
<p>Let coord be the array of coordinates (dimension indices, zero-based)
of the desired data value. Then the offset of the value from the
beginning of the file is just the file offset of the first data value
of the desired variable (its <code>begin</code> field) added to the inner product
of the coord and product vectors times the size, in bytes, of each
datum for the variable. Finally, if the variable is a record variable,
the product of the record number, 'coord[0]', and the record size,
<code>recsize</code>, is added to yield the final offset value.
<p>A special case: Where there is exactly one record variable, we drop
the requirement that each record be four-byte aligned, so in this case
there is no record padding.
<div class="node">
<a name="Examples"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Computing-Offsets">Computing Offsets</a>,
Up: <a rel="up" accesskey="u" href="#NetCDF-Classic-Format">NetCDF Classic Format</a>
</div>
<h4 class="unnumberedsubsec">Examples</h4>
<p>By using the grammar above, we can derive the smallest valid netCDF
file, having no dimensions, no variables, no attributes, and hence, no
data. A CDL representation of the empty netCDF file is
<p>netcdf empty { }
<p>This empty netCDF file has 32 bytes. It begins with the four-byte
“magic number” that identifies it as a netCDF version 1 file:
‘<samp><span class="samp">C</span></samp>’, ‘<samp><span class="samp">D</span></samp>’, ‘<samp><span class="samp">F</span></samp>’, ‘<samp><span class="samp">\x01</span></samp>’. Following are seven 32-bit
integer zeros representing the number of records, an empty list of
dimensions, an empty list of global attributes, and an empty list of
variables.
<p>Below is an (edited) dump of the file produced using the Unix command
<p>od -xcs empty.nc
<p>Each 16-byte portion of the file is displayed with 4 lines. The first
line displays the bytes in hexadecimal. The second line displays the
bytes as characters. The third line displays each group of two
bytes interpreted as a signed 16-bit integer. The fourth line (added
by human) presents the interpretation of the bytes in terms of netCDF
components and values.
<pre class="example"> 4344 4601 0000 0000 0000 0000 0000 0000
C D F 001 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
17220 17921 00000 00000 00000 00000 00000 00000
[magic number ] [ 0 records ] [ 0 dimensions (ABSENT) ]
0000 0000 0000 0000 0000 0000 0000 0000
\0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
00000 00000 00000 00000 00000 00000 00000 00000
[ 0 global atts (ABSENT) ] [ 0 variables (ABSENT) ]
</pre>
<p>As a less trivial example, consider the CDL
<pre class="example"> netcdf tiny {
dimensions:
dim = 5;
variables:
short vx(dim);
data:
vx = 3, 1, 4, 1, 5 ;
}
</pre>
<p>which corresponds to a 92-byte netCDF file. The following is an edited
dump of this file:
<pre class="example"> 4344 4601 0000 0000 0000 000a 0000 0001
C D F 001 \0 \0 \0 \0 \0 \0 \0 \n \0 \0 \0 001
17220 17921 00000 00000 00000 00010 00000 00001
[magic number ] [ 0 records ] [NC_DIMENSION ] [ 1 dimension ]
0000 0003 6469 6d00 0000 0005 0000 0000
\0 \0 \0 003 d i m \0 \0 \0 \0 005 \0 \0 \0 \0
00000 00003 25705 27904 00000 00005 00000 00000
[ 3 char name = "dim" ] [ size = 5 ] [ 0 global atts
0000 0000 0000 000b 0000 0001 0000 0002
\0 \0 \0 \0 \0 \0 \0 013 \0 \0 \0 001 \0 \0 \0 002
00000 00000 00000 00011 00000 00001 00000 00002
(ABSENT) ] [NC_VARIABLE ] [ 1 variable ] [ 2 char name =
7678 0000 0000 0001 0000 0000 0000 0000
v x \0 \0 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 \0
30328 00000 00000 00001 00000 00000 00000 00000
"vx" ] [1 dimension ] [ with ID 0 ] [ 0 attributes
0000 0000 0000 0003 0000 000c 0000 0050
\0 \0 \0 \0 \0 \0 \0 003 \0 \0 \0 \f \0 \0 \0 P
00000 00000 00000 00003 00000 00012 00000 00080
(ABSENT) ] [type NC_SHORT] [size 12 bytes] [offset: 80]
0003 0001 0004 0001 0005 8001
\0 003 \0 001 \0 004 \0 001 \0 005 200 001
00003 00001 00004 00001 00005 -32767
[ 3] [ 1] [ 4] [ 1] [ 5] [fill ]
</pre>
<div class="node">
<a name="64-bit-Offset-Format"></a>
<a name="g_t64_002dbit-Offset-Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#NetCDF_002d4-Format">NetCDF-4 Format</a>,
Previous: <a rel="previous" accesskey="p" href="#NetCDF-Classic-Format">NetCDF Classic Format</a>,
Up: <a rel="up" accesskey="u" href="#File-Format">File Format</a>
</div>
<h3 class="section">C.2 The 64-bit Offset Format</h3>
<p>The netCDF 64-bit offset format differs from the classic format
only in the VERSION byte, ‘<samp><span class="samp">\x02</span></samp>’ instead of ‘<samp><span class="samp">\x01</span></samp>’, and the OFFSET
entity, a 64-bit instead of a 32-bit offset from the beginning of the
file. This small format change permits much larger files, but there
are still some practical size restrictions. Each fixed-size variable
and the data for one record's worth of each record variable are still
limited in size to a little less that 4 GiB. The rationale for this
limitation is to permit aggregate access to all the data in a netCDF
variable (or a record's worth of data) on 32-bit platforms.
<div class="node">
<a name="NetCDF-4-Format"></a>
<a name="NetCDF_002d4-Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#NetCDF_002d4-Classic-Model-Format">NetCDF-4 Classic Model Format</a>,
Previous: <a rel="previous" accesskey="p" href="#g_t64_002dbit-Offset-Format">64-bit Offset Format</a>,
Up: <a rel="up" accesskey="u" href="#File-Format">File Format</a>
</div>
<h3 class="section">C.3 The NetCDF-4 Format</h3>
<p>The netCDF-4 format implements and expands the netCDF-3 data model by
using an enhanced version of HDF5 as the storage layer. Use is
made of features that are only available in HDF5 version 1.8 and
later.
<p>Using HDF5 as the underlying storage layer, netCDF-4 files remove many
of the restrictions for classic and 64-bit offset files. The richer
enhanced model supports user-defined types and data structures,
hierarchical scoping of names using groups, additional primitive types
including strings, larger variable sizes, and multiple unlimited
dimensions. The underlying HDF5 storage layer also supports
per-variable compression, multidimensional tiling, and efficient
dynamic schema changes, so that data need not be copied when adding
new variables to the file schema.
<p>Creating a netCDF-4/HDF5 file with netCDF-4 results in an HDF5
file. The features of netCDF-4 are a subset of the features of HDF5,
so the resulting file can be used by any existing HDF5 application.
<p>Although every file in netCDF-4 format is an HDF5 file, there are HDF5
files that are not netCDF-4 format files, because the netCDF-4 format
intentionally uses a limited subset of the HDF5 data model and file
format features. Some HDF5 features not supported in the netCDF
enhanced model and netCDF-4 format include non-hierarchical group
structures, HDF5 reference types, multiple links to a data object,
user-defined atomic data types, stored property lists, more permissive
rules for data object names, the HDF5 date/time type, and attributes
associated with user-defined types.
