This file is indexed.

/usr/share/maxima/5.32.1/src/spgcd.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;   *****************************************************************
;;;   ***** SPGCD ******* Sparse polynomial routines for GCD **********
;;;   *****************************************************************
;;;   ** (C) COPYRIGHT 1982 MASSACHUSETTS INSTITUTE OF TECHNOLOGY *****
;;;   ****** THIS IS A READ-ONLY FILE! (ALL WRITES RESERVED) **********
;;;   *****************************************************************

(in-package :maxima)

(macsyma-module spgcd)

(declare-top (special modulus genvar *alpha *which-factor*
		      $algebraic algfac* $gcd))

(load-macsyma-macros ratmac)

(defmvar $pointbound *alpha)

(defmacro len (lobj) `(cadr ,lobj))

(defmacro skel (lobj) `(caddr ,lobj))

(defmacro matrix (lobj) `(cadddr ,lobj))

(defmacro currow (lobj) `(cadr (cdddr ,lobj)))

(defmacro badrows (lobj) `(cadr (cddddr ,lobj)))

(defun pinterp (x pts vals)
  (do ((u (car vals)
	  (pplus u (ptimes
		    (pctimes (crecip (pcsubstz (car xk) qk))
			     qk)
		    (pdifference (car uk)
				 (pcsubstz (car xk) u)))))
       (uk (cdr vals) (cdr uk))
       (qk (list x 1 1 0 (cminus (car pts)))
	   (ptimes qk (list x 1 1 0 (cminus (car xk)))))
       (xk (cdr pts) (cdr xk)))
      ((null xk) u)))

(defun pcsubstz (val p)
  (if (pcoefp p) p
      (do ((l (p-terms p) (pt-red l))
	   (ans 0
		(ctimes
		 (cplus ans (pt-lc l))
		 (cexpt val (- (pt-le l) (pt-le (pt-red l)))))))
	  ((null (pt-red l))
	   (ctimes
	    (cplus ans (pt-lc l))
	    (if (zerop (pt-le l))
		1
		(cexpt val (pt-le l))))))))

;;skeletons consist of list of exponent vectors
;;lifting structures are as follows:

;;(matrix <n>            ;length of <skel>
;;        <skel>		;skeleton of poly being lifted
;;        <matrix>       ; partially diagonalized matrix used to obtain sol.
;;        <row>          ;we have diagonalized this far
;;        <bad rows>)    ; after we get 

(defun eval-mon (mon pt)
  (do ((l mon (cdr l))
       (ll pt (cdr ll))
       (ans 1 (ctimes
	       (if (zerop (car l)) 1
		   (cexpt (car ll) (car l)))
	       ans)))
      ((null l) ans)))

;; ONE-STEP causes the  (row,col) element of mat to be made to be zero.  It is
;; assumed that row > col, and that the matrix is diagonal above the row.  
;; n indicates how wide the rows are suppoded to be.

(defun one-step (mat row col n)
  (do ((i col (1+ i))
       (c (aref mat row col)))	  ;Got to save this away before it is zeroed
      ((> i n) mat)
    (setf (aref mat row i)
	   (cdifference (aref mat row i)
			(ctimes c (aref mat col i))))))

;; MONICIZE-ROW assumes the (row,row) element is non-zero and that this element
;; is to be made equal to one.  It merely divides the entire row by the 
;; (row,row) element.  It is assumed that the (row,n) elements with n < row are
;; already zero.  Again n is the width of the rows.

(defun monicize-row (mat row n)
  (do ((i n (1- i))
       (c (crecip (aref mat row row))))
      ((= i row)
       (setf (aref mat row row) 1)) ;Don't bother doing the division on the diagonal
    (setf (aref mat row i) (ctimes (aref mat row i) c))))

;; FILL-ROW is given a point and the value of the skeleton at the point and
;; fills the apropriate row in the matrix. with the values of the monomials
;; n is the length of the skeleton

(defun fill-row (skel mat n row pt val)
  (do ((i 0 (1+ i))
       (l skel (cdr l)))
      ((= i n)				;l should be nil now,
       (if (not (null l))	     ;but lets check just to make sure
	   (merror "FILL-ROW: skeleton too long: ~S"
		   (list n '= skel)))
       (setf (aref mat row n) val)) ;The value is stored in the last column
    (setf (aref mat row i)
	   (eval-mon (car l) pt))))	;Should think about a better
					;way to do this evaluation.

