/usr/share/minlog/src/prop.scm is in minlog 4.0.99.20100221-5.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 | ; $Id: prop.scm 2160 2008-01-28 09:11:16Z schimans $
; 13. Ein Beweiser fuer Aussagenlogik
; ===================================
; prop.scm
; 99-04-05
; Es folgt eine Implementierung eines auf Hudelmaier zurueckgehenden
; Beweissuchverfahrens fuer die minimale Aussagenlogik. Literatur:
; @Phdthesis{Hudelmaier89,
; Author = "Hudelmaier, Joerg",
; Title = "Bounds for Cut Elimination in Intuitionistic Propositional Logic",
; School = "Mathematische Fakultaet, Eberhard--Karls--Universitaet Tuebingen",
; Note = "accepted for publ.in the AML --- 1992",
; Year = 1989}
; @Article{Hudelmaier92,
; Author = "Hudelmaier, Joerg",
; Title = "Bounds for Cut Elimination in Intuitionistic Propositional Logic",
; Journal = "AML",
; Volume = 31,
; Pages = "331--354",
; Year = 1992}
; @Article{Dyckhoff92,
; Author = "Roy Dyckhoff",
; Title = "Contraction--free sequent calculi for intuitionistic logic",
; Journal = "JSL",
; Volume = 57,
; Pages = "793--807",
; Note = "compare Hudelmaier's thesis",
; Year = 1992}
; @Misc{Buchholz90b,
; Author = "Buchholz, W.",
; Title = "Zu Kapitel 1 der Dissertation Hudelmaier",
; Year = 1990}
; @Misc{Buchholz90c,
; Author = "Buchholz, W.",
; Title = "Zu Kapitel 2 der Dissertation Hudelmaier",
; Year = 1990}
; @Inproceedings{Schwichtenberg91b,
; Author = "Schwichtenberg, Helmut",
; Title = "Normalization",
; Booktitle = "Logic, Algebra, and Computation.
; Proceedings of the International Summer School {M}arktoberdorf,{G}ermany,
; July 25 --August 6, 1989",
; Series = "Series F: Computer and Systems Sciences, Vol 79",
; Editor = "F.L. Bauer",
; Pages = "201--237",
; Organization = "NATO Advanced Study Institute",
; Publisher = "Springer--Verlag",
; Address = "Berlin",
; Year = 1991}
; Eine Formel heisse elementar, wenn sie atomar, mit einem Praedikatensymbol
; gebildet oder quantifiziert ist. Entsprechend definieren wir
(define (elem-form? object)
(or (prime-form? object) (quant-form? object)))
(define (elem-imp-form? object)
(and (imp-form? object) (elem-form? (imp-form-to-premise object))))
(define (and-imp-form? object)
(and (imp-form? object) (and-form? (imp-form-to-premise object))))
(define (leftit-imp-form? object)
(and (imp-form? object) (imp-form? (imp-form-to-premise object))))
(define (formula-to-elem-subformulas formula)
(case (tag formula)
((atom predicate) (list formula))
((imp)
(append (formula-to-elem-subformulas (imp-form-to-premise formula))
(formula-to-elem-subformulas (imp-form-to-conclusion formula))))
((and)
(append (formula-to-elem-subformulas (and-form-to-left formula))
(formula-to-elem-subformulas (and-form-to-right formula))))
((all ex allnc exnc exca excl) (list formula))
(else (myerror "formula-to-elem-subformulas" "formula expected"
formula))))
(map formula-to-string
(formula-to-elem-subformulas (pf "all boole T -> T & T")))
; Die Hauptfunktion zum Aufruf des Beweisers fuer die minimale
; Aussagenlogik ist prop. Sie bewirkt eine Sortierung der Annahmen in
; - elementare Annahmen,
; - Annahmen der Form A&B oder A&B->C,
; - Annahmen der Form E->A mit E elementar, und
; - Annahmen der Form (A->B)->C, also linksiterierte Implikationen.
