This file is indexed.

/usr/share/minlog/lib/minpr_gen.scm is in minlog 4.0.99.20100221-5.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
; $Id: minpr_gen.scm 2156 2008-01-25 13:25:12Z schimans $
; Proof of the minimum principle with measure function from induction

;(load "~/minlog/init.scm")

(set! COMMENT-FLAG #f)
(mload "../lib/nat.scm")
(set! COMMENT-FLAG #t)

; The minimum principle formula is generated through formula-to-min-pr-at
; parameters:
;  l-or-a-string, specifying if one wants to work within logic or arithmetic
;  n is the number of type variables
;  m is the number of predicates
; returns:
;  the minpr formula
; For m=n=1, the minimum principle, for some measure m, is:
;   ex i P(i) -> ex i. P(i) ! all j. m(j) < m(i) -> P(j) -> bot

; For the often appearing parameters, we define auxiliary functions
; k works as a counter

(define (fixed-vars-fun k n) 
; a function through which (alpha1)_((k-1)*n+1) ... (alphan)_((k-1)*n+n) 
; are generated, i.e. n fresh variables of types alpha1 to alphan
	  (do ((i (- n 1) (- i 1))
	       (res (list (make-var (make-tvar n DEFAULT-TVAR-NAME) 
				    (+ (* (- k 1) n) n) 1 ""))
		    (cons (make-var (make-tvar i DEFAULT-TVAR-NAME) 
				    (+ (* (- k 1) n) i) 1 "")
			  res)))
	      ((zero? i) res)))

(define (fixed-pvars-fun m n)
; a function through which m predicate vars are generated;
; each predicate takes n arguments of type alpha1 to alphan
  (let* (
	 (fixed-vars (fixed-vars-fun 1 n))
	 (fixed-tvars (map var-to-type fixed-vars))
	 (fixed-arity (apply make-arity fixed-tvars)))
    (do ((j (- m 1) (- j 1))
	 (res (list (make-pvar fixed-arity m h-deg-zero n-deg-zero ""))
	      (cons (make-pvar fixed-arity j h-deg-zero n-deg-zero "") res)))
	((zero? j) res))))
(define (measure-term-fun k n)
; a function returning the measure function m appearing in the min principle
; it has type alpha1=>...=>alphan=>nat and takes n parameters
; i.e. the k-th set of n fixed-vars
  (let* (
	 (fixed-vars (fixed-vars-fun k n))
	 (fixed-tvars (map var-to-type fixed-vars))
	 (measure-function-type
	  (apply mk-arrow (append fixed-tvars (list (make-alg "nat")))))
	 (measure-function-var (make-var measure-function-type -1 1 ""))
	 )
    (apply mk-term-in-app-form
	   (cons (make-term-in-var-form measure-function-var)
		 (map make-term-in-var-form fixed-vars)))))

(define (measure-function-var n)
; returns the type of the measure function, i.e. alpha1=>...=>alphan
  (let* (
	 (fixed-vars (fixed-vars-fun 1 n))
	 (fixed-tvars (map var-to-type fixed-vars))
	 (measure-function-type
	  (apply mk-arrow (append fixed-tvars (list (make-alg "nat"))))))
    (make-var measure-function-type -1 1 "")))


(define (formula-of-min-pr-at l-or-a-string n m)
; the function generating the min-pr formula
  (let* ((fixed-vars (fixed-vars-fun 1 n))
	 (fixed-tvars (map var-to-type fixed-vars))
	 (fixed-pvars (fixed-pvars-fun m n))
	 (fixed-varterms (map make-term-in-var-form fixed-vars))
	 (fixed-formulas (map (lambda (x)
				(apply make-predicate-formula
				       (cons x fixed-varterms)))
			      fixed-pvars))
	 (fixed-pvar (make-pvar (make-arity) -1 h-deg-zero n-deg-zero ""))
	 (fixed-formula (make-predicate-formula fixed-pvar))
	 (fixed-exc-kernel (apply mk-tensor fixed-formulas))
	 (fixed-exc-formula
	  (cond
	   ((string=? "l" l-or-a-string)
	    (apply mk-excl (append fixed-vars (list fixed-exc-kernel))))
	   ((string=? "a" l-or-a-string)
	    (apply mk-exca (append fixed-vars (list fixed-exc-kernel))))
	   (else (myerror "formula-of-min-pr-at: string l or a expected"
			  l-or-a-string))))
	 (measure-term (measure-term-fun 1 n))
	 (fixed-vars1 (fixed-vars-fun 2 n))
	 (fixed-varterms1 (map make-term-in-var-form fixed-vars1))
	 (measure-term1 (measure-term-fun 2 n))
	 (fixed-formulas1 (map (lambda (x)
				 (apply make-predicate-formula
					(cons x fixed-varterms1)))
			       fixed-pvars))
	 (fixed-all-formula
	  (apply mk-all
		 (append
		  fixed-vars1
		  (list (apply mk-imp
			       (cons (make-atomic-formula
				      (mk-term-in-app-form
				       (make-term-in-const-form
					(pconst-name-to-pconst "NatLt"))
				       measure-term1 measure-term))
				     (append
				      fixed-formulas1
				      (list (if (string=? "l" l-or-a-string)
						falsity-log falsity)))))))))
	 (fixed-extended-exc-kernel
	  (apply mk-tensor (cons fixed-all-formula fixed-formulas)))
	 (fixed-extended-exc-formula
	  (if (string=? "l" l-or-a-string)
	      (apply mk-excl
		     (append fixed-vars (list fixed-extended-exc-kernel)))
	      (apply mk-exca
		     (append fixed-vars (list fixed-extended-exc-kernel))))))
    (make-all (measure-function-var n)
	      (make-imp fixed-exc-formula fixed-extended-exc-formula))))
 

; In order to prove min-pr, we need the course-pf-values induction
; For the later, we need to construct the corresponding formula...

(define (formula-of-course-of-val-ind-at n m)
  (let* (
	 (fixed-vars (fixed-vars-fun 1 n))
	 (fixed-tvars (map var-to-type fixed-vars))
	 (fixed-pvars (fixed-pvars-fun m n))
	 (fixed-varterms (map make-term-in-var-form fixed-vars))
	 (fixed-formulas (map (lambda (x)
				(apply make-predicate-formula
				       (cons x fixed-varterms)))
			      fixed-pvars))
	 (fixed-pvar (make-pvar (make-arity) -1 h-deg-zero n-deg-zero ""))
	 (fixed-formula (make-predicate-formula fixed-pvar))
	 (fixed-all-kernel (apply mk-imp fixed-formulas))
	 (fixed-all-formula
	  (apply mk-all (append fixed-vars (list fixed-all-kernel))))
	 (measure-term (measure-term-fun 1 n))
	 (fixed-vars1 (fixed-vars-fun 2 n))
	 (fixed-varterms1 (map make-term-in-var-form fixed-vars1))
	 (measure-term1 (measure-term-fun 2 n))
	 (fixed-formulas1 
	  (map (lambda (x)
		 (apply make-predicate-formula
			(cons x fixed-varterms1)))
	       fixed-pvars))
	 (fixed-all-formula1
	  (apply mk-all
		 (append
		  fixed-vars1
		  (list (apply mk-imp
			       (cons (make-atomic-formula
				      (mk-term-in-app-form
				       (make-term-in-const-form
					(pconst-name-to-pconst "NatLt"))
				       measure-term1 measure-term))
				     fixed-formulas1
				     ))))))
	 (fixed-extended-all-kernel
	  (apply mk-imp (cons fixed-all-formula1 fixed-formulas)))
         (fixed-extended-all-formula
	  (apply mk-all
		 (append fixed-vars (list fixed-extended-all-kernel)))))
    (make-all (measure-function-var n)
	      (make-imp fixed-extended-all-formula fixed-all-formula ))))

; In the proof of course-of-values induction, we need to cut in
; an intermediate formula, which we construct bellow
(define (formula-cut n m)
  (let* (
	 (fixed-vars (fixed-vars-fun 1 n))
	 (fixed-tvars (map var-to-type fixed-vars))
	 (fixed-arity (apply make-arity fixed-tvars))
	 (fixed-varterms (map make-term-in-var-form fixed-vars))
	 (measure-term
	  (apply mk-term-in-app-form
		 (cons (make-term-in-var-form (measure-function-var n))
		       fixed-varterms)))
	 (fixed-pvars (fixed-pvars-fun m n))
	 (fixed-vars2 (fixed-vars-fun 2 n))
	 (fixed-varterms2 (map make-term-in-var-form fixed-vars2))
	 (measure-term2
	  (apply mk-term-in-app-form
		 (cons (make-term-in-var-form (measure-function-var n))
		       fixed-varterms2)))
	 (fixed-formulas2
	  (map (lambda (x)
		 (apply make-predicate-formula
			(cons x fixed-varterms2)))
	       fixed-pvars))
	 (natvar (make-var (make-alg "nat") -1 1 ""))
	 (tnatvar (make-term-in-var-form natvar))
	 (cut-formula-kernel
	  (apply mk-all
		 (append
		  fixed-vars2
		  (list (apply mk-imp
			       (cons (make-atomic-formula
				      (mk-term-in-app-form
				       (make-term-in-const-form
					(pconst-name-to-pconst "NatLt"))
				       measure-term2
				       tnatvar))
				     fixed-formulas2
				     ))))))
	  )
	  (apply mk-all
		 (append (list natvar) (list cut-formula-kernel)))
	  ))
	 


; We now prove the minimum principle, i.e. the result of formula-of-min-pr-at

; First, a function appending the elements from a list to a string
(define (str-app s l)
 (if (null? l) s (str-app (string-append s (car l)) (cdr l))))

(define (min-pr-to-thm-intern n m l-or-a-string) 
  (set! COMMENT-FLAG #f)
  (let* (
	 (fixed-vars (fixed-vars-fun 1 n))
	 (appvar (string-append (term-to-string (measure-term-fun 1 n)) "+1"))
	 (pred-form-to-args (str-app (pvar-to-string (car (reverse (fixed-pvars-fun m n)))) (map var-to-string fixed-vars)))
	 (pred-form-to-args-neg
	  (cond
	   ((string=? "l" l-or-a-string)
	    (string-append pred-form-to-args "->bot"))
	   ((string=? "a" l-or-a-string)
	    (string-append pred-form-to-args "->F")))) 
	 (CvInd
	  (string-append
	   "CvInd-" l-or-a-string "-" (number-to-string n) "-" (number-to-string m))))
          ; this is just to make sure we prove and save a new CvInd 
    ; proving
    (set-goal (formula-of-course-of-val-ind-at n m))
    (assume (var-to-string (measure-function-var n)) "H1")

    ; We need an auxiliary claim to get the induction through
    (cut (pf (formula-to-string (formula-cut n m))))
    
    (assume "H2") 
    (map assume (map var-to-string fixed-vars)) 
    ;(define appvar (string-append (term-to-string (measure-term-fun 1 n)) "+1"))
    (use "H2" (pt appvar))
    (use "Truth-Axiom")

    ; Now the proof of the generalized claim:
    (ind)

    ; Base
    (map assume (map var-to-string fixed-vars)) 
    (assume "Absurd")
    (use "Efq")
    (use "Absurd")

    ; Step
    (assume "nat" "H2")
    (map assume (map var-to-string (fixed-vars-fun 2 n))) 
    (assume "H3")
    (use "H1")
    (map assume (map var-to-string (fixed-vars-fun 3 n))) 
    (assume "H4")
    (use "H2")
    (use "NatLtLeTrans" (pt (term-to-string (measure-term-fun 2 n))))
    (use "H4")
    (use "NatLtSuccToLe")
    (use "H3")
    (save CvInd) 


    ; Now we can get back to our main goal:
    ; proving the minimum principle

    (set-goal (formula-of-min-pr-at l-or-a-string n m)) 
    (assume (var-to-string (measure-function-var n))) 
    (assume "H1" "H2")
    (use "H1")
    
    (use-with
     (proof-substitute
      (make-proof-in-aconst-form (theorem-name-to-aconst CvInd))
      (make-subst-wrt
       pvar-cterm-equal?
       (predicate-form-to-predicate 
	(pf pred-form-to-args))
;    statt make-cterm
       (list 'cterm (map pv (map var-to-string (fixed-vars-fun 1 n))) 
	     (pf pred-form-to-args-neg))))
     (pt (var-to-string (measure-function-var n))) "?")
    (use "H2"))
)

 
; by the bellow function, we avoid the computation in case the theorem already exists
(define (min-pr-to-thm n m l-or-a-string)
  (let* (
	 (name_thm
	  (string-append
	   "Min-Pr-" l-or-a-string "-" (number-to-string n) "-" (number-to-string m)))
	 (info (assoc name_thm THEOREMS)))
    (cond ((not info) ; that is, if the theorem does not exist
	(min-pr-to-thm-intern n m l-or-a-string)
	(save name_thm)))
    (set! COMMENT-FLAG #t)
    name_thm))