<p>A complete specification of HDF5 files is beyond the scope of this
document. For more information about HDF5, see the HDF5 web site:
<a href="http://hdf.ncsa.uiuc.edu/HDF5/">http://hdf.ncsa.uiuc.edu/HDF5/</a>.
<p>The specification that follows is sufficient to allow HDF5 users to
create files that will be accessable from netCDF-4.
<h4 class="subsection">C.3.1 Creation Order</h4>
<p>The netCDF API maintains the creation order of objects that are
created in the file. The same is not true in HDF5, which maintains the
objects in alphabetical order. Starting in version 1.8 of HDF5, the
ability to maintain creation order was added. This must be explicitly
turned on in the HDF5 data file in several ways.
<p>Each group must have link and attribute creation order set. The
following code (from libsrc4/nc4hdf.c) shows how the netCDF-4 library
sets these when creating a group.
<pre class="example"> /* Create group, with link_creation_order set in the group
* creation property list. */
if ((gcpl_id = H5Pcreate(H5P_GROUP_CREATE)) < 0)
return NC_EHDFERR;
if (H5Pset_link_creation_order(gcpl_id, H5P_CRT_ORDER_TRACKED|H5P_CRT_ORDER_INDEXED) < 0)
BAIL(NC_EHDFERR);
if (H5Pset_attr_creation_order(gcpl_id, H5P_CRT_ORDER_TRACKED|H5P_CRT_ORDER_INDEXED) < 0)
BAIL(NC_EHDFERR);
if ((grp->hdf_grpid = H5Gcreate2(grp->parent->hdf_grpid, grp->name,
H5P_DEFAULT, gcpl_id, H5P_DEFAULT)) < 0)
BAIL(NC_EHDFERR);
if (H5Pclose(gcpl_id) < 0)
BAIL(NC_EHDFERR);
</pre>
<p>Each dataset in the HDF5 file must be created with a property list for
which the attribute creation order has been set to creation
ordering. The H5Pset_attr_creation_order funtion is used to set the
creation ordering of attributes of a variable.
<p>The following example code (from libsrc4/nc4hdf.c) shows how the
creation ordering is turned on by the netCDF library.
<pre class="example"> /* Turn on creation order tracking. */
if (H5Pset_attr_creation_order(plistid, H5P_CRT_ORDER_TRACKED|
H5P_CRT_ORDER_INDEXED) < 0)
BAIL(NC_EHDFERR);
</pre>
<h4 class="subsection">C.3.2 Groups</h4>
<p>NetCDF-4 groups are the same as HDF5 groups, but groups in a netCDF-4
file must be strictly hierarchical. In general, HDF5 permits
non-hierarchical structuring of groups (for example, a group that is
its own grandparent). These non-hierarchical relationships are not
allowed in netCDF-4 files.
<p>In the netCDF API, the global attribute becomes a group-level
attribute. That is, each group may have its own global
attributes.
<p>The root group of a file is named “/” in the netCDF API, where names
of groups are used. It should be noted that the netCDF API (like the
HDF5 API) makes little use of names, and refers to entities by number.
<h4 class="subsection">C.3.3 Dimensions with HDF5 Dimension Scales</h4>
<p>Until version 1.8, HDF5 did not have any capability to represent
shared dimensions. With the 1.8 release, HDF5 introduced the dimension
scale feature to allow shared dimensions in HDF5 files.
<p>The dimension scale is unfortunately not exactly equivilent to the
netCDF shared dimension, and this leads to a number of compromises in
the design of netCDF-4.
<p>A netCDF shared dimension consists solely of a length and a name. An
HDF5 dimension scale also includes values for each point along the
dimension, information that is (optionally) included in a netCDF
coordinate variable.
<p>To handle the case of a netCDF dimension without a coordinate
variable, netCDF-4 creates dimension scales of type char, and leaves
the contents of the dimension scale empty. Only the name and length of
the scale are significant. To distinguish this case, netCDF-4 takes
advantage of the NAME attribute of the dimension scale. (Not to be
confused with the name of the scale itself.) In the case of dimensions
without coordinate data, the HDF5 dimension scale NAME attribute is
set to the string: "This is a netCDF dimension but not a netCDF
variable."
<p>In the case where a coordinate variable is defined for a dimension,
the HDF5 dimscale matches the type of the netCDF coordinate variable,
and contains the coordinate data.
<p>A further difficulty arrises when an n-dimensional coordinate
variable is defined, where n is greater than one. NetCDF allows such
coordinate variables, but the HDF5 model does not allow dimension
scales to be attached to other dimension scales, making it impossible
to completely represent the multi-dimensional coordinate variables of
the netCDF model.
<p>To capture this information, multidimensional coordinate variables
have an attribute named _Netcdf4Coordinates. The attribute is an array
of H5T_NATIVE_INT, with the netCDF dimension IDs of each of its
dimensions.
<p>The _Netcdf4Coordinates attribute is otherwise hidden by the netCDF
API. It does not appear as one of the attributes for the netCDF
variable involved, except through the HDF5 API.
<h4 class="subsection">C.3.4 Dimensions without HDF5 Dimension Scales</h4>
<p>Starting with the netCDF-4.1 release, netCDF can read HDF5 files which
do not use dimension scales. In this case the netCDF library assigns
dimensions to the HDF5 dataset as needed, based on the length of the
dimension.
<p>When an HDF5 file is opened, each dataset is examined in
turn. The lengths of all the dimensions involved in the shape of the
dataset are determined. Each new (i.e. previously unencountered)
length results in the creation of a phony dimension in the netCDF API.
<p>This will not accurately detect a shared, unlimited dimension in the
HDF5 file, if different datasets have different lengths along this
dimension (possible in HDF5, but not in netCDF).
<p>Note that this is a read-only capability for the netCDF library. When
the netCDF library writes HDF5 files, they always use a dimension
scale for every dimension.
<p>Datasets must have either dimension scales for every dimension, or no
dimension scales at all. Partial dimension scales are not, at this
time, understood by the netCDF library.
<h4 class="subsection">C.3.5 Dimension and Coordinate Variable Ordering</h4>
<p>In order to preserve creation order, the netCDF-4 library writes
variables in their creation order. Since some variables are also
dimension scales, their order reflects both the order of the
dimensions and the order of the coordinate variables.
<p>However, these may be different. Consider the following code:
<pre class="example"> /* Create a test file. */
if (nc_create(FILE_NAME, NC_CLASSIC_MODEL|NC_NETCDF4, &ncid)) ERR;
/* Define dimensions in order. */
if (nc_def_dim(ncid, DIM0, NC_UNLIMITED, &dimids[0])) ERR;
if (nc_def_dim(ncid, DIM1, 4, &dimids[1])) ERR;
/* Define coordinate variables in a different order. */
if (nc_def_var(ncid, DIM1, NC_DOUBLE, 1, &dimids[1], &varid[1])) ERR;
if (nc_def_var(ncid, DIM0, NC_DOUBLE, 1, &dimids[0], &varid[0])) ERR;
</pre>
<p>In this case the order of the coordinate variables will be different
from the order of the dimensions.
<p>In practice, this should make little difference in user code, but if
the user is writing code that depends on the ordering of dimensions,
the netCDF library was updated in version 4.1 to detect this
condition, and add the attribute _Netcdf4Dimid to the dimension scales
in the HDF5 file. This attribute holds a scalar H5T_NATIVE_INT which
is the (zero-based) dimension ID for this dimension.