; Mit den so sortierten Annahmen wird prop0 aufgerufen und damit geprueft,
; ob die Formel in der minimalen Aussagenlogik herleitbar ist.
; Wenn nicht, wird zunaechst geprueft, ob bot oder F ausserhalb von
; Quantoren vorkommen. Wenn nicht, ist die Formel auch nicht in der
; intuitionistischen Aussagenlogik herleitbar. Wenn ja, wird geprueft,
; ob die Formel in der intuitionistischen Aussagenlogik herleitbar ist,
; indem fuer jede elementare Teilformel E neue Annahmen u:bot->E und
; u':F->E hinzugenommen werden. Im Erfolgsfall werden die benutzten
; neuen Annahmen ersetzt durch eine Instanz von efq-log:bot->p bzw. von
; efq:F->p bzw. durch Herleitungen aus efq-thm:all pp^.F->pp^,
; falls E atomar ist.
; Falls der Test auf intuitionistische Herleitbarkeit nein ergibt, wird
; geprueft, ob die Formel in der klassischen Aussagenlogik herleitbar
; ist, indem fuer jede elementare Teilformel E neue Annahmen
; u:((E->bot)->bot)->E und u':((E->F )->F)->E hinzugenommen werden. Im
; Erfolgsfall werden die benutzten neuen Annahmen ersetzt durch eine
; Instanz von stab-log:((p->bot)->bot)->p bzw. durch eine Instanz von
; stab:((p->F)->F)->p bzw. durch Herleitungen aus
; stab-thm:all pp^.((pp^->F)->F)->pp^, falls E atomar ist.
(define (prop)
(let* ((num-goals (pproof-state-to-num-goals))
(proof (pproof-state-to-proof))
(maxgoal (pproof-state-to-maxgoal))
(num-goal (car num-goals))
(number (num-goal-to-number num-goal))
(goal (cadr num-goal))
(context (goal-to-context goal))
(avars (map normalize-avar (context-to-avars context)))
(goal-formula (normalize-formula (goal-to-formula goal)))
(prop-m-result (prop-m-intern num-goals proof maxgoal)))
(if
prop-m-result
(begin
(set! PPROOF-STATE prop-m-result)
(pproof-state-history-push PPROOF-STATE)
(display-comment
"ok, " DEFAULT-GOAL-NAME "_" (number-to-string number)
" is proved in minimal propositional logic.")
(if
COMMENT-FLAG
(if (null? (pproof-state-to-num-goals))
(begin (display " Proof finished.") (newline))
(begin (display " The active goal now is") (newline)
(display-num-goal
(car (pproof-state-to-num-goals)))))))
(let ((elem-subfors
(apply union-wrt
(cons formula=?
(map formula-to-elem-subformulas
(cons goal-formula
(map avar-to-formula avars)))))))
(display-comment "Not provable in minimal propositional logic.")
(if COMMENT-FLAG (newline))
(if
(or (member-wrt formula=? falsity-log elem-subfors)
(member-wrt formula=? falsity elem-subfors))
(let ((prop-i-result (prop-i-intern num-goals proof maxgoal)))
(if
prop-i-result
(begin
(set! PPROOF-STATE prop-i-result)
(pproof-state-history-push PPROOF-STATE)
(display-comment
"ok, " DEFAULT-GOAL-NAME "_" (number-to-string number)
" is proved in intuitionistic propositional logic.")
(if
COMMENT-FLAG
(if (null? (pproof-state-to-num-goals))
(begin (display " Proof finished.") (newline))
(begin (newline) (display-comment "The active goal now is")
(newline) (display-num-goal
(car (pproof-state-to-num-goals)))))))
(let ((prop-c-result (prop-c-intern num-goals proof maxgoal)))
(display-comment
"Not provable in intuitionistic propositional logic.")
(if COMMENT-FLAG (newline))
(if
prop-c-result
(begin
(set! PPROOF-STATE prop-c-result)
(pproof-state-history-push PPROOF-STATE)
(display-comment
"ok, " DEFAULT-GOAL-NAME "_" (number-to-string number)
" is proved in classical propositional logic.")