#-allegro
(defun swap-rows (mat m n)		;Interchange row m and n
  (do ((k 0 (1+ k))
       (l (array-dimension mat 0)))
      ((> k l) mat)
    (setf (aref mat m k)
	   (prog1
	       (aref mat n k)
	     (setf (aref mat n k) (aref mat m k))))))

;; PARTIAL-DIAG fills in one more row of the matrix and tries to diagonalize
;; what it has so far.  If the row which has just been introduced has a 
;; zero element on the diagonal then it is scanned for its first non-zero
;; element and it is placed in the matrix so that the non-zero element is 
;; on the diagonal.  The rows which are missing are added to the list in 
;; badrows.  The current row pointer may skip a couple of numbers here, so
;; when it is equal to n, the only empty rows to add thing to are on the
;; bad rows list.

(defun partial-diag (lobj pt val) ; Does one step of diagonalization of
  (let ((n (len lobj))			;the matrix in lobj
	(skel (skel lobj))		
	(mat (matrix lobj))		;The matrix, obviously
	(row (currow lobj))	      ;This is the row which is to be 
					;introduced
	(badrows (badrows lobj))    ;Rows which could not be used when
					;their time came, and will be used later
	crow)
    (cond ((= row n)		    ;All rows already done, must start
					;using the rows in badrows.
	   (fill-row skel mat n (setq crow (car badrows)) pt val))
	  ((fill-row skel mat n row pt val) ;Fill up the data
	   (setq crow row)))

    ;; This loop kills all the elements in the row up to the diagonal.

    (do ((i 0 (1+ i))			;runs over the columns of mat
	 (l (setq badrows (cons nil badrows)))
	 (flag))
	((= i crow)
	 (setq badrows (cdr badrows)))	;update badrows
      (if (cdr l)			;Any bad rows around?
	  (if (= (cadr l) i)		;No one for this row,
	      (if (and (null flag)	;So if this guy can fill in
		       (not (zerop (aref mat crow i))))
		  (progn
		    (swap-rows mat crow i) ;Put this guy in the right spot
		    (rplacd l (cddr l))
		    (setq flag t crow i)) ; and make him a winner
		  (setq l (cdr l)))	;At any rate this guy isn't 
					;used any more.
	      (one-step mat crow i n))
	  (one-step mat crow i n)))

    (if (zerop (aref mat crow crow))	;diagonal is zero?
	(setq badrows (cons crow badrows))
	(progn
	  (monicize-row mat crow n) ;Monicize the diagonal element on this
					;row
	  (do ((j 0 (1+ j)))	  ;For each element in the rows above 
					;this one zero the the crow column
	      ((= j crow))	      ;Don't zero the diagonal element
	    (one-step mat j crow n))))
    (cond ((and (= (1+ row) n)
		(progn (setq row (1- row)) t) ;Decrement it just in case
		(null (cdr badrows)))
	   (do ((l nil (cons (aref mat i n) l))
		(i (1- n) (1- i)))
	       ((< i 0)
		(list 'solution n skel mat l))))
	  (t (list 'matrix n skel mat (1+ row) badrows)))))

(defun gen-point (vars)
  (do ((l vars (cdr l))
       (ans nil (cons (cmod (random $pointbound)) ans)))
      ((null l) ans)))

;; PDIAG-ALL introduces a new row in each matrix in the list of l-lobjs.
;; The RHS of the equations is stripped off of poly.

(defun pdiag-all (l-lobjs poly pt)
  (do ((l l-lobjs (cdr l))
       (lp (p-terms poly))
       (solved t) (c))
      ((null l)
       (if solved (cons 'solved l-lobjs)
	   l-lobjs))
    (if (and lp (= (caar l) (pt-le lp))) ;This term corresponds to the
					;current lobj, set c to the coefficient
	(setq c (pt-lc lp) lp (pt-red lp))
	(setq c 0))
    ;;FIXTHIS				;Should put it some check for extra 
					;terms in the polynomial
    (if (not (eq (cadar l) 'solution))
	(progn (rplacd (car l)
		       (partial-diag (cdar l) pt c))
	       (and solved (null (eq (cadar l) 'solution)) 
		    (setq solved nil))))))

;; not currently called
;; (defun CREATE-INTVECT (h)
;;      (do ((l (cdr h) (cddr l))
;; 	    (ans nil (cons (list (car l) (cadr l))
;; 			   ans)))
;; 	   ((null l)
;; 	    (nreverse ans))))