<p>If this attribute is present on any dimension scale, it must be
present on all dimension scales in the file.
<h4 class="subsection">C.3.6 Variables</h4>
<p>Variables in netCDF-4/HDF5 files exactly correspond to HDF5
datasets. The data types match naturally between netCDF and HDF5.
<p>In netCDF classic format, the problem of endianness is solved by
writing all data in big-endian order. The HDF5 library allows data to
be written as either big or little endian, and automatically reorders
the data when it is read, if necessary.
<p>By default, netCDF uses the native types on the machine which writes
the data. Users may change the endianness of a variable (before any
data are written). In that case the specified endian type will be used
in HDF5 (for example, a H5T_STD_I16LE will be used for NC_SHORT, if
little-endian has been specified for that variable.)
<dl>
<dt><code>NC_BYTE</code><dd>H5T_NATIVE_SCHAR
<br><dt><code>NC_UBYTE</code><dd>H5T_NATIVE_SCHAR
<br><dt><code>NC_CHAR</code><dd>H5T_C_S1
<br><dt><code>NC_STRING</code><dd>variable length array of H5T_C_S1
<br><dt><code>NC_SHORT</code><dd>H5T_NATIVE_SHORT
<br><dt><code>NC_USHORT</code><dd>H5T_NATIVE_USHORT
<br><dt><code>NC_INT</code><dd>H5T_NATIVE_INT
<br><dt><code>NC_UINT</code><dd>H5T_NATIVE_UINT
<br><dt><code>NC_INT64</code><dd>H5T_NATIVE_LLONG
<br><dt><code>NC_UINT64</code><dd>H5T_NATIVE_ULLONG
<br><dt><code>NC_FLOAT</code><dd>H5T_NATIVE_FLOAT
<br><dt><code>NC_DOUBLE</code><dd>H5T_NATIVE_DOUBLE
</dl>
<p>The NC_CHAR type represents a single character, and the NC_STRING an
array of characters. This can be confusing because a one-dimensional
array of NC_CHAR is used to represent a string (i.e. a scalar
NC_STRING).
<p>An odd case may arise in which the user defines a variable with the
same name as a dimension, but which is not intended to be the
coordinate variable for that dimension. In this case the string
"_nc4_non_coord_" is pre-pended to the name of the HDF5 dataset, and
stripped from the name for the netCDF API.
<h4 class="subsection">C.3.7 Attributes</h4>
<p>Attributes in HDF5 and netCDF-4 correspond very closely. Each
attribute in an HDF5 file is represented as an attribute in the netCDF-4
file, with the exception of the attributes below, which are ignored by
the netCDF-4 API.
<dl>
<dt><code>_Netcdf4Coordinates</code><dd>An integer array containing the dimension IDs of a variable which is a
multi-dimensional coordinate variable.
<br><dt><code>_nc3_strict</code><dd>When this (scalar, H5T_NATIVE_INT) attribute exists in the root group
of the HDF5 file, the netCDF API will enforce the netCDF classic model
on the data file.
<br><dt><code>REFERENCE_LIST</code><dd>This attribute is created and maintained by the HDF5 dimension scale
API.
<br><dt><code>CLASS</code><dd>This attribute is created and maintained by the HDF5 dimension scale
API.
<br><dt><code>DIMENSION_LIST</code><dd>This attribute is created and maintained by the HDF5 dimension scale
API.
<br><dt><code>NAME</code><dd>This attribute is created and maintained by the HDF5 dimension scale
API.
</dl>
<h4 class="subsection">C.3.8 User-Defined Data Types</h4>
<p>Each user-defined data type in an HDF5 file exactly corresponds to a
user-defined data type in the netCDF-4 file. Only base data types which
correspond to netCDF-4 data types may be used. (For example, no
HDF5 reference data types may be used.)
<h4 class="subsection">C.3.9 Compression</h4>
<p>The HDF5 library provides data compression using the zlib library and
the szlib library. NetCDF-4 only allows users to create data with the
zlib library (due to licensing restrictions on the szlib
library). Since HDF5 supports the transparent reading of the data with
either compression filter, the netCDF-4 library can read data
compressed with szlib (if the underlying HDF5 library is built to
support szlib), but has no way to write data with szlib compression.
<p>With zlib compression (a.k.a. deflation) the user may set a deflation
factor from 0 to 9. In our measurements the zero deflation level does
not compress the data, but does incur the performance penalty of
compressing the data. The netCDF API does not allow the user to write
a variable with zlib deflation of 0 - when asked to do so, it turns
off deflation for the variable instead. NetCDF can read an HDF5 file
with deflation of zero, and correctly report that to the user.
<div class="node">
<a name="NetCDF-4-Classic-Model-Format"></a>
<a name="NetCDF_002d4-Classic-Model-Format"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#HDF4-SD-Format">HDF4 SD Format</a>,
Previous: <a rel="previous" accesskey="p" href="#NetCDF_002d4-Format">NetCDF-4 Format</a>,
Up: <a rel="up" accesskey="u" href="#File-Format">File Format</a>
</div>
<h3 class="section">C.4 The NetCDF-4 Classic Model Format</h3>
<p>Every classic and 64-bit offset file can be represented as a netCDF-4
file, with no loss of information. There are some significant
benefits to using the simpler netCDF classic model with the netCDF-4
file format. For example, software that writes or reads classic model
data can write or read netCDF-4 classic model format data by
recompiling/relinking to a netCDF-4 API library, with no or only
trivial changes needed to the program source code. The netCDF-4
classic model format supports this usage by enforcing rules on what
functions may be called to store data in the file, to make sure its
data can be read by older netCDF applications (when relinked to a netCDF-4
library).
<p>Writing data in this format prevents use of enhanced model features
such as groups, added primitive types not available in the classic
model, and user-defined types. However performance features of the
netCDF-4 formats that do not require additional features of the
enhanced model, such as per-variable compression and chunking,
efficient dynamic schema changes, and larger variable size limits,
offer potentially significant performance improvements to readers of
data stored in this format, without requiring program changes.
<p>When a file is created via the netCDF API with a CLASSIC_MODEL mode
flag, the library creates an attribute (_nc3_strict) in the root
group. This attribute is hidden by the netCDF API, but is read when
the file is later opened, and used to ensure that no enhanced model
features are written to the file.
<div class="node">
<a name="HDF4-SD-Format"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#NetCDF_002d4-Classic-Model-Format">NetCDF-4 Classic Model Format</a>,
Up: <a rel="up" accesskey="u" href="#File-Format">File Format</a>
</div>
<h3 class="section">C.5 HDF4 SD Format</h3>
<p>Starting with version 4.1, the netCDF libraries can read HDF4 SD
(Scientific Dataset) files. Access is limited to those HDF4 files
created with the Scientific Dataset API. Access is read-only.
<p>Dataset types are translated between HDF4 and netCDF in a
straighforward manner.
