This file is indexed.

/usr/share/mmass/mspy/mod_calibration.py is in mmass 5.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# -------------------------------------------------------------------------
#     Copyright (C) 2005-2013 Martin Strohalm <www.mmass.org>

#     This program is free software; you can redistribute it and/or modify
#     it under the terms of the GNU General Public License as published by
#     the Free Software Foundation; either version 3 of the License, or
#     (at your option) any later version.

#     This program is distributed in the hope that it will be useful,
#     but WITHOUT ANY WARRANTY; without even the implied warranty of
#     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#     GNU General Public License for more details.

#     Complete text of GNU GPL can be found in the file LICENSE.TXT in the
#     main directory of the program.
# -------------------------------------------------------------------------

# load libs
import numpy
from numpy.linalg import solve as solveLinEq

# load stopper
from mod_stopper import CHECK_FORCE_QUIT


# DATA RE-CALIBRATION
# -------------------

def calibration(data, model='linear'):
    """Calculate calibration constants for given references.
        data (list or (measured mass, reference mass)) - calibration data
        model ('linear' or 'quadratic') - fitting model
    """
    
    # single point calibration
    if model == 'linear' and len(data) == 1:
        shift = data[0][1] - data[0][0]
        return _linearModel, (1., shift), 1.0
    
    # set fitting model and initial values
    if model=='linear':
        model = _linearModel
        initials = (0.5, 0)
    elif model=='quadratic':
        model = _quadraticModel
        initials = (1., 0, 0)
    
    # calculate calibration constants
    params = _leastSquaresFit(model, initials, data)
    
    # fn, parameters, chi-square
    return model, params[0], params[1]
# ----


def _linearModel(params, x):
    """Function for linear model."""
    
    a, b = params
    return a*x + b
# ----


def _quadraticModel(params, x):
    """Function for quadratic model."""
    
    a, b, c = params
    return a*x*x + b*x + c
# ----


def _leastSquaresFit(model, parameters, data, maxIterations=None, limit=1e-7):
    """General non-linear least-squares fit using the
        Levenberg-Marquardt algorithm and automatic derivatives.
        Originally developed by Konrad Hinsen.
    """
    
    n_param = len(parameters)
    p = ()
    i = 0
    for param in parameters:
        p = p + (_DerivVar(param, i),)
        i = i + 1
    id = numpy.identity(n_param)
    l = 0.001
    chi_sq, alpha = _chiSquare(model, p, data)
    niter = 0
    
    while True:
        niter += 1
        
        delta = solveLinEq(alpha+l*numpy.diagonal(alpha)*id,-0.5*numpy.array(chi_sq[1]))
        next_p = map(lambda a,b: a+b, p, delta)
        
        next_chi_sq, next_alpha = _chiSquare(model, next_p, data)
        if next_chi_sq > chi_sq:
            l = 10.*l
        elif chi_sq[0] - next_chi_sq[0] < limit:
            break
        else:
            l = 0.1*l
            p = next_p
            chi_sq = next_chi_sq
            alpha = next_alpha
        
        if maxIterations and niter == maxIterations:
            break
    
    return map(lambda p: p[0], next_p), next_chi_sq[0]
# ----


def _chiSquare(model, parameters, data):
    """Count chi-square."""
    
    n_param = len(parameters)
    alpha = numpy.zeros((n_param, n_param))
    
    chi_sq = _DerivVar(0., [])
    for point in data:
        f = model(parameters, point[0])
        chi_sq += (f-point[1])**2
        d = numpy.array(f[1])
        alpha = alpha + d[:,numpy.newaxis]*d
    
    return chi_sq, alpha
# ----


class _DerivVar:
    """This module provides automatic differentiation for functions with any number of variables."""
    
    def __init__(self, value, index=0):
        self.value = value
        if type(index) == type([]):
            self.deriv = index
        else:
            self.deriv = index*[0] + [1]
    
    def _mapderiv(self, func, a, b):
        nvars = max(len(a), len(b))
        a = a + (nvars-len(a))*[0]
        b = b + (nvars-len(b))*[0]
        return map(func, a, b)
    
    def __getitem__(self, item):
        if item == 0:
            return self.value
        elif item == 1:
            return self.deriv
        else:
            raise IndexError
    
    def __cmp__(self, other):
        if isinstance(other, _DerivVar):
            return cmp(self.value, other.value)
        else:
            return cmp(self.value, other)
    
    def __add__(self, other):
        if isinstance(other, _DerivVar):
            return _DerivVar(self.value + other.value, self._mapderiv(lambda a,b: a+b, self.deriv, other.deriv))
        else:
            return _DerivVar(self.value + other, self.deriv)
    
    def __radd__(self, other):
        if isinstance(other, _DerivVar):
            self.value += other.value
            self.deriv = self._mapderiv(lambda a,b: a+b, self.deriv, other.deriv)
            return self
        else:
            self.value += other
            return self
    
    def __sub__(self, other):
        if isinstance(other, _DerivVar):
            return _DerivVar(self.value - other.value, self._mapderiv(lambda a,b: a-b, self.deriv, other.deriv))
        else:
            return _DerivVar(self.value - other, self.deriv)
    
    def __rsub__(self, other):
        if isinstance(other, _DerivVar):
            self.value -= other.value
            self.deriv = self._mapderiv(lambda a,b: a-b, self.deriv, other.deriv)
            return self
        else:
            self.value -= other
            return self
    
    def __mul__(self, other):
        if isinstance(other, _DerivVar):
            return _DerivVar(self.value * other.value, self._mapderiv(lambda a,b: a+b, map(lambda x,f=self.value:f*x, other.deriv), map(lambda x,f=other.value:f*x, self.deriv)))
        else:
            return _DerivVar(self.value * other, map(lambda x,f=other:f*x, self.deriv))
    
    def __div__(self, other):
        if isinstance(other, _DerivVar):
            inv = 1./other.value
            return _DerivVar(self.value * inv, self._mapderiv(lambda a,b: a-b, map(lambda x,f=inv: f*x, self.deriv), map(lambda x,f=self.value*inv*inv: f*x, other.deriv)))
        else:
            inv = 1./value
            return _DerivVar(self.value * inv, map(lambda x,f=inv:f*x, self.deriv))
    
    def __pow__(self, other):
        val1 = pow(self.value, other-1)
        deriv1 = map(lambda x,f=val1*other: f*x, self.deriv)
        return _DerivVar(val1*self.value, deriv1)
        
    def __abs__(self):
        absvalue = abs(self.value)
        return _DerivVar(absvalue, map(lambda a, d=self.value/absvalue: d*a, self.deriv))
    
# ----