;; (defun MERGE-INTVECT (iv h)
;;      (do ((l iv (cdr l))
;; 	    (h (cdr h)))
;; 	   ((null l) iv)
;; 	   (cond ((or (null h) (> (caar l) (car h)))
;; 		  (rplacd (car l) (cons 0 (cdar l))))
;; 		 ((= (caar l) (car h))
;; 		  (rplacd (car l) (cons (cadr h) (cdar l)))
;; 		  (setq h (cddr h)))
;; 		 (t (error '|Bad Evaluation point - MERGE-INTVECT|)))))


(defun merge-skel (mon poly)
  (cond ((pcoefp poly)
	 (list (cons 0 mon)))
	((do ((l (cdr poly) (cddr l))
	      (ans nil
		   (cons (cons (car l) mon) ans)))
	     ((null l) ans)))))

(defun new-skel (skel polys)
  (list
   (mapcan #'(lambda (mon poly) (merge-skel mon poly)) skel polys)
   (mapcan #'(lambda (q)
	       (cond ((pcoefp q) (list q))
		     ((do ((l (cdr q) (cddr l))
			   (ans nil (cons (cadr l) ans)))
			  ((null l) ans)))))
	   polys)))

(defun create-lobjs (prev-lift)
  (mapcar #'(lambda (q)
	      (let ((n (length (cadr q))))
		(cons (car q)
		      (list 'matrix n (cadr q)
			    (make-array (list n (1+ n)) :initial-element 0 :element-type 'fixnum)
			    0 nil))))
	  prev-lift))

(defun clear-lobjs (lobjs)
  (mapcar #'(lambda (q)
	      (cons (car q)
		    (list 'matrix (caddr q) (cadddr q)
			  (caddr (cddr q)) 0 nil)))
	  lobjs))

(defun sparse-lift (c f g l-lobjs vars)
  (do ((pt (gen-point vars) (gen-point vars))
       (gcd))
      ((eq (car l-lobjs) 'solved)
       (cdr l-lobjs))
    (setq gcd (lifting-factors-image
	       (pcsub c pt vars) (pcsub f pt vars) (pcsub g pt vars)))
    (if (or (pcoefp gcd)
	    (not (= (pt-le (p-terms gcd)) (caar l-lobjs))))
	(throw 'bad-point nil)
	(setq l-lobjs (pdiag-all l-lobjs gcd pt)))))

(defun lifting-factors-image (c f g)
  (let ((gcd (pgcdu f g)))
    (case *which-factor*
      (1 (pctimes c gcd))
      (2 (pquotient f gcd))
      (3 (pquotient g gcd)))))

(defun zgcd-lift* (c f g vars degb)
  (do ((vals (gen-point vars) (gen-point vars))
       (ans))
      ((not (null ans))
       ans)
    (setq ans
	  (catch 'bad-point
	    (zgcd-lift c f g vars vals degb)))))

;; ZGCD-LIFT returns objects called lifts.  These have the the following 
;; structure
;;      ((n <skel> <poly>) ...  )
;; n corresponds to the degree in the main variable to which this guy 
;; corresponds.

(defun zgcd-lift (c f g vars vals degb)
  (cond ((null vars)		 ;No variables left, just the main one
	 (let ((p (lifting-factors-image c f g))) ;Compute factor and 
					;enforce leading coefficient
	   (if (pcoefp p) (throw 'relprime 1) ;if the GCD is 1 quit
	       (do ((l (p-terms p) (pt-red l)) ;otherwise march
					;though the polynomial
		    (ans nil	   ;constructing a lift for each term.
			 (cons (list (pt-le l) '(nil) (list (pt-lc l)))
			       ans)))
		   ((null l)
		    (nreverse ans))))))
	((let ((prev-lift		;Recurse if possible
		(zgcd-lift (pcsubsty (car vals) (car vars) c)
			   (pcsubsty (car vals) (car vars) f)
			   (pcsubsty (car vals) (car vars) g)
			   (cdr vars) (cdr vals) (cdr degb))))
	   (do ((i 0 (1+ i))		;counts to the degree bound
		(lobjs (create-lobjs prev-lift)	;need to create
					;the appropriate matrices
		       (clear-lobjs lobjs)) ;but reuse them at each
					;step
		(pts (add-point (list (car vals))) ;List of random
		     (add-point pts))	;points
		(linsols (mapcar 'make-linsols prev-lift)
			 (merge-sol-lin
			  linsols
			  (sparse-lift
			   (pcsubsty (car pts) (car vars) c)
			   (pcsubsty (car pts) (car vars) f)
			   (pcsubsty (car pts) (car vars) g)
			   lobjs (cdr vars)))))
	       ((= i (car degb))
		(interp-polys linsols (cdr pts) (car vars))))))))