(if
COMMENT-FLAG
(if (null? (pproof-state-to-num-goals))
(begin (display " Proof finished.") (newline))
(begin (display " The active goal now is") (newline)
(display-num-goal
(car (pproof-state-to-num-goals)))))))
(display-comment
"Not provable in classical propositional logic")))))
(let ((prop-c-result (prop-c-intern num-goals proof maxgoal)))
(display-comment "No bot or F outside quantifiers, hence also")
(if COMMENT-FLAG (newline))
(display-comment
"not provable in intuitionistic propositional logic.")
(if COMMENT-FLAG (newline))
(if
prop-c-result
(begin
(set! PPROOF-STATE prop-c-result)
(pproof-state-history-push PPROOF-STATE)
(display-comment
"ok, " DEFAULT-GOAL-NAME "_" (number-to-string number)
" is proved in classical propositional logic.")
(if
COMMENT-FLAG
(if (null? (pproof-state-to-num-goals))
(begin (display " Proof finished.") (newline))
(begin (display " The active goal now is") (newline)
(display-num-goal
(car (pproof-state-to-num-goals)))))))
(display-comment
"Not provable in classical propositional logic"))))))))
(define (prop-m-intern num-goals proof maxgoal)
(let* ((num-goal (car num-goals))
(goal (num-goal-to-goal num-goal))
(context (goal-to-context goal))
(avars (map normalize-avar (context-to-avars context)))
(goal-formula (normalize-formula (goal-to-formula goal)))
(elems (list-transform-positive avars
(lambda (x) (elem-form? (avar-to-formula x)))))
(ands-and-and-imps (list-transform-positive avars
(lambda (x)
(let ((formula (avar-to-formula x)))
(or (and-form? formula)
(and-imp-form? formula))))))
(elem-imps (list-transform-positive avars
(lambda (x) (elem-imp-form? (avar-to-formula x)))))
(leftit-imps (list-transform-positive avars
(lambda (x) (leftit-imp-form? (avar-to-formula x)))))
(avar-lists (list elems ands-and-and-imps elem-imps leftit-imps))
(proof1-or-f (prop0 avar-lists goal-formula)))
(if (not proof1-or-f) #f
(make-pproof-state (cdr num-goals)
(goal-subst proof goal proof1-or-f)
maxgoal))))
(define (prop-i-intern num-goals proof maxgoal)
(let* ((num-goal (car num-goals))
(goal (num-goal-to-goal num-goal))
(context (goal-to-context goal))
(avars (map normalize-avar (context-to-avars context)))
(goal-formula (normalize-formula (goal-to-formula goal)))
(elems (list-transform-positive avars
(lambda (x) (elem-form? (avar-to-formula x)))))
(ands-and-and-imps (list-transform-positive avars
(lambda (x)
(let ((formula (avar-to-formula x)))
(or (and-form? formula)
(and-imp-form? formula))))))
(elem-imps (list-transform-positive avars
(lambda (x) (elem-imp-form? (avar-to-formula x)))))
(leftit-imps (list-transform-positive avars
(lambda (x) (leftit-imp-form? (avar-to-formula x)))))
(elem-subfors (apply union-wrt
(cons formula=?