<dl>
<dt><code>DFNT_CHAR</code><dd>NC_CHAR
<br><dt><code>DFNT_UCHAR, DFNT_UINT8</code><dd>NC_UBYTE
<br><dt><code>DFNT_INT8</code><dd>NC_BYTE
<br><dt><code>DFNT_INT16</code><dd>NC_SHORT
<br><dt><code>DFNT_UINT16</code><dd>NC_USHORT
<br><dt><code>DFNT_INT32</code><dd>NC_INT
<br><dt><code>DFNT_UINT32</code><dd>NC_UINT
<br><dt><code>DFNT_FLOAT32</code><dd>NC_FLOAT
<br><dt><code>DFNT_FLOAT64</code><dd>NC_DOUBLE
</dl>
<div class="node">
<a name="Internal-Dispatch-Table"></a>
<p><hr>
Next: <a rel="next" accesskey="n" href="#Combined-Index">Combined Index</a>,
Previous: <a rel="previous" accesskey="p" href="#File-Format">File Format</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="appendix">Appendix D Internal Dispatch Table</h2>
<h4 class="subheading">Draft 3: 5/15/2010</h4>
<h3 class="unnumberedsec">netCDF Dispatch Mechanism</h3>
<p>This document describes the architecture and details of the
new netCDF internal dispatch mechanism. The idea is that
when a user opens or creates a netcdf file, that a specific
dispatch table is chosen. Subsequent netcdf API calls are
then channeled through that dispatch table to the
appropriate function for implementing that API call.
<p>Currently, the following four dispatch tables are supported.
<ol type=1 start=1>
<li>netcdf classic files (netcdf-3)
<li>netcdf enhanced files (netcdf-4)
<li>OPeNDAP to netcdf-3
<li>OPeNDAP to netcdf-4
</ol>
<p>The dispatch table represents a distillation of the
netcdf API down to a minimal set of internal operations. The
format of the dispatch table is defined in the file
libdispatch/ncdispatch.h. Every new dispatch table must
define this minimal set of operations.
<h3 class="unnumberedsec">Adding a New Dispatch Table</h3>
<p>In order to make this process concrete, let us assume we
plan to add an in-memory implementation of netcdf-3.
<h3 class="unnumberedsec">Step 1.</h3>
<p>Define a –enable flag and an AM_CONFIGURE flag in
configure.ac. We will use the flags –enable-netcdfm and
USE_NETCDFM respectively.
<h3 class="unnumberedsec">Step 2</h3>
<p>Choose some prefix of characters to identify the new
dispatch system. In effect we are defining a name-space. For
our in-memory system, we will choose "NCM" and "ncm". NCM is
used for non-static procedures to be entered into the
dispatch table and ncm for all other non-static procedures.
<h3 class="unnumberedsec">Step 3.</h3>
<p>Modify file libdispatch/ncdispatch.h as follows.
<ul>
<li>Add a index for this implementation:
<pre class="example"> #define NC_DISPATCH_NCM 5
</pre>
<li>Define an external reference to the in-memory dispatch table.
<pre class="example"> #ifdef USE_NETCDFM
extern NC_Dispatch* NCM_dispatch_table;
#endif
</pre>
</ul>
<h3 class="unnumberedsec">Step 4.</h3>
<p>Modify file libdispatch/netcdf.c as follows.
<ul>
<li>Add a ptr to the in-memory dispatch table.
<pre class="example"> #ifdef USE_NETCDFM
NC_Dispatch* NCM_dispatch_table = NULL;
#endif
</pre>
<li>Add any necessary #include files as needed.
</ul>
<h3 class="unnumberedsec">Step 5.</h3>
<p>Define the functions necessary to fill in the dispatch
table. As a rule, we assume that a new directory is defined,
libsrcm, say. Within this directory, we need to define
Makefile.am, the source files containing the dispatch table
and the functions to be placed in the dispatch table – call
them ncmdispatch.c and ncmdispatch.h. Look at
libsrc/nc3dispatch.[ch] for an example.
<p>As part of the ncmdispatch.c file, you must define the following.
<pre class="example"> NC_Dispatch NCM_dispatcher = {
NC_DISPATCH_NCM,
NCM_create,
NCM_open,
...
};
int
NCM_initialize(void)
{
NCM_dispatch_table = &NCM_dispatcher;
return NC_NOERR;
}
</pre>
<p>Assuming that the in-memory library does not require any
external libraries, then the Makefile.am will look something
like this.
<pre class="example"> NCM_SOURCES = ncmdispatch.c ncmdispatch.h ...
AM_CPPFLAGS += -I$(top_srcdir)/libsrc -I$(top_srcdir)/libdispatch
libnetcdfm_la_SOURCES = $(NCM_SOURCES)
noinst_LTLIBRARIES = libnetcdfm.la
</pre>
<h3 class="unnumberedsec">Step 6.</h3>
<p>Provide for the inclusion of this library in the final
libnetcdf library. This is accomplished by modifying
liblib/Makefile.am by adding something like the following.
<pre class="example"> if USE_NETCDFM
libnetcdf_la_LIBADD += $(top_builddir)/libsrcm/libnetcdfm.la
endif
</pre>
<h3 class="unnumberedsec">Step 7.</h3>
<p>Modify the NC_intialize function in liblib/stub.c by
adding appropriate references to the NCM dispatch function.
<pre class="example"> #ifdef USE_NETCDFM
extern int NCM_initialize(void);
#endif
...
int NC_initialize(void)
{
...
#ifdef USE_DAP
if((stat = NCM_initialize())) return stat;
#endif
...
}
</pre>
<h3 class="unnumberedsec">Step 8.</h3>
<p>Add a directory of tests; ncm_test, say. The file
ncm_test/Makefile.am will look something like this.
<pre class="example"> # These files are created by the tests.
CLEANFILES = ...
# These are the tests which are always run.
TESTPROGRAMS = test1 test2 ...
test1_SOURCES = test1.c ...
...
# Set up the tests.
check_PROGRAMS = $(TESTPROGRAMS)
TESTS = $(TESTPROGRAMS)
# Any extra files required by the tests
EXTRA_DIST = ...
</pre>
<h3 class="unnumberedsec">Step 9.</h3>
<p>Provide for libnetcdfm to be constructed by adding the
following to the top-level Makefile.am.
<pre class="example"> if USE_NETCDFM
NCM=libsrcm
NCMTESTDIR=ncm_test
endif
...
SUBDIRS = ... $(DISPATCHDIR) $(NCM) ... $(NCMTESTDIR)
</pre>
<h4 class="subsection">D.0.1 Choosing a Dispatch Table</h4>
<p>The dispatch table is chosen in the NC_create and the
NC_open procedures in libdispatch/netcdf.c. The decision is
currently based on the following pieces of information.
<ul>
<li>The file path – this can be used to detect, for example, a DAP url versus a normal file system file.
<li>The mode argument – this can be used to detect, for example, what kind of file to create: netcdf-3, netcdf-4, 64-bit netcdf-3, etc.
<li>For nc_open and when the file path references a real file, the contents of the file can also be used to determine the dispatch table.
<li>Although currently not used, this code could be modified to also use other pieces of information such as environment variables.
</ul>
<p>In addition to the above, there is one additional mechanism
to force the use of a specific dispatch table. The procedure
"NC_set_dispatch_override()" can be invoked to specify a
dispatch table.
<p>When adding a new dispatcher, it is necessary to modify
NC_create and NC_open in libdispatch/netcdf.c to detect when
it is appropriate to use the NCM dispatcher.
Some possibilities are as follows.
<ol type=1 start=1>
<li>Add a new mode flag: say NC_NETCDFM.
<li>Use an environment variable.
<li>Define a special file path format that indicates the need to use a special dispatch table.
</ol>
<h4 class="subsection">D.0.2 Special Dispatch Table Signatures.</h4>
<p>Several of the entries in the dispatch table are
significantly different than those of the external API.