(defun make-linsols (prev-lift)
  (list (car prev-lift)
	(cadr prev-lift)
	(mapcan #'(lambda (q)
		    (cond ((pcoefp q) (list (list q)))
			  (t (do ((l (p-terms q) (pt-red l))
				  (ans nil (cons (list (pt-lc l)) ans)))
				 ((null l) ans)))))
		(caddr prev-lift))))

(defun add-point (l)
  (do ((try (cmod (random $pointbound))
	    (cmod (random $pointbound))))
      ((null (member try l :test #'equal))
       (cons try l))))

(defun merge-sol-lin (l1 l2)
  (do ((l l1 (cdr l))
       (l2 l2 (cdr l2)))
      ((null l) l1)
    (cond ((= (caar l) (caar l2))
	   (rplaca (cddar l)
		   (mapcar 'cons (cadddr (cddar l2)) (caddar l)))))))

(defun interp-polys (l pts var)
  (mapcar #'(lambda (q)
	      (cons (car q)
		    (new-skel
		     (cadr q)
		     (mapcar #'(lambda (r) (pinterp var pts r))
			     (caddr q)))))
	  l))

(defun zgcd (f g &aux $algebraic algfac*)
  (let ((f (oldcontent f))		;This is a good spot to
	(g (oldcontent g))		;initialize random
	(gcd) (mon) 
	(*which-factor*))
    ;; *WHICH-FACTOR* is interpreted as follows.  It is set fairly deep in the
    ;; algorithm, inside ZGCD1.
    ;; 1 -> Lift the GCD
    ;; 2 -> Lift the cofactor of F
    ;; 3 -> Lift the cofactor of G


    (setq mon (pgcd (car f) (car g))	;compute GCD of content
	  f (cadr f) g (cadr g))	;f and g are now primitive
    (if (or (pcoefp f) (pcoefp g)
	    (not (eq (car f) (car g))))
	(merror "ZGCD: incorrect arguments."))
    (ptimes mon
	    (do ((test))
		(nil)
	      (setq gcd (catch 'relprime (zgcd1 f g)))
	      (setq test
		    (case *which-factor*
		      (1 (testdivide f gcd))
		      (2 (testdivide f gcd))
		      (3 (testdivide g gcd))))
	      (cond ((not (null test))
		     (return
		       (cond ((equal *which-factor* 1)
			      gcd)
			     (t test))))
		    ((not (null modulus))
		     (return (let (($gcd '$red))
			       (pgcd f g)))))))))

(defun zgcd1 (f g)
  (let* ((modulus modulus)
	 first-lift
	 h degb c
	 (vars (sort (union1 (listovars f) (listovars g))
		     #'pointergp))
	 (genvar (reverse vars))

	 ;; the elements of the following degree vectors all correspond to the 
	 ;; contents of var.  Thus there may be variables missing that are in 
	 ;;GENVAR.
	 ;; (f-degv (zpdegreevector f vars))  ;;WHY NOT JUST PUT GENVAR THE REVERSE
	 ;; (g-degv (zpdegreevector g vars))  ;;THE REVERSE OF VARS AND JUST USE PDEGREEVECTOR--wfs
	 (f-degv (pdegreevector f))
	 (g-degv (pdegreevector g))
	 (gcd-degv (gcd-degree-vector f g vars)))

    ;; First we try to decide which of the gcd and the cofactors of f and g 
    ;; is smallest.  The result of this decision is indicated by *which-factor*.
    ;; Then the leading coefficient that is to be enforced is changed if a 
    ;; cofactor has been chosen.
    (case (setq *which-factor*
		(determine-lifting-factor f-degv g-degv gcd-degv))
      (1 (setq c (pgcd (p-lc f) (p-lc g))))
      (2 (setq c (p-lc f)))
      (3 (setq c (p-lc g))))

    ;; Next a degree bound must be chosen.
    (setq degb
	  (reverse
	   (mapcar #'+
		   (case *which-factor*
		     (1 gcd-degv)
		     (2 (mapcar #'- f-degv gcd-degv))
		     (3 (mapcar #'- g-degv gcd-degv)))
		   (zpdegreevector c vars))))