(map formula-to-elem-subformulas
(cons goal-formula
(map avar-to-formula avars))))))
(elem-subfors-without-botFT
(remove-wrt formula=? falsity-log
(remove-wrt formula=? truth
(remove-wrt formula=? falsity
elem-subfors))))
(efqs (do ((x elem-subfors-without-botFT (cdr x))
(res '()
(cons (formula-to-new-avar
(mk-imp falsity-log (car x)))
(cons (formula-to-new-avar
(mk-imp falsity (car x)))
res))))
((null? x) (reverse res))))
(avar-lists (list elems ands-and-and-imps elem-imps leftit-imps))
(proof1-or-f (prop0 (list elems ands-and-and-imps
(union-wrt avar=? efqs elem-imps)
leftit-imps)
goal-formula)))
(if (not proof1-or-f) #f
(let* ((used-efqs
(intersection-wrt
avar=? (proof-to-free-avars proof1-or-f) efqs))
(subst-proof1
(do ((x used-efqs (cdr x))
(res
proof1-or-f
(let* ((formula (avar-to-formula (car x)))
(prem (imp-form-to-premise formula))
(concl (imp-form-to-conclusion formula)))
(proof-subst
res (car x)
(cond
((formula=? falsity-log prem)
(proof-of-efq-log-at concl))
((formula=? falsity prem)
(proof-of-efq-at concl))
(else (myerror "prop-i: F or bot expected"
concl)))))))
((null? x) res))))
(make-pproof-state (cdr num-goals)
(goal-subst proof goal subst-proof1)
maxgoal)))))
(define (prop-c-intern num-goals proof maxgoal)
(let* ((num-goal (car num-goals))
(goal (num-goal-to-goal num-goal))
(context (goal-to-context goal))
(avars (map normalize-avar (context-to-avars context)))
(goal-formula (normalize-formula (goal-to-formula goal)))
(elems (list-transform-positive avars
(lambda (x) (elem-form? (avar-to-formula x)))))
(ands-and-and-imps (list-transform-positive avars
(lambda (x)
(let ((formula (avar-to-formula x)))
(or (and-form? formula)
(and-imp-form? formula))))))
(elem-imps (list-transform-positive avars
(lambda (x) (elem-imp-form? (avar-to-formula x)))))
(leftit-imps (list-transform-positive avars
(lambda (x) (leftit-imp-form? (avar-to-formula x)))))
(elem-subfors (apply union-wrt
(cons formula=?
(map formula-to-elem-subformulas
(cons goal-formula
(map avar-to-formula avars))))))
(elem-subfors-without-botFT
(remove-wrt formula=? falsity-log
(remove-wrt formula=? truth
(remove-wrt formula=? falsity
elem-subfors))))
(stabs
(do ((x elem-subfors-without-botFT (cdr x))
(res
'()
(if (member-wrt
formula=?
falsity-log
(append (formula-to-elem-subformulas goal-formula)
elems ands-and-and-imps elem-imps leftit-imps))
(cons (formula-to-new-avar
(mk-imp (mk-neg-log (mk-neg-log (car x))) (car x)))
res)
(cons (formula-to-new-avar
(mk-imp (mk-neg (mk-neg (car x))) (car x)))
res))))
((null? x) (reverse res))))
(proof1-or-f (prop0 (list elems ands-and-and-imps elem-imps
(union-wrt formula=? stabs leftit-imps))
goal-formula)))
(if (not proof1-or-f) #f
(let* ((used-stabs
(intersection-wrt
avar=? (proof-to-free-avars proof1-or-f) stabs))
(subst-proof1
(do ((x used-stabs (cdr x))
(res
proof1-or-f
(let* ((stab-for (avar-to-formula (car x)))
(f-prime (imp-form-to-conclusion
(imp-form-to-premise stab-for)))
(concl (imp-form-to-conclusion stab-for)))
(proof-subst
res (car x)
(cond
((formula=? falsity-log f-prime)
(proof-of-stab-log-at concl))
((formula=? falsity f-prime)
(proof-of-stab-at concl))
(else (myerror "prop-c: F or bot expected"
f-prime)))))))
((null? x) res))))
(make-pproof-state (cdr num-goals)
(goal-subst proof goal subst-proof1)
maxgoal)))))
; Mit prop0 wird zunaechst die Zielformel auf elementare Form gebracht.
(define (prop0 avar-lists goal-formula)
(cond ((elem-form? goal-formula) (prop1 avar-lists goal-formula))
((imp-form? goal-formula)
(let* ((avar (formula-to-new-avar (imp-form-to-premise goal-formula)))
(prev (prop0 (add-to-avar-lists avar avar-lists)
(imp-form-to-conclusion goal-formula))))
(if (not prev)
#f
(make-proof-in-imp-intro-form avar prev))))
((and-form? goal-formula)
(let* ((prev1 (prop0 avar-lists (and-form-to-left goal-formula))))
(if (not prev1)
#f
(let* ((prev2
(prop0 avar-lists (and-form-to-right goal-formula))))
(if (not prev2)
#f
(make-proof-in-and-intro-form prev1 prev2))))))
(else (myerror "prop0: elementary or imp- or and-formula expected"
goal-formula))))
; Hierbei haben wir benutzt
(define (add-to-avar-lists avar avar-lists)
(let ((formula (avar-to-formula avar))
(elems (car avar-lists))
(ands-and-and-imps (cadr avar-lists))
(elem-imps (caddr avar-lists))
(leftit-imps (cadddr avar-lists)))
(cond
((elem-form? formula)
(list (cons avar elems) ands-and-and-imps elem-imps leftit-imps))
((or (and-form? formula) (and-imp-form? formula))
(list elems (cons avar ands-and-and-imps) elem-imps leftit-imps))
((elem-imp-form? formula)
(list elems ands-and-and-imps (cons avar elem-imps) leftit-imps))
((leftit-imp-form? formula)
(list elems ands-and-and-imps elem-imps (cons avar leftit-imps)))
(else (myerror
"add-to-avar-lists: elementary or imp- or and-formula expected"
formula)))))
; prop1 sucht nach einer Annahme u:A&B oder u:A&B->C.
; Im Fall u:A&B wird diese Annahme entfernt und stattdessen werden die
; neuen Annahmen u1:A und u2:B gemacht. Damit wird prop1 wieder aufgerufen.
; Im Fall u:A&B->C wird diese Annahme entfernt und stattdessen wird die
; neue Annahme u1:A->B->C gemacht. Damit wird prop1 wieder aufgerufen.
; Wenn keine Annahme u:A&B oder u:A&B->C existiert, wird prop2 aufgerufen.
(define (prop1 avar-lists elem-goal-formula)
(let* ((elems (car avar-lists))
(ands-and-and-imps (cadr avar-lists))
(elem-imps (caddr avar-lists))
(leftit-imps (cadddr avar-lists)))
(if (null? ands-and-and-imps)
(prop2 avar-lists elem-goal-formula)
(let* ((u (car ands-and-and-imps))
(for (avar-to-formula u)))
(cond ((and-form? for)
(let* ((left (and-form-to-left for))
(right (and-form-to-right for))
(u1 (formula-to-new-avar left))
(u2 (formula-to-new-avar right))
(new-avar-lists ;without u:A&B, with u1:A, u2:B
(add-to-avar-lists
u1 (add-to-avar-lists
u2 (list elems (cdr ands-and-and-imps)
elem-imps leftit-imps))))
(prev (prop1 new-avar-lists elem-goal-formula)))
(if (not prev)
#f
(proof-substitute
prev
(make-substitution
(list u1 u2)
(list (make-proof-in-and-elim-left-form
(make-proof-in-avar-form u))
(make-proof-in-and-elim-right-form
(make-proof-in-avar-form u))))))))
((and-imp-form? for)
(let* ((prem (imp-form-to-premise for))
(concl (imp-form-to-conclusion for))
(left (and-form-to-left prem))
(right (and-form-to-right prem))
(u1 (formula-to-new-avar (mk-imp left right concl)))
(u2 (formula-to-new-avar left))
(u3 (formula-to-new-avar right))
(new-avar-lists ;without u:A&B->C, with u1:A->B->C
(add-to-avar-lists
u1 (list elems (cdr ands-and-and-imps)
elem-imps leftit-imps)))
(prev (prop1 new-avar-lists elem-goal-formula)))
(if (not prev)
#f
(proof-subst
prev u1
(mk-proof-in-intro-form
u2 u3 (make-proof-in-imp-elim-form
(make-proof-in-avar-form u)
(make-proof-in-and-intro-form
(make-proof-in-avar-form u2)
(make-proof-in-avar-form u3))))))))
(else (myerror "prop1: and-imp-form or and-form expected"
for)))))))
; prop2 prueft zunaechst, ob die (elementare) Zielformel gleich T ist
; oder ob sie unter den Annahmen vorkommt. Wenn ja, wird truth-axiom-symbol
; bzw. das zugehoerige Annahmensymbol zurueckgegeben. Wenn nein, wird
; nach einer Annahme v:E->A gesucht, fuer die auch u:E unter den elementaren
; Annahmen vorkommt oder gleich T ist. Wenn eine gefunden ist, wird die
; Annahme E->A entfernt und stattdessen die Annahme A gemacht, und prop1 auf
; diese neuen Annahmen und die alte Zielformel angewandt. Wenn keine solche
; Annahme vorhanden ist, wird prop3 aufgerufen
(define (prop2 avar-lists elem-goal-formula)
(if
(formula=? truth elem-goal-formula)
(make-proof-in-aconst-form truth-aconst)
(let* ((elems (car avar-lists))
(ands-and-and-imps (cadr avar-lists))
(elem-imps (caddr avar-lists))
(leftit-imps (cadddr avar-lists))
(info1 (list-transform-positive elems
(lambda (x) (formula=? elem-goal-formula
(avar-to-formula x))))))
(if
(pair? info1)
(make-proof-in-avar-form (car info1))
(do ((x elem-imps (cdr x))
(y '() (cons (car x) y))
(test
'()
(let* ((v (car x))
(formula (avar-to-formula v))
(prem (imp-form-to-premise formula))
(concl (imp-form-to-conclusion formula))
(info2 (list-transform-positive elems
(lambda (x) (formula=? prem
(avar-to-formula x))))))
(if (or ;otherwise '(); i.e. continue loop
(formula=? truth prem) (pair? info2))
(let* ((u1 (formula-to-new-avar concl))
(new-elem-imps ;without v:E->A
(append (reverse y) (cdr x)))
(new-avar-lists (list elems ands-and-and-imps
new-elem-imps leftit-imps))
(prev (prop1 (add-to-avar-lists u1 new-avar-lists)
elem-goal-formula)))
(if (not prev)
#f
(proof-subst
prev u1
(make-proof-in-imp-elim-form
(make-proof-in-avar-form v)
(if (formula=? truth prem)
(make-proof-in-aconst-form truth-aconst)
(make-proof-in-avar-form (car info2)))))))
'()))))
((or (pair? test) (null? x))
(if (pair? test) test (prop3 avar-lists elem-goal-formula))))))))
; prop3 erhaelt Annahmen, die nicht mehr gemaess prop1 oder prop2 reduzierbar
; sind. prop3 prueft zunaechst, ob noch eine linksiterierte Implikation
; als Annahme vorkommt. Wenn nicht, wird sofort #f zurueckgegeben.
; Nehmen wir jetzt an, u:(A1->A2)->A3 ist eine solche Annahme.
; Sei B die (elementare) Zielformel. Wir entfernen die Annehme
; u:(A1->A2)->A3 und pruefen zunaechst durch einen Aufruf von prop1,
; ob B with der zusaetzlichen Annahme u3:A3 herleitbar ist.
; Wenn nein, gehen wir gleich zur naechsten linksiterierten Implikation ueber.
; Wenn ja, pruefen wir als naechstes durch einen Aufruf von prop0, ob
; A1->A2 with der zusaetzlichen Annahme u2:A2->A3 herleitbar ist.
; Wenn nein, gehen wir wieder zur naechsten linksiterierten Implikation ueber.
; Wenn ja, erhalten wir wie folgt eine Herleitung von B aus den neuen
; Annahmen:
; u3:A2
; -------- imp-intro u4:A1
; u:(A1 -> A2) -> A3 A1 -> A2
; -------------------------------
; A3
; -------- imp-intro u3:A2
; A2 -> A3
; |
; | prev2
; |
; u:(A1 -> A2) -> A3 A1 -> A2
; -------------------------------
; A3
; |
; | prev1
; |
; B
(define (prop3 avar-lists elem-goal-formula)
(let* ((elems (car avar-lists))
(ands-and-and-imps (cadr avar-lists))
(elem-imps (caddr avar-lists))
(leftit-imps (cadddr avar-lists)))
(let f ((x leftit-imps) (y '()))
(if (null? x)
#f
(let* ((u (car x))
(leftit-imp (avar-to-formula u))
(prem (imp-form-to-premise leftit-imp))
(A1 (imp-form-to-premise prem))
(A2 (imp-form-to-conclusion prem))
(A3 (imp-form-to-conclusion leftit-imp))
(new-leftit-imps ;without u:(A1->A2)->A3
(append (reverse y) (cdr x)))
(new-avar-lists (list elems ands-and-and-imps
elem-imps new-leftit-imps))
(u1 (formula-to-new-avar A3))
(u2 (formula-to-new-avar (mk-imp A2 A3)))
(u3 (formula-to-new-avar A2))
(u4 (formula-to-new-avar A1))
(prev1 (prop1 (add-to-avar-lists u1 new-avar-lists)
elem-goal-formula)))
(if prev1 ;otherwise: continue immediately with leftit-imps
(let ((prev2 (prop0 (add-to-avar-lists u2 new-avar-lists)
(mk-imp A1 A2))))
(if prev2 ;otherwise: continue immediately with leftit-imps
(proof-subst
prev1 u1
(make-proof-in-imp-elim-form
(make-proof-in-avar-form u)
(proof-subst
prev2 u2
(make-proof-in-imp-intro-form
u3 (make-proof-in-imp-elim-form
(make-proof-in-avar-form u)
(make-proof-in-imp-intro-form
u4 (make-proof-in-avar-form u3)))))))
(f (cdr x) (cons (car x) y))))
(f (cdr x) (cons (car x) y))))))))
; (define (prop3 avar-lists elem-goal-formula)
; (call/cc
; (lambda (return)
; (let* ((elems (car avar-lists))
; (ands-and-and-imps (cadr avar-lists))
; (elem-imps (caddr avar-lists))
; (leftit-imps (cadddr avar-lists)))
; (do ((x leftit-imps (cdr x))
; (y '() (cons (car x) y)))
; ((null? x) (return #f))
; (let* ((u (car x))
; (leftit-imp (avar-to-formula u))
; (prem (imp-form-to-premise leftit-imp))
; (A1 (imp-form-to-premise prem))
; (A2 (imp-form-to-conclusion prem))
; (A3 (imp-form-to-conclusion leftit-imp))
; (new-leftit-imps ;without u:(A1->A2)->A3
; (append (reverse y) (cdr x)))
; (new-avar-lists (list elems ands-and-and-imps
; elem-imps new-leftit-imps))
; (u1 (formula-to-new-avar A3))
; (u2 (formula-to-new-avar (mk-imp A2 A3)))
; (u3 (formula-to-new-avar A2))
; (u4 (formula-to-new-avar A1))
; (prev1 (prop1 (add-to-avar-lists u1 new-avar-lists)
; elem-goal-formula)))
; (if prev1 ;otherwise: continue immediately with leftit-imps
; (let ((prev2 (prop0 (add-to-avar-lists u2 new-avar-lists)
; (mk-imp A1 A2))))
; (if prev2 ;otherwise: continue immediately with leftit-imps
; (return
; (proof-subst
; prev1 u1
; (make-proof-in-imp-elim-form
; (make-proof-in-avar-form u)
; (proof-subst
; prev2 u2
; (make-proof-in-imp-intro-form
; u3 (make-proof-in-imp-elim-form
; (make-proof-in-avar-form u)
; (make-proof-in-imp-intro-form
; u4 (make-proof-in-avar-form u3)))))))))))))))))
; Einige Beispielsformeln stehen in ~/minlog/examples/prop-ex.scm.
|