/usr/share/maxima/5.32.1/src/maxmin.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | ;; Maxima functions for finding the maximum or minimum
;; Copyright (C) 2005, 2007 Barton Willis
;; Barton Willis
;; Department of Mathematics,
;; University of Nebraska at Kearney
;; Kearney NE 68847
;; willisb@unk.edu
;; This source code is licensed under the terms of the Lisp Lesser
;; GNU Public License (LLGPL). The LLGPL consists of a preamble, published
;; by Franz Inc. (http://opensource.franz.com/preamble.html), and the GNU
;; Library General Public License (LGPL), version 2, or (at your option)
;; any later version. When the preamble conflicts with the LGPL,
;; the preamble takes precedence.
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Library General Public License for details.
;; You should have received a copy of the GNU Library General Public
;; License along with this library; if not, write to the
;; Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
;; Boston, MA 02110-1301, USA.
(in-package :maxima)
(macsyma-module maxmin)
(eval-when (:compile-toplevel :load-toplevel :execute)
($put '$trylevel 1 '$maxmin) ;; Default: only use basic simplification rules
($put '$maxmin 1 '$version)) ;; Let's have version numbers 1,2,3,...
;; Return true if there is pi in the CL list p and qi in the CL lisp q such that
;; x is between pi and qi. This means that either pi <= x <= qi or
;; qi <= x <= pi. For example, 2x is between x and 3x.
;; Strangely, sign((a-b)*(b-a)) --> pnz but sign(expand((a-b)*(b-a))) --> nz.
;; This is the reason for the $expand.
;; The betweenp simplification is done last; this has some interesting effects:
;; max(x^2,x^4,x^6,x^2+1) (standard simplification) --> max(x^4,x^6,x^2+1)
;; (betweenp) --> max(x^4,x^6,x^2+1). If the betweenp simplification were done
;; first, we'd have max(x^2,x^4,x^6,x^2+1) --> max(x^2,x^6,x^2+1) --> max(x^6,x^2+1).
(defun betweenp (x p q)
(catch 'done
(dolist (pk p)
(dolist (qk q)
(if (member (csign ($expand (mul (sub x pk) (sub qk x)))) '($pos $pz) :test #'eq) (throw 'done t))))
nil))
;; Return true if y is the additive inverse of x.
(defun add-inversep (x y)
(eq t (meqp x (neg y))))
;; Define a simplim%function to handle a limit of $max.
(defprop $max simplim$max simplim%function)
(defun simplim$max (expr var val)
(cons '($max) (mapcar #'(lambda (e) (limit e var val 'think)) (cdr expr))))
;; When get(trylevel,maxmin) is two or greater, max and min try additional
;; O(n^2) and O(n^3) methods.
;; Undone: max(1-x,1+x) - max(x,-x) --> 1.
(defprop $max simp-max operators)
(defun simp-max (l tmp z)
(let ((acc nil) (sgn) (num-max nil) (issue-warning))
(setq l (margs (specrepcheck l)))
(dolist (li l)
(if (op-equalp li '$max) (setq acc (append acc (mapcar #'(lambda (s) (simplifya s z)) (margs li))))
(push (simplifya li z) acc)))
;; First, delete duplicate members of l.
(setq l (sorted-remove-duplicates (sort acc '$orderlessp)))
(setq acc nil)
;; Second, find the largest real number in l. Since (mnump '$%i) --> false, we don't
;; have to worry that num-max is complex.
(dolist (li l)
(if (mnump li) (setq num-max (if (or (null num-max) (mgrp li num-max)) li num-max)) (push li acc)))
(setq l acc)
(setq acc (if (null num-max) num-max (list num-max)))
;; Third, accumulate the maximum in the list acc. For each x in l, do:
;; (a) if x is > or >= every member of acc, set acc to (x),
;; (b) if x is < or <= to some member of acc, do nothing,
;; (c) if neither 'a' or 'b', push x into acc,
;; (d) if x cannot be compared to some member of acc, set issue-warning to true.
(dolist (x l)
(catch 'done
(dolist (ai acc)
(setq sgn ($compare x ai))
(cond ((member sgn '(">" ">=") :test #'equal)
(setq acc (delete ai acc :test #'eq)))
((eq sgn '$notcomparable) (setq issue-warning t))
((member sgn '("<" "=" "<=") :test #'equal)
(throw 'done t))))
(push x acc)))
;; Fourth, when when trylevel is 2 or higher e and -e are members of acc, replace e by |e|.
(cond ((eq t (mgrp ($get '$trylevel '$maxmin) 1))
(let ((flag nil))
(setq sgn nil)
(dolist (ai acc)
(setq tmp (if (lenient-realp ai)
(member-if #'(lambda (s) (add-inversep ai s)) sgn)
nil))
(cond (tmp
(setf (car tmp) (take '(mabs) ai))
(setq flag t))
(t (push ai sgn))))
(if flag
;; We have replaced -e and e with |e|. Call simp-max again.
(return-from simp-max (simplify (cons '($max) sgn)))
(setq acc sgn)))))
;; Fifth, when trylevel is 3 or higher and issue-warning is false, try the
;; betweenp simplification.
(cond ((and (not issue-warning) (eq t (mgrp ($get '$trylevel '$maxmin) 2)))
(setq l nil)
(setq sgn (cdr acc))
(dolist (ai acc)
(if (not (betweenp ai sgn sgn)) (push ai l))
(setq sgn `(,@(cdr sgn) ,ai)))
(setq acc l)))
;; Finally, do a few clean ups:
(setq acc (if (not issue-warning) (delete '$minf acc) acc))
(cond ((null acc) '$minf)
((and (not issue-warning) (member '$inf acc :test #'eq)) '$inf)
((null (cdr acc)) (car acc))
(t `(($max simp) ,@(sort acc '$orderlessp))))))
(defun limitneg (x)
(cond ((eq x '$minf) '$inf)
((eq x '$inf) '$minf)
((member x '($und $ind $infinity) :test #'eq) x)
(t (neg x))))
;; Define a simplim%function to handle a limit of $min.
(defprop $min simplim$min simplim%function)
(defun simplim$min (expr var val)
(cons '($min) (mapcar #'(lambda (e) (limit e var val 'think)) (cdr expr))))
(defprop $min simp-min operators)
(defun simp-min (l tmp z)
(declare (ignore tmp))
(let ((acc nil))
(setq l (margs (specrepcheck l)))
(dolist (li l)
(if (op-equalp li '$min) (setq acc (append acc (mapcar #'(lambda (s) (simplifya s z)) (margs li))))
(push (simplifya li z) acc)))
(setq l acc)
(setq l (mapcar #'limitneg acc))
(setq l (simplify `(($max) ,@l)))
(if (op-equalp l '$max)
`(($min simp) ,@(mapcar #'limitneg (margs l))) (limitneg l))))
;; Several functions (derivdegree for example) use the maximin function. Here is
;; a replacement that uses simp-min or simp-max.
(defun maximin (l op) (simplify `((,op) ,@l)))
(defmfun $lmax (e)
(simplify `(($max) ,@(require-list-or-set e "$lmax"))))
(defmfun $lmin (e)
(simplify `(($min) ,@(require-list-or-set e "$lmin"))))
;; Return the narrowest comparison operator op (<, <=, =, >, >=) such that
;; a op b evaluates to true. Return 'unknown' when either there is no such
;; operator or when Maxima's sign function isn't powerful enough to determine
;; such an operator; when Maxima is able to show that either argument is not
;; real valued, return 'notcomparable.'
;; The subtraction can be a problem--for example, compare(0.1, 1/10)
;; evaluates to "=". But for flonum floats, I believe 0.1 > 1/10.
;; If you want to convert flonum and big floats to exact rational
;; numbers, use $rationalize.
;; I think compare(asin(x), asin(x) + 1) should evaluate to < without
;; being quizzed about the sign of x. Thus the call to lenient-extended-realp.
(defun $compare (a b)
;; Simplify expressions with infinities, indeterminates, or infinitesimals
(when (amongl '($ind $und $inf $minf $infinity $zeroa $zerob) a)
(setq a ($limit a)))
(when (amongl '($ind $und $inf $minf $infinity $zeroa $zerob) b)
(setq b ($limit b)))
(cond ((or (amongl '($infinity $ind $und) a)
(amongl '($infinity $ind $und) b))
;; Expressions with $infinity, $ind, or $und are not comparable
'$notcomparable)
((eq t (meqp a b)) "=")
((or (not (lenient-extended-realp a))
(not (lenient-extended-realp b)))
'$notcomparable)
(t
(let ((sgn (csign (specrepcheck (sub a b)))))
(cond ((eq sgn '$neg) "<")
((eq sgn '$nz) "<=")
((eq sgn '$zero) "=")
((eq sgn '$pz) ">=")
((eq sgn '$pos) ">")
((eq sgn '$pn) "#")
((eq sgn '$pnz) '$unknown)
(t '$unknown))))))
;; When it's fairly likely that the real domain of e is nonempty, return true;
;; otherwise, return false. Even if z has been declared complex, the real domain
;; of z is nonempty; thus (lenient-extended-realp z) --> true. When does this
;; function lie? One example is acos(abs(x) + 2). The real domain of this
;; expression is empty, yet lenient-extended-realp returns true for this input.
(defun lenient-extended-realp (e)
(and ($freeof '$infinity '$%i '$und '$ind '$false '$true t nil e) ;; what else?
(not (mbagp e))
(not ($featurep e '$nonscalarp))
(not (mrelationp e))
(not ($member e $arrays))))
(defun lenient-realp (e)
(and ($freeof '$inf '$minf e) (lenient-extended-realp e)))
;; Convert all floats and big floats in e to an exact rational representation.
(defun $rationalize (e)
(setq e (ratdisrep e))
(cond ((floatp e)
(let ((significand) (expon) (sign))
(multiple-value-setq (significand expon sign) (integer-decode-float e))
(cl-rat-to-maxima (* sign significand (expt 2 expon)))))
(($bfloatp e) (cl-rat-to-maxima (* (cadr e)(expt 2 (- (caddr e) (third (car e)))))))
(($mapatom e) e)
(t (simplify (cons (list (mop e)) (mapcar #'$rationalize (margs e)))))))
|