<h5 class="subsubsection">D.0.2.1 Create/Open</h5>
<p>The create table entry and the open table entry have the
following signatures respectively.
<pre class="example"> int (*create)(const char *path, int cmode,
size_t initialsz, int basepe, size_t *chunksizehintp,
int useparallel, MPI_Comm comm, MPI_Info info,
struct NC_Dispatch*, struct NC** ncp);
int (*open)(const char *path, int mode,
int basepe, size_t *chunksizehintp,
int use_parallel, MPI_Comm comm, MPI_Info info,
NC_Dispatch*, NC** ncp);
</pre>
<p>The key difference is that these are the union of all the
possible create/open signatures from the netcdf.h API. Note
especially the last two parameters. The dispatch table is
included in case the create function (e.g. NCM_create) needs
to invoke other dispatch functions. The very last parameter
is a pointer to a pointer to an NC instance. It is expected
that the create function will allocate and fill in an
instance of an "NC" object and return a pointer to it in the
ncp parameter.
<h5 class="subsubsection">D.0.2.2 Notes:</h5>
<ul>
<li>As with the existing code, and when MPI is not being used, the comm
and info parameters should be passed in as 0. This is taken care of in the
nc_open and nc_create API procedures in libdispatch/netcdf.c.
<li>In fact, the object returned in the ncp parameter does
not actually have to be an instance of struct NC. It only
needs to "look like it for the first few fields. This is,
in effect, a fake version of subclassing. Let us suppose
that the NCM_create function uses a struct NCM object. The
initial part of the definition of NCM must match the fields
at the beginning of struct NC between the comments
BEGIN_COMMON and END_COMMON. So, we would have the
following.
<pre class="example"> typedef struct NCM {
/*BEGIN COMMON*/
int ext_ncid; /* uid «« 16 */
int int_ncid; /* unspecified other id */
struct NC_Dispatch* dispatch;
#ifdef USE_DAP
struct NCDRNO* drno;
#endif
/*END COMMON*/
...
} NCM;
</pre>
<p>This allows the pointer to the NCM object to be cast as an instance of NC* and its pointer returned in the ncp file.
Eventually, this will be replaced with a separate structure containing the common fields.
</ul>
<h5 class="subsubsection">D.0.2.3 put_vara/get_vara</h5>
<pre class="example"> int (*put_vara)(int ncid, int varid, const size_t *start, const size_t *count,
const void *value, nc_type memtype);
int (*get_vara)(int ncid, int varid, const size_t *start, const size_t *count,
void *value, nc_type memtype);
</pre>
<p>Most of the parameters are similar to the netcdf API
parameters. The last parameter, however, is the type of the
data in memory. Additionally, instead of using an "int
islong" parameter, the memtype will be either NC_INT or
NC_INT64, depending on the value of sizeof(long). This means
that even netcdf-3 code must be prepared to encounter the
NC_INT64 type.
<h5 class="subsubsection">D.0.2.4 put_attr/get_attr</h5>
<pre class="example"> int (*get_att)(int ncid, int varid, const char *name,
void *value, nc_type memtype);
int (*put_att)(int ncid, int varid, const char *name, nc_type datatype, size_t len,
const void *value, nc_type memtype);
</pre>
<p>Again, the key difference is the memtype parameter. As with
put/get_vara, it used NC_INT64 to encode the long case.
<h4 class="subsection">D.0.3 NetCDF Library Assembly</h4>
<p>The assembly of the final libnetcdf library occurs in the directory
liblib. The Makefile uses all of the available configuration flags
to decide which component libraries will be added to libnetcdf to produce
the final library. In addition, the proper version of netcdf.h will have
been placed in liblib: either the version from libsrc or the version from
libsrc4 depending on the USE_NETCDF4 flag.
<h4 class="subsection">D.0.4 Utility Construction</h4>
<p>All of the utilities and the test directories (nctest, nc_test, ...)
are expected to obtain their libnetcdf library and their netcdf.h
from the ones in liblib.
<h4 class="subsection">D.0.5 Miscellaneous Notes</h4>
<ol type=1 start=1>
<li>It may be desirable to include a few test cases in the
libsrcm directory. Libsrc4, for example, has quite a number
of such tests. In order to do this, it is necessary to
create a number of stub definitions so that the library will
compile and load with the test cases. The file
libsrc/stub3.c shows a typical stub file.
</ol>
<div class="node">
<a name="Combined-Index"></a>
<p><hr>
Previous: <a rel="previous" accesskey="p" href="#Internal-Dispatch-Table">Internal Dispatch Table</a>,
Up: <a rel="up" accesskey="u" href="#Top">Top</a>
</div>
<h2 class="unnumbered">Index</h2>
<ul class="index-cp" compact>
<li><a href="#index-g_t64_002dbit-offset-file-format-163">64-bit offset file format</a>: <a href="#Classic-File-Parts">Classic File Parts</a></li>
<li><a href="#index-g_t64_002dbit-offset-format_002c-introduction-168">64-bit offset format, introduction</a>: <a href="#Large-File-Support">Large File Support</a></li>
<li><a href="#index-g_t64_002dbit-offset-format_002c-limitations-173">64-bit offset format, limitations</a>: <a href="#g_t64-bit-Offset-Limitations">64 bit Offset Limitations</a></li>
<li><a href="#index-g_t64_002dbit-offsets_002c-history-49">64-bit offsets, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-g_t_005fFillValue-258"><code>_FillValue</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-g_t_005fIONBF-flag-186"><code>_IONBF flag</code></a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-access-C-example-of-array-section-151">access C example of array section</a>: <a href="#C-Section-Access">C Section Access</a></li>
<li><a href="#index-access-Fortran-example-of-array-section-153">access Fortran example of array section</a>: <a href="#Fortran-Section-Access">Fortran Section Access</a></li>
<li><a href="#index-access-random-146">access random</a>: <a href="#Data-Access">Data Access</a></li>
<li><a href="#index-access-shared-dataset-I_002fO-176">access shared dataset I/O</a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-ADA-API_002c-history-56">ADA API, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-add_005foffset-264"><code>add_offset</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-ancillary-data-as-attributes-128">ancillary data as attributes</a>: <a href="#Attributes-and-Variables">Attributes and Variables</a></li>
<li><a href="#index-ancillary-data_002c-storing-119">ancillary data, storing</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-API_002c-C-14">API, C</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-API_002c-C-8">API, C</a>: <a href="#Top">Top</a></li>
<li><a href="#index-API_002c-C_002b_002b-17">API, C++</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-API_002c-C_002b_002b-5">API, C++</a>: <a href="#Top">Top</a></li>
<li><a href="#index-API_002c-F90-16">API, F90</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-API_002c-Fortran-15">API, Fortran</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-API_002c-Fortran-77-6">API, Fortran 77</a>: <a href="#Top">Top</a></li>
<li><a href="#index-API_002c-Fortran-90-7">API, Fortran 90</a>: <a href="#Top">Top</a></li>
<li><a href="#index-API_002c-Java-18">API, Java</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-appending-data-along-unlimited-dimension-79">appending data along unlimited dimension</a>: <a href="#Dimensions">Dimensions</a></li>
<li><a href="#index-applications_002c-generic-121">applications, generic</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-applications_002c-generic_002c-conventions-254">applications, generic, conventions</a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-applications_002c-generic_002c-conventions-31">applications, generic, conventions</a>: <a href="#Conventions">Conventions</a></li>
<li><a href="#index-applications_002c-generic_002c-reasons-for-netCDF-200">applications, generic, reasons for netCDF</a>: <a href="#NetCDF-Utilities">NetCDF Utilities</a></li>
<li><a href="#index-applications_002c-generic_002c-units-252">applications, generic, units</a>: <a href="#Units">Units</a></li>
<li><a href="#index-archive-format-29">archive format</a>: <a href="#Archival">Archival</a></li>
<li><a href="#index-Argonne-National-Laboratory-48">Argonne National Laboratory</a>: <a href="#Background">Background</a></li>