    (cond ((not (null modulus))
	   (lobj->poly (car vars) (cdr vars)
		       (zgcd-lift* c f g (cdr vars) (cdr degb))))
	  (t
	   (setq h (* (maxcoefficient f)
			  (maxcoefficient g)))
	   (setq modulus *alpha)	;Really should randomize
	   (setq first-lift
		 (zgcd-lift* (pmod c) (pmod f) (pmod g)
			     (cdr vars) (cdr degb)))
	   (do ((linsols (mapcar #'(lambda (q)
				     (cons (car q)
					   (new-skel (cadr q) (caddr q))))
				 first-lift)
			 (merge-sol-lin-z linsols
					  (sparse-lift cm fm gm lobjs (cdr vars))
					  (* coef-bound
						 (crecip (cmod coef-bound)))
					  (* modulus coef-bound)))
		(lobjs (create-lobjs first-lift)
		       (clear-lobjs lobjs))
		(coef-bound *alpha (* modulus coef-bound))
		(cm) (fm) (gm))
	       ((> coef-bound h)
		(setq modulus nil)
		(lobj->poly (car vars) (cdr vars) linsols))
	     (setq modulus (newprime modulus))
	     (setq cm (pmod c)
		   fm (pmod f)
		   gm (pmod g)))))))

(defun lobj->poly (var vars lobj)
  (primpart
   (cons var
	 (mapcan
	  #'(lambda (q) 
	      (list (car q)
		    (do ((x (cadr q) (cdr x))
			 (y (caddr q) (cdr y))
			 (ans 0
			      (pplus ans
				     (disrep-monom (cdar x) (car y)
						   vars))))
			((null x) ans))))
	  lobj))))

(defun disrep-monom (monom c vars)
  (cond ((null monom) c)
	((equal 0 (car monom))
	 (disrep-monom (cdr monom) c (cdr vars)))
	((list (car vars) (car monom)
	       (disrep-monom (cdr monom) c (cdr vars))))))

(defun merge-sol-lin-z (l1 l2 c new-coef-bound)
  (do ((l l1 (cdr l))
       (l2 l2 (cdr l2))
       (modulus new-coef-bound)
       (n))
      ((null l) l1)
    (cond ((= (caar l) (caar l2))
	   (rplaca (cddar l)
		   (mapcar
		    #'(lambda (a b)
			(cond ((> (abs (setq n (cplus b (ctimes c (cdifference a b)))))
				  new-coef-bound)
			       (throw 'relprime 1))
			      (n)))
		    (cadddr (cddar l2)) (caddar l)))))))

;; The following function tries to determine the degree of gcd(f, g) in each
;; variable.  This is done in the following manner:  All but one of the
;; variables in f and g are replaced by randomly chosen integers.  The
;; resulting polynomials are called f* and g*.   The degree of gcd(f*, g*) is
;; used as the degree of gcd(f, g) in that variable.
;;
;; The univariate gcd's are computed with modulus=*alpha.

(defun gcd-degree-vector (f g vars)
  (let ((modulus *alpha))
    (setq f (pmod f) g (pmod g))
    (do ((vn (cdr vars) (cdr vn))
	 (vs (delete (car vars) (copy-list vars) :test #'equal)
	     (delete (car vn) (copy-list vars) :test #'equal))
	 (l) (f*) (g*) (gcd*) (rand))
	(nil)
      (setq rand (gen-point vs))
      (setq f* (pcsub f rand vs)
	    g* (pcsub g rand vs))
      (cond ((or (pcoefp f*) (pcoefp g*)
		 (pcoefp (setq gcd* (pgcdu f* g*))))
	     (push 0 l))
	    (t (push (pt-le (p-terms gcd*)) l)))
      (cond ((null vn)
	     (return l))))))		;No reverse needed here

;; DETERMINE-LIFTING-FACTOR returns a number indicating which factor of f or g
;; to which to lift 

(defun dlf-mumblify (a b)
  (loop for x in a for y in b sum (- x y)))

(defun determine-lifting-factor (f-degv g-degv gcd-degv)
  (let* ((fv (dlf-mumblify f-degv gcd-degv))
	 (gv (dlf-mumblify g-degv gcd-degv))
	 (gcdv (apply '+ gcd-degv)))
    (if (< fv gcdv)
	(if (< fv gv) 2 3)
	(if (< gv gcdv) 3 1))))

(defun excise-extra-variables (degv vars)
  (do ((l (reverse degv) (cdr l))
       (lv (reverse genvar) (cdr lv))
       (ndegv))
      ((null l)
       ndegv)
    (cond ((eq (car lv) (car vars))
	   (push (car l) ndegv)
	   (setq vars (cdr vars))))))

(defun zpdegreevector (p vars)
  (excise-extra-variables (pdegreevector p) vars))

;; Local Modes:
;; Mode:LISP
;; Fill Column:76
;; Auto Fill Mode:1
;; Comment Column:40
;; END: