/usr/share/minlog/src/boole.scm is in minlog 4.0.99.20100221-5.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 | ; $Id: boole.scm 2346 2009-11-13 11:41:47Z schwicht $
; 7. Formulas and comprehension terms
; ===================================
; First we add some tokens (this can only be done after loading
; minitab.scm, which is done immediately before loading the present file)
(add-token "andd" 'and-jct make-andd)
(add-token "andr" 'and-jct make-andr)
(add-token "andu" 'and-jct make-andu)
(add-token "ord" 'or-jct make-ord)
(add-token "orl" 'or-jct make-orl)
(add-token "orr" 'or-jct make-orr)
(add-token "oru" 'or-jct make-oru)
(add-token "eqd" 'pred-infix make-eqd)
(add-idpredconst-display "EqD" 'pred-infix "eqd")
(add-token "exd" 'quantor (lambda (v k) (apply mk-exd (append v (list k)))))
(add-token "exl" 'quantor (lambda (v k) (apply mk-exl (append v (list k)))))
(add-token "exr" 'quantor (lambda (v k) (apply mk-exr (append v (list k)))))
(add-token "exu" 'quantor (lambda (v k) (apply mk-exu (append v (list k)))))
; 7-8. Booleans
; =============
; We need to initialize some global variables (needed for is-used?),
; before we can call add-alg.
(define THEOREMS '())
(define INITIAL-THEOREMS THEOREMS)
(define GLOBAL-ASSUMPTIONS '())
(define INITIAL-GLOBAL-ASSUMPTIONS GLOBAL-ASSUMPTIONS)
(add-alg "unit" '("Dummy" "unit"))
(define dummy-const (constr-name-to-constr "Dummy"))
(add-alg "boole" '("True" "boole") '("False" "boole"))
(add-new-application
(lambda (type) (equal? type (make-alg "boole")))
(lambda (test alt1)
(let* ((type (term-to-type alt1))
(var (type-to-new-var type)))
(make-term-in-abst-form
var (make-term-in-if-form
test (list alt1 (make-term-in-var-form var)))))))
(add-display
(py "boole")
(lambda (term)
(let ((op (term-in-app-form-to-final-op term))
(args (term-in-app-form-to-args term)))
(if (and (term-in-const-form? op)
(string=? "=" (const-to-name (term-in-const-form-to-const op)))
(= 2 (length args)))
(list 'rel-op "="
(term-to-token-tree (car args))
(term-to-token-tree (cadr args)))
#f))))
(add-display
(py "boole")
(lambda (term)
(let ((op (term-in-app-form-to-final-op term))
(args (term-in-app-form-to-args term)))
(if (and (term-in-const-form? op)
(string=? "E" (const-to-name (term-in-const-form-to-const op)))
(= 1 (length args)))
(list 'prefix-op "E" (term-to-token-tree (car args)))
#f))))
(define (trueval? val)
(and (nbe-constr-value? val)
(string=? "True"
(const-to-name (nbe-constr-value-to-constr val)))))
(define true-const (constr-name-to-constr "True"))
(define trueobj (const-to-object-or-arity true-const))
(define truth (make-atomic-formula (make-term-in-const-form true-const)))
(add-token "T" 'const (make-term-in-const-form true-const))
(define (falseval? val)
(and (nbe-constr-value? val)
(string=? "False"
(const-to-name (nbe-constr-value-to-constr val)))))
(define false-const (constr-name-to-constr "False"))
(define falseobj (const-to-object-or-arity false-const))
(define falsity (make-atomic-formula (make-term-in-const-form false-const)))
(add-token "F" 'const (make-term-in-const-form false-const))
(define (make-negation formula) (make-imp formula falsity))
(add-token "not" 'prefix-jct make-negation)
(define falsity-log
(make-predicate-formula
(make-pvar (make-arity) -1 h-deg-zero n-deg-zero "bot")))
; (define falsity-log
; (make-predicate-formula
; (make-pvar (make-arity) -1 h-deg-one n-deg-one "bot")))
(define (make-negation-log formula) (make-imp formula falsity-log))
(add-token "notl" 'prefix-jct make-negation-log)
; 2004-12-31 Moved here from pconst.scm. Reason: =-at and e-at need
; AndConst, which requires the algebra boole.
(define (finalg-to-=-const finalg)
(if (not (finalg? finalg))
(myerror "finalg-to-=-const" "finitary algebra expected" finalg)
(make-const (=-at finalg)
"=" 'fixed-rules
(mk-arrow finalg finalg (make-alg "boole")) empty-subst
1 'rel-op)))
(add-program-constant "AndConst" (py "boole=>boole=>boole") t-deg-one)
(add-computation-rule (pt "AndConst True boole^") (pt "boole^"))
(add-computation-rule (pt "AndConst boole^ True") (pt "boole^"))
(add-computation-rule (pt "AndConst False boole^") (pt "False"))
(add-computation-rule (pt "AndConst boole^ False") (pt "False"))
; We add infix notation "andb" (also "and") (left associative) for AndConst.
; Coq has "/\"
(add-token
"andb" 'and-op
(lambda (x y)
(mk-term-in-app-form
(make-term-in-const-form (pconst-name-to-pconst "AndConst")) x y)))
(add-token
"and" 'and-op
(lambda (x y)
(mk-term-in-app-form
(make-term-in-const-form (pconst-name-to-pconst "AndConst")) x y)))
(add-display
(py "boole")
(lambda (x)
(if (term-in-app-form? x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(if (and (term-in-const-form? op)
(string=? "AndConst"
(const-to-name (term-in-const-form-to-const op)))
(= 2 (length args)))
(list 'and-op "andb"
(term-to-token-tree (car args))
(term-to-token-tree (cadr args)))
#f))
#f)))
(define and-const (term-in-const-form-to-const (pt "AndConst")))
(add-program-constant "ImpConst" (py "boole=>boole=>boole") t-deg-one)
(add-computation-rule (pt "ImpConst False boole^") (pt "True"))
(add-computation-rule (pt "ImpConst True boole^") (pt "boole^"))
(add-computation-rule (pt "ImpConst boole^ True") (pt "True"))
; We add an infix notation "impb" (left associative) for ImpConst
(add-token
"impb" 'imp-op
(lambda (x y)
(mk-term-in-app-form
(make-term-in-const-form (pconst-name-to-pconst "ImpConst")) x y)))
(add-display
(py "boole")
(lambda (x)
(if (term-in-app-form? x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(if (and (term-in-const-form? op)
(string=? "ImpConst"
(const-to-name (term-in-const-form-to-const op)))
(= 2 (length args)))
(list 'imp-op "impb"
(term-to-token-tree (car args))
(term-to-token-tree (cadr args)))
#f))
#f)))
(define imp-const (term-in-const-form-to-const (pt "ImpConst")))
(add-program-constant "OrConst" (py "boole=>boole=>boole") t-deg-one)
(add-computation-rule (pt "OrConst True boole^") (pt "True"))
(add-computation-rule (pt "OrConst boole^ True") (pt "True"))
(add-computation-rule (pt "OrConst False boole^") (pt "boole^"))
(add-computation-rule (pt "OrConst boole^ False") (pt "boole^"))
; We add an infix notation "orb" (left associative) for OrConst
; Coq has "\/"
(add-token
"orb" 'or-op
(lambda (x y)
(mk-term-in-app-form
(make-term-in-const-form (pconst-name-to-pconst "OrConst")) x y)))
(add-display
(py "boole")
(lambda (x)
(if (term-in-app-form? x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(if (and (term-in-const-form? op)
(string=? "OrConst"
(const-to-name (term-in-const-form-to-const op)))
(= 2 (length args)))
(list 'or-op "orb"
(term-to-token-tree (car args))
(term-to-token-tree (cadr args)))
#f))
#f)))
(define or-const (term-in-const-form-to-const (pt "OrConst")))
(add-program-constant "NegConst" (py "boole=>boole") t-deg-one)
(add-computation-rule (pt "NegConst True") (pt "False"))
(add-computation-rule (pt "NegConst False") (pt "True"))
; We add a prefix notation "negb" for NegConst
(add-token
"negb" 'prefix-op
(lambda (x)
(mk-term-in-app-form
(make-term-in-const-form (pconst-name-to-pconst "NegConst")) x)))
(add-display
(py "boole")
(lambda (x)
(if (term-in-app-form? x)
(let ((op (term-in-app-form-to-final-op x))
(args (term-in-app-form-to-args x)))
(if (and (term-in-const-form? op)
(string=? "NegConst"
(const-to-name (term-in-const-form-to-const op)))
(= 1 (length args)))
(list 'prefix-op "negb"
(term-to-token-tree (car args)))
#f))
#f)))
(define neg-const (term-in-const-form-to-const (pt "NegConst")))
; In pproof.scm we have
; and-atom-to-left-proof "boole1 andb boole2 -> boole1"
; atoms-to-and-atom-proof "boole1 -> boole2 -> boole1 andb boole2
; In atr.scm we have
; imp-to-atom-proof "(boole1 -> boole2) -> ImpConst boole1 boole2"
; and-to-atom-proof "boole1 & boole2 -> boole1 and boole2"
; atom-to-imp-proof "ImpConst boole1 boole2 -> boole1 -> boole2
; atom-to-and-proof "boole1 and boole2 -> boole1 & boole2"
; qf-to-atom-imp-qf-proof: atom(r_C) -> C
; qf-to-qf-imp-atom-proof: C -> atom(r_C)
(define (=-at finalg)
(nbe-make-object
(mk-arrow finalg finalg (make-alg "boole"))
(lambda (obj1)
(nbe-make-object
(mk-arrow finalg (make-alg "boole"))
(lambda (obj2)
(let* ((val1 (nbe-object-to-value obj1))
(val2 (nbe-object-to-value obj2))
(constr1? (nbe-constr-value? val1))
(constr2? (nbe-constr-value? val2))
(reprod-obj (nbe-make-object
(make-alg "boole")
(nbe-make-termfam
(make-alg "boole")
(lambda (k)
(mk-term-in-app-form
(make-term-in-const-form
(finalg-to-=-const finalg))
(nbe-fam-apply (nbe-reify obj1) k)
(nbe-fam-apply (nbe-reify obj2) k)))))))
(cond
((and constr1? constr2?)
(let ((name1 (nbe-constr-value-to-name val1))
(name2 (nbe-constr-value-to-name val2)))
(if
(not (string=? name1 name2))
falseobj
(let* ((args1 (nbe-constr-value-to-args val1))
(args2 (nbe-constr-value-to-args val2))
(argtypes1 (map nbe-object-to-type args1))
(argtypes2 (map nbe-object-to-type args2))
(argtypes
(if (equal? argtypes1 argtypes2)
argtypes1
(myerror "=-at" "equal argtypes expected"
(map type-to-string argtypes1)
(map type-to-string argtypes2))))
(prevs
(do ((l1 args1 (cdr l1))
(l2 args2 (cdr l2))
(ltypes argtypes (cdr ltypes))
(res
'()
(let* ((arg1 (car l1))
(arg2 (car l2))
(type (car ltypes))
(prev
(case (tag type)
((alg)
(nbe-object-app (=-at type)
arg1 arg2))
((arrow) ;unit -> finalg
(nbe-object-app
(=-at (arrow-form-to-val-type type))
(nbe-object-app
arg1
(const-to-object-or-arity
dummy-const))
(nbe-object-app
arg2
(const-to-object-or-arity
dummy-const))))
(else (myerror "=-at" "type expected"
type)))))
(let ((prevval (nbe-object-to-value prev)))
(cond
((trueval? prevval) res)
((falseval? prevval) (cons 'f res))
(else (cons prev res)))))))
((or (memq 'f res) (null? l1)) res))))
(cond
((null? prevs)
trueobj)
((memq 'f prevs)
falseobj)
(else
(do ((l (cdr prevs) (cdr l))
(obj
(car prevs)
(nbe-make-object
(make-alg "boole")
(nbe-make-termfam
(make-alg "boole")
(lambda (k)
(mk-term-in-app-form
(make-term-in-const-form
(pconst-name-to-pconst "AndConst"))
(nbe-fam-apply (nbe-reify (car l)) k)
(nbe-fam-apply (nbe-reify obj) k)))))))
((null? l) obj))))))))
((or constr1? constr2?)
(let* ((constr-obj (if constr1? obj1 obj2))
(constr-val (if constr1? val1 val2))
(obj (if constr1? obj2 obj1)))
(do ((l (nbe-constr-value-to-args constr-val) (cdr l)))
((or (null? l)
(let* ((arg (car l))
(argalg (nbe-object-to-type arg))
(prev (nbe-object-app (in-at finalg argalg)
obj arg))
(prevval (nbe-object-to-value prev)))
(trueval? prevval)))
(if (null? l)
reprod-obj
falseobj)))))
((and (nbe-fam-value? val1) (nbe-fam-value? val2))
(let ((term1 (nbe-extract val1))
(term2 (nbe-extract val2)))
(if (and (term=? term1 term2)
(synt-total? term1) (synt-total? term2))
trueobj
reprod-obj)))
(else reprod-obj))))))))
(define (in-at finalg1 finalg2)
(nbe-make-object
(mk-arrow finalg1 finalg2 (make-alg "boole"))
(lambda (obj1)
(nbe-make-object
(mk-arrow finalg2 (make-alg "boole"))
(lambda (obj2)
(let ((val1 (nbe-object-to-value obj1))
(val2 (nbe-object-to-value obj2)))
(cond
((and (equal? finalg1 finalg2)
(trueval? (nbe-object-to-value
(nbe-object-app (=-at finalg1) obj1 obj2))))
trueobj)
((nbe-constr-value? val2)
(do ((l (nbe-constr-value-to-args val2) (cdr l)))
((or (null? l)
(let* ((arg (car l))
(argtype (nbe-object-to-type arg))
(prev (nbe-object-app (in-at finalg1 argtype)
obj1 arg))
(prevval (nbe-object-to-value prev)))
(trueval? prevval)))
(if (null? l)
falseobj
trueobj))))
(else falseobj))))))))
(define (finalg-to-e-const finalg)
(if (not (finalg? finalg))
(myerror "finalg-to-e-const" "finitary algebra expected" finalg)
(make-const (e-at finalg)
"E" 'fixed-rules
(make-arrow finalg (make-alg "boole")) empty-subst
1 'prefix-op)))
(define (e-at finalg)
(nbe-make-object
(make-arrow finalg (make-alg "boole"))
(lambda (obj)
(let ((val (nbe-object-to-value obj))
(reprod-obj (nbe-make-object
(make-alg "boole")
(nbe-make-termfam
(make-alg "boole")
(lambda (k)
(mk-term-in-app-form
(make-term-in-const-form
(finalg-to-e-const finalg))
(nbe-fam-apply (nbe-reify obj) k)))))))
(cond
((nbe-constr-value? val)
(let* ((args (nbe-constr-value-to-args val))
(argtypes (map nbe-object-to-type args))
(prevs
(do ((l args (cdr l))
(ltypes argtypes (cdr ltypes))
(res
'()
(let* ((arg (car l))
(type (car ltypes))
(prev (nbe-object-app (e-at type) arg)))
(if (trueval? (nbe-object-to-value prev))
res
(cons prev res)))))
((null? l) res))))
(if (null? prevs)
trueobj
(do ((l (cdr prevs) (cdr l))
(obj
(car prevs)
(nbe-make-object
(make-alg "boole")
(nbe-make-termfam
(make-alg "boole")
(lambda (k)
(mk-term-in-app-form
(make-term-in-const-form
(pconst-name-to-pconst "AndConst"))
(nbe-fam-apply (nbe-reify (car l)) k)
(nbe-fam-apply (nbe-reify obj) k)))))))
((null? l) obj)))))
((and (nbe-fam-value? val) (synt-total? (nbe-extract val)))
trueobj)
(else reprod-obj))))))
(define (sfinalg-to-se-const sfinalg)
(if (not (sfinalg? sfinalg))
(myerror "sfinalg-to-se-const"
"structure finitary algebra expected"
sfinalg)
(make-const (se-at sfinalg)
"SE" 'fixed-rules
(make-arrow sfinalg (make-alg "boole")) empty-subst
1 'prefix-op)))
(define (se-at sfinalg)
(nbe-make-object
(make-arrow sfinalg (make-alg "boole"))
(lambda (obj)
(let ((val (nbe-object-to-value obj)))
(cond
((nbe-constr-value? val)
(let* ((alg-name (alg-form-to-name sfinalg))
(alg-names (alg-name-to-simalg-names alg-name))
(args (nbe-constr-value-to-args val))
(argtypes (map nbe-object-to-type args))
(prevs
(do ((l args (cdr l))
(ltypes argtypes (cdr ltypes))
(res
'()
(let* ((arg (car l))
(type (car ltypes))
(prev
(if (and (alg-form? type)
(member (alg-form-to-name type)
alg-names))
(nbe-object-app (se-at type) arg)
'())))
(if (or (null? prev)
(trueval? (nbe-object-to-value prev)))
res
(cons prev res)))))
((null? l) res))))
(if (null? prevs)
trueobj
(do ((l (cdr prevs) (cdr l))
(obj
(car prevs)
(nbe-make-object
(make-alg "boole")
(nbe-make-termfam
(make-alg "boole")
(lambda (k)
(mk-term-in-app-form
(make-term-in-const-form
(pconst-name-to-const "AndConst"))
(nbe-fam-apply (nbe-reify (car l)) k)
(nbe-fam-apply (nbe-reify obj) k)))))))
((null? l) obj)))))
((and (nbe-fam-value? val) (synt-total? (nbe-extract val)))
trueobj)
((nbe-fam-value? val) ;reproduce
(nbe-make-object
(make-alg "boole")
(nbe-make-termfam
(make-alg "boole")
(lambda (k)
(mk-term-in-app-form
(make-term-in-const-form
(sfinalg-to-se-const sfinalg))
(nbe-fam-apply (nbe-reify obj) k))))))
(else (myerror "se-at" "value expected" val)))))))
; The pconst "Inhab" is a constscheme providing a canonical inhabitant
; of an arbitrary type alpha. It can be given a concrete value.
; Example: (add-computation-rule (pt "(Inhab boole)") (pt "False"))
; (Inhab alpha) considered as total. Reason: since every algebra is
; required to have nullary constructors, every (closed) type rho can
; be given a total canonical inhabitant.
(add-program-constant "Inhab" (py "alpha") t-deg-one)
|