<li><a href="#index-array-section_002c-C-example-152">array section, C example</a>: <a href="#C-Section-Access">C Section Access</a></li>
<li><a href="#index-array-section_002c-corner-147">array section, corner</a>: <a href="#Data-Access">Data Access</a></li>
<li><a href="#index-array-section_002c-definition-148">array section, definition</a>: <a href="#Data-Access">Data Access</a></li>
<li><a href="#index-array-section_002c-edges-149">array section, edges</a>: <a href="#Data-Access">Data Access</a></li>
<li><a href="#index-array-section_002c-Fortran-example-154">array section, Fortran example</a>: <a href="#Fortran-Section-Access">Fortran Section Access</a></li>
<li><a href="#index-array-section_002c-mapped-150">array section, mapped</a>: <a href="#Data-Access">Data Access</a></li>
<li><a href="#index-arrays_002c-ragged-59">arrays, ragged</a>: <a href="#Limitations">Limitations</a></li>
<li><a href="#index-ASCII-characters-132">ASCII characters</a>: <a href="#External-Types">External Types</a></li>
<li><a href="#index-attribute-conventions-253">attribute conventions</a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-attributes-associated-with-a-variable-109">attributes associated with a variable</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-attributes-vs_002e-variables-129">attributes vs. variables</a>: <a href="#Attributes-and-Variables">Attributes and Variables</a></li>
<li><a href="#index-attributes_002c-adding-to-existing-dataset-116">attributes, adding to existing dataset</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-attributes_002c-CDL_002c-defining-202">attributes, CDL, defining</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-attributes_002c-CDL_002c-global-203">attributes, CDL, global</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-attributes_002c-CDL_002c-initializing-233">attributes, CDL, initializing</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-attributes_002c-data-type-123">attributes, data type</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-attributes_002c-data-types_002c-CDL-236">attributes, data types, CDL</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-attributes_002c-defined-114">attributes, defined</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-attributes_002c-defining-in-CDL-115">attributes, defining in CDL</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-attributes_002c-global-124">attributes, global</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-attributes_002c-length_002c-CDL-238">attributes, length, CDL</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-attributes_002c-operations-on-125">attributes, operations on</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-buffers_002c-I_002fO-178">buffers, I/O</a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-byte-219"><code>byte</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-byte-array-vs_002e-text-string-156">byte array vs. text string</a>: <a href="#Type-Conversion">Type Conversion</a></li>
<li><a href="#index-byte-CDL-constant-240">byte CDL constant</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-byte_002c-CDL-data-type-210">byte, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-byte_002c-signed-vs_002e-unsigned-136">byte, signed vs. unsigned</a>: <a href="#External-Types">External Types</a></li>
<li><a href="#index-C-API-19">C API</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-C-API-4">C API</a>: <a href="#Top">Top</a></li>
<li><a href="#index-C-code-via-ncgen_002c-generating-243">C code via ncgen, generating</a>: <a href="#ncgen">ncgen</a></li>
<li><a href="#index-C-code-via-ncgen3_002c-generating-248">C code via ncgen3, generating</a>: <a href="#ncgen3">ncgen3</a></li>
<li><a href="#index-C_002b_002b-API-22">C++ API</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-C_002b_002b-API-1">C++ API</a>: <a href="#Top">Top</a></li>
<li><a href="#index-C_005fformat-266"><code>C_format</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-CANDIS-35">CANDIS</a>: <a href="#Background">Background</a></li>
<li><a href="#index-CDF1-171">CDF1</a>: <a href="#Large-File-Support">Large File Support</a></li>
<li><a href="#index-CDF2-172">CDF2</a>: <a href="#Large-File-Support">Large File Support</a></li>
<li><a href="#index-CDL-attributes_002c-defining-206">CDL attributes, defining</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-CDL-constants-232">CDL constants</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-CDL-data-types-209">CDL data types</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-CDL-dimensions_002c-defining-207">CDL dimensions, defining</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-CDL-syntax-201">CDL syntax</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-CDL-variables_002c-defining-208">CDL variables, defining</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-CDL_002c-defining-attributes-117">CDL, defining attributes</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-CDL_002c-defining-global-attributes-118">CDL, defining global attributes</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-CDL_002c-example-74">CDL, example</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-char-218"><code>char</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-char_002c-CDL-data-type-211">char, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-chunking-189">chunking</a>: <a href="#Chunking">Chunking</a></li>
<li><a href="#index-classic-file-format-160">classic file format</a>: <a href="#Classic-File-Parts">Classic File Parts</a></li>
<li><a href="#index-classic-format_002c-introduction-169">classic format, introduction</a>: <a href="#Large-File-Support">Large File Support</a></li>
<li><a href="#index-classic-format_002c-limitations-174">classic format, limitations</a>: <a href="#Classic-Limitations">Classic Limitations</a></li>
<li><a href="#index-classic-netCDF-format-62">classic netCDF format</a>: <a href="#Limitations">Limitations</a></li>
<li><a href="#index-common-data-form-language-75">common data form language</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-compound-type-139">compound type</a>: <a href="#User-Defined-Types">User Defined Types</a></li>
<li><a href="#index-compression-30">compression</a>: <a href="#Archival">Archival</a></li>
<li><a href="#index-Conventions-270"><code>Conventions</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-conventions_002c-attributes-255">conventions, attributes</a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-conventions_002c-introduction-32">conventions, introduction</a>: <a href="#Conventions">Conventions</a></li>
<li><a href="#index-conventions_002c-naming-73">conventions, naming</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-conversion-of-data-types_002c-introduction-134">conversion of data types, introduction</a>: <a href="#External-Types">External Types</a></li>
<li><a href="#index-coordinate-variables-112">coordinate variables</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-DAP-support-194">DAP support</a>: <a href="#DAP-Support">DAP Support</a></li>
<li><a href="#index-data-base-24">data base</a>: <a href="#Not-DBMS">Not DBMS</a></li>
<li><a href="#index-data-model_002c-netCDF-71">data model, netCDF</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-data-structures-137">data structures</a>: <a href="#Classic-Data-Structures">Classic Data Structures</a></li>
<li><a href="#index-data-types_002c-conversion-157">data types, conversion</a>: <a href="#Type-Conversion">Type Conversion</a></li>
<li><a href="#index-data-types_002c-external-133">data types, external</a>: <a href="#External-Types">External Types</a></li>
<li><a href="#index-data_002c-reading-144">data, reading</a>: <a href="#Data-Access">Data Access</a></li>
<li><a href="#index-data_002c-writing-145">data, writing</a>: <a href="#Data-Access">Data Access</a></li>
<li><a href="#index-DBMS-25">DBMS</a>: <a href="#Not-DBMS">Not DBMS</a></li>
<li><a href="#index-deflation-190">deflation</a>: <a href="#Chunking">Chunking</a></li>
<li><a href="#index-differences-between-attributes-and-variables-131">differences between attributes and variables</a>: <a href="#Attributes-and-Variables">Attributes and Variables</a></li>
<li><a href="#index-dimensions_002c-CDL_002c-defining-204">dimensions, CDL, defining</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-dimensions_002c-CDL_002c-initializing-234">dimensions, CDL, initializing</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-dimensions_002c-introduction-80">dimensions, introduction</a>: <a href="#Dimensions">Dimensions</a></li>
<li><a href="#index-dimensions_002c-length_002c-CDL-239">dimensions, length, CDL</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-dimensions_002c-unlimited-81">dimensions, unlimited</a>: <a href="#Dimensions">Dimensions</a></li>
<li><a href="#index-DODS-44">DODS</a>: <a href="#Background">Background</a></li>
<li><a href="#index-double-225"><code>double</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-double_002c-CDL-data-type-217">double, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-enum-type-143">enum type</a>: <a href="#User-Defined-Types">User Defined Types</a></li>
<li><a href="#index-external-data-types-135">external data types</a>: <a href="#External-Types">External Types</a></li>
<li><a href="#index-F90-API-21">F90 API</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-FAN-42">FAN</a>: <a href="#Background">Background</a></li>
<li><a href="#index-fflush-184">fflush</a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-file-format-271">file format</a>: <a href="#File-Format">File Format</a></li>
<li><a href="#index-file-format_002c-64_002dbit-offset-162">file format, 64-bit offset</a>: <a href="#Classic-File-Parts">Classic File Parts</a></li>
<li><a href="#index-file-format_002c-classic-161">file format, classic</a>: <a href="#Classic-File-Parts">Classic File Parts</a></li>
<li><a href="#index-file-format_002c-netcdf_002d4-165">file format, netcdf-4</a>: <a href="#NetCDF_002d4-File-Parts">NetCDF-4 File Parts</a></li>
<li><a href="#index-file-structure_002c-overview-158">file structure, overview</a>: <a href="#Structure">Structure</a></li>
<li><a href="#index-float-223"><code>float</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-float_002c-CDL-data-type-215">float, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-flushing-buffers-185">flushing buffers</a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-format-selection-advice-27">format selection advice</a>: <a href="#Which-Format">Which Format</a></li>
<li><a href="#index-Fortran-77-API-2">Fortran 77 API</a>: <a href="#Top">Top</a></li>
<li><a href="#index-Fortran-90-API-3">Fortran 90 API</a>: <a href="#Top">Top</a></li>
<li><a href="#index-Fortran-API-20">Fortran API</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-FORTRAN_005fformat-267"><code>FORTRAN_format</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-future-plans-for-netCDF-65">future plans for netCDF</a>: <a href="#Future">Future</a></li>
<li><a href="#index-GBytes-64">GBytes</a>: <a href="#Limitations">Limitations</a></li>
<li><a href="#index-generating-C-code-via-ncgen-244">generating C code via ncgen</a>: <a href="#ncgen">ncgen</a></li>
<li><a href="#index-generating-C-code-via-ncgen3-249">generating C code via ncgen3</a>: <a href="#ncgen3">ncgen3</a></li>
<li><a href="#index-generic-applications-122">generic applications</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-GiBytes-63">GiBytes</a>: <a href="#Limitations">Limitations</a></li>
<li><a href="#index-global-attributes-126">global attributes</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-groups-77">groups</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-history-269"><code>history</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-I_002fO-layer-175">I/O layer</a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-initializing-CDL-241">initializing CDL</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-int-221"><code>int</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-int_002c-CDL-data-type-213">int, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-int64-229"><code>int64</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-Interface-Guide_002c-C-9">Interface Guide, C</a>: <a href="#Top">Top</a></li>
<li><a href="#index-Interface-Guide_002c-C_002b_002b-10">Interface Guide, C++</a>: <a href="#Top">Top</a></li>
<li><a href="#index-Interface-Guide_002c-Fortran-77-11">Interface Guide, Fortran 77</a>: <a href="#Top">Top</a></li>
<li><a href="#index-Interface-Guide_002c-Fortran-90-12">Interface Guide, Fortran 90</a>: <a href="#Top">Top</a></li>
<li><a href="#index-interoperability-with-HDF5-193">interoperability with HDF5</a>: <a href="#Interoperability-with-HDF5">Interoperability with HDF5</a></li>
<li><a href="#index-Java-API-23">Java API</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-Java-API_002c-history-53">Java API, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-large-file-support-167">large file support</a>: <a href="#Large-File-Support">Large File Support</a></li>
<li><a href="#index-LFS-170">LFS</a>: <a href="#Large-File-Support">Large File Support</a></li>
<li><a href="#index-limitations-of-netCDF-61">limitations of netCDF</a>: <a href="#Limitations">Limitations</a></li>
<li><a href="#index-long-222"><code>long</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-long_002c-CDL-data-type-214">long, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-long_005fname-257"><code>long_name</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-Matlab-API_002c-history-54">Matlab API, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-missing_005fvalue-259"><code>missing_value</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-multiple-unlimited-dimensions-83">multiple unlimited dimensions</a>: <a href="#Dimensions">Dimensions</a></li>
<li><a href="#index-naming-conventions-72">naming conventions</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-NASA-CDF-format-36">NASA CDF format</a>: <a href="#Background">Background</a></li>
<li><a href="#index-NC_005fBYTE-87"><code>NC_BYTE</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fCHAR-91"><code>NC_CHAR</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fDOUBLE-93"><code>NC_DOUBLE</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fFLOAT-92"><code>NC_FLOAT</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fINT-88"><code>NC_INT</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fINT64-98"><code>NC_INT64</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fLONG-90"><code>NC_LONG</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fSHARE-179"><code>NC_SHARE</code></a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-NC_005fSHORT-89"><code>NC_SHORT</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fSTRING-100"><code>NC_STRING</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nc_005fsync-183"><code>nc_sync</code></a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-NC_005fUBYTE-94"><code>NC_UBYTE</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fUINT-95"><code>NC_UINT</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fUINT64-99"><code>NC_UINT64</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NC_005fUSHORT-96"><code>NC_USHORT</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nccopy-246">nccopy</a>: <a href="#nccopy">nccopy</a></li>
<li><a href="#index-nccopy_002c-overview-198">nccopy, overview</a>: <a href="#NetCDF-Utilities">NetCDF Utilities</a></li>
<li><a href="#index-ncdump-245">ncdump</a>: <a href="#ncdump">ncdump</a></li>
<li><a href="#index-ncdump_002c-introduction-76">ncdump, introduction</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-ncdump_002c-overview-197">ncdump, overview</a>: <a href="#NetCDF-Utilities">NetCDF Utilities</a></li>
<li><a href="#index-ncgen-242">ncgen</a>: <a href="#ncgen">ncgen</a></li>
<li><a href="#index-ncgen-and-ncgen3_002c-overview-196">ncgen and ncgen3, overview</a>: <a href="#NetCDF-Utilities">NetCDF Utilities</a></li>
<li><a href="#index-ncgen3-247">ncgen3</a>: <a href="#ncgen3">ncgen3</a></li>
<li><a href="#index-NcML-46">NcML</a>: <a href="#Background">Background</a></li>
<li><a href="#index-NCO-43">NCO</a>: <a href="#Background">Background</a></li>
<li><a href="#index-netCDF-5_002e0-67">netCDF 5.0</a>: <a href="#Future">Future</a></li>
<li><a href="#index-netCDF-data-model-70">netCDF data model</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-netCDF-data-types-86">netCDF data types</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-netcdf_002d4-file-format-164">netcdf-4 file format</a>: <a href="#NetCDF_002d4-File-Parts">NetCDF-4 File Parts</a></li>
<li><a href="#index-NETCDF_005fFFIOSPEC-188"><code>NETCDF_FFIOSPEC</code></a>: <a href="#UNICOS-Optimization">UNICOS Optimization</a></li>
<li><a href="#index-New-Mexico-Institute-of-Mining-38">New Mexico Institute of Mining</a>: <a href="#Background">Background</a></li>
<li><a href="#index-new-netCDF-features-in-4_002e0-58">new netCDF features in 4.0</a>: <a href="#Whats-New">Whats New</a></li>
<li><a href="#index-nf_005fbyte-101"><code>nf_byte</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nf_005fchar-102"><code>nf_char</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nf_005fdouble-107"><code>nf_double</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nf_005ffloat-108"><code>nf_float</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nf_005fint1-104"><code>nf_int1</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nf_005fint2-105"><code>nf_int2</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-nf_005freal-106"><code>nf_real</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NF_005fSHARE-180"><code>NF_SHARE</code></a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-nf_005fshort-103"><code>nf_short</code></a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-NF_005fSYNC-182"><code>NF_SYNC</code></a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-Northwestern-University-47">Northwestern University</a>: <a href="#Background">Background</a></li>
<li><a href="#index-opaque-type-142">opaque type</a>: <a href="#User-Defined-Types">User Defined Types</a></li>
<li><a href="#index-OpenDAP-45">OpenDAP</a>: <a href="#Background">Background</a></li>
<li><a href="#index-operations-on-attributes-127">operations on attributes</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-parallel-access-192">parallel access</a>: <a href="#Parallel-Access">Parallel Access</a></li>
<li><a href="#index-performance-of-NetCDF-159">performance of NetCDF</a>: <a href="#Structure">Structure</a></li>
<li><a href="#index-performance_002c-introduction-28">performance, introduction</a>: <a href="#Performance">Performance</a></li>
<li><a href="#index-plans-for-netCDF-66">plans for netCDF</a>: <a href="#Future">Future</a></li>
<li><a href="#index-pong-68">pong</a>: <a href="#Future">Future</a></li>
<li><a href="#index-primary-variables-110">primary variables</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-python-API_002c-history-51">python API, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-real-224"><code>real</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-real_002c-CDL-data-type-216">real, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-references-69">references</a>: <a href="#References">References</a></li>
<li><a href="#index-ruby-API_002c-history-50">ruby API, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-scale_005ffactor-263"><code>scale_factor</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-SeaSpace_002c-Inc-39">SeaSpace, Inc</a>: <a href="#Background">Background</a></li>
<li><a href="#index-share-flag-181">share flag</a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-shared-dataset-I_002fO-access-177">shared dataset I/O access</a>: <a href="#The-NetCDF_002d3-IO-Layer">The NetCDF-3 IO Layer</a></li>
<li><a href="#index-short-220"><code>short</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-short_002c-CDL-data-type-212">short, CDL data type</a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-shuffle-filter-191">shuffle filter</a>: <a href="#Chunking">Chunking</a></li>
<li><a href="#index-signedness-265"><code>signedness</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-SNIDE-37">SNIDE</a>: <a href="#Background">Background</a></li>
<li><a href="#index-software-list-199">software list</a>: <a href="#NetCDF-Utilities">NetCDF Utilities</a></li>
<li><a href="#index-storing-ancillary-data-120">storing ancillary data</a>: <a href="#Attributes">Attributes</a></li>
<li><a href="#index-string-231"><code>string</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-structures_002c-data-138">structures, data</a>: <a href="#Classic-Data-Structures">Classic Data Structures</a></li>
<li><a href="#index-supported-programming-languages-13">supported programming languages</a>: <a href="#Summary">Summary</a></li>
<li><a href="#index-Tcl_002fTk-API_002c-history-52">Tcl/Tk API, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-Terascan-data-format-41">Terascan data format</a>: <a href="#Background">Background</a></li>
<li><a href="#index-title-268"><code>title</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-type-conversion-155">type conversion</a>: <a href="#Type-Conversion">Type Conversion</a></li>
<li><a href="#index-ubyte-226"><code>ubyte</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-udunits-251">udunits</a>: <a href="#Units">Units</a></li>
<li><a href="#index-uint-228"><code>uint</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-uint64-230"><code>uint64</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-UNICOS-187">UNICOS</a>: <a href="#UNICOS-Optimization">UNICOS Optimization</a></li>
<li><a href="#index-units-256"><code>units</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-units-library-250">units library</a>: <a href="#Units">Units</a></li>
<li><a href="#index-University-of-Miami-40">University of Miami</a>: <a href="#Background">Background</a></li>
<li><a href="#index-unlimited-dimensions-82">unlimited dimensions</a>: <a href="#Dimensions">Dimensions</a></li>
<li><a href="#index-user-defined-types-78">user defined types</a>: <a href="#Data-Model">Data Model</a></li>
<li><a href="#index-ushort-227"><code>ushort</code></a>: <a href="#CDL-Data-Types">CDL Data Types</a></li>
<li><a href="#index-utilities-195">utilities</a>: <a href="#NetCDF-Utilities">NetCDF Utilities</a></li>
<li><a href="#index-valid_005fmax-261"><code>valid_max</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-valid_005fmin-260"><code>valid_min</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-valid_005frange-262"><code>valid_range</code></a>: <a href="#Attribute-Conventions">Attribute Conventions</a></li>
<li><a href="#index-variable-length-array-type-141">variable length array type</a>: <a href="#User-Defined-Types">User Defined Types</a></li>
<li><a href="#index-variable-types-85">variable types</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-variables-vs_002e-attributes-130">variables vs. attributes</a>: <a href="#Attributes-and-Variables">Attributes and Variables</a></li>
<li><a href="#index-variables_002c-CDL_002c-defining-205">variables, CDL, defining</a>: <a href="#CDL-Syntax">CDL Syntax</a></li>
<li><a href="#index-variables_002c-CDL_002c-initializing-235">variables, CDL, initializing</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-variables_002c-coordinate-113">variables, coordinate</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-variables_002c-data-types_002c-CDL-237">variables, data types, CDL</a>: <a href="#CDL-Constants">CDL Constants</a></li>
<li><a href="#index-variables_002c-defined-84">variables, defined</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-variables_002c-primary-111">variables, primary</a>: <a href="#Variables">Variables</a></li>
<li><a href="#index-vlen-type-140">vlen type</a>: <a href="#User-Defined-Types">User Defined Types</a></li>
<li><a href="#index-WetCDF_002c-history-55">WetCDF, history</a>: <a href="#Background">Background</a></li>
<li><a href="#index-workshop_002c-CDF-34">workshop, CDF</a>: <a href="#Background">Background</a></li>
<li><a href="#index-writers_002c-multiple-60">writers, multiple</a>: <a href="#Limitations">Limitations</a></li>
<li><a href="#index-XDR-format-26">XDR format</a>: <a href="#Format">Format</a></li>
<li><a href="#index-XDR-layer-166">XDR layer</a>: <a href="#XDR-Layer">XDR Layer</a></li>
<li><a href="#index-XDR_002c-introduction-into-netCDF-33">XDR, introduction into netCDF</a>: <a href="#Background">Background</a></li>
</ul></body></html>
|