This file is indexed.

/usr/share/maxima/5.32.1/src/mat.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module mat)

;; this is the mat package

(declare-top (special *ech* *tri* $algebraic $multiplicities equations
		      mul* $dispflag $nolabels *det*
		      xm* xn* varlist ax *linelabel*))

;;these are arrays.
(defvar *row*)
(defvar *col*)
(defvar *colinv*)

(defmvar $globalsolve nil)
(defmvar $sparse nil)
(defmvar $backsubst t)

(defmvar *rank* nil)
(defmvar *inv* nil)

(defun solcoef (m *c varl flag)
  (prog (cc answer leftover)
     (setq cc (cdr (ratrep* *c)))
     (if (or (atom (car cc))
	     (not (equal (cdar cc) '(1 1)))
	     (not (equal 1 (cdr cc))))
     ;; NOTE TO TRANSLATORS: NOT CLEAR WHAT IS "UNACCEPTABLE" HERE
	 (merror (intl:gettext "solve: unacceptable variable: ~M") *c))
     (setq answer (ratreduce (prodcoef (car cc) (car m)) (cdr m)))
     (if (not flag) (return answer))
     (setq leftover
	   (rdis (ratplus m (rattimes (ratminus answer) cc t))))
     (if (or (not (freeof *c leftover))
	     (dependsall (rdis answer) varl))
         (rat-error "`non-linear'"))
     (return answer)))

(defun formx (flag nam eql varl)
  (prog (b ax x ix j)
     (setq varlist varl)
     (mapc #'newvar eql)
     (and (not $algebraic)
	  (some #'algp varlist)
	  (setq $algebraic t))
     (setf (symbol-value nam) (make-array (list (1+ (setq xn* (length eql)))
						(1+ (setq xm* (1+ (length varl)))))))
     (setq nam (get-array-pointer nam))
     (setq ix 0)
     loop1
     (cond ((null eql) (return  varlist)))
     (setq ax (car eql))
     (setq eql (cdr eql))
     (incf ix)
     (setf (aref nam ix xm*) (const ax varl))
     (setq j 0)
     (setq b varl) (setq ax (cdr (ratrep* ax)))
     loop2
     (setq x (car b))
     (setq b (cdr b))
     (incf j)
     (setf (aref nam ix j) (solcoef ax x varl flag))
     (cond (b (go loop2)))
     (go loop1)))

(defun dependsall (exp l)
  (cond ((null l) nil)
	((or (not (freeof (car l) exp)) (dependsall exp (cdr l))) t)
	(t nil)))

(setq *det* nil *ech* nil *tri* nil)

(defun ptorat (ax m n)
  (prog (i j)
     (setq ax (get-array-pointer ax))
     (setq i (1+ m))
     (incf n)
     loop1
     (when (equal i 1) (return nil))
     (decf i)
     (setq j n)
     loop2
     (when (equal j 1) (go loop1))
     (decf j)
     (setf (aref ax i j) (cons (aref ax i j) 1))
     (go loop2)))

(defun meqhk (z)
  (if (and (not (atom z)) (eq (caar z) 'mequal))
      (simplus (list '(mplus) (cadr z) (list '(mtimes) -1 (caddr z))) 1 nil)
      z))

(defun const (e varl)
  (setq varl (mapcar #'(lambda(x) (caadr (ratrep* x))) varl))
  (setq e (cdr (ratrep* e)))
  (let ((zl (make-list (length varl) :initial-element 0)))
    (ratreduce (pctimes -1 (pcsubsty zl varl (car e)))
	       (pcsubsty zl varl (cdr e)))))

(defvar *mosesflag nil)

(defmvar $%rnum 0)

(defmfun make-param ()
  (let ((param (intern (format nil "~A~D" '$%r (incf $%rnum)))))
    (tuchus $%rnum_list param)
    param))

(defmvar $linsolve_params t "`linsolve' generates %Rnums")

(defun ith (x n)
  (if (atom x) nil (nth (1- n) x)))

(defun polyize (ax r m mul)
  (declare (fixnum m))
  (do ((c 1 (1+ c)) (d))
      ((> c m) nil)
    (declare (fixnum c))
    (setq d (aref ax r c))
    (setq d (cond ((equal mul 1) (car d))
		  (t (ptimes (car d)
			     (pquotientchk mul (cdr d))))))
    (setf (aref ax r c) (if $sparse (cons d 1) d))))

;; TWO-STEP FRACTION-FREE GAUSSIAN ELIMINATION ROUTINE

(defun tfgeli (ax n m &aux ($sparse (and $sparse (or *det* *inv*))))
  ;;$sparse is also controlling whether polyize stores polys or ratforms
  (setq ax (get-array-pointer ax))
  (setq mul* 1)
  (do ((r 1 (1+ r)))
      ((> r n) (cond ((and $sparse *det*)(sprdet ax n))
		     ((and *inv* $sparse)(newinv ax n m))
		     (t (tfgeli1 ax n m))))
    (do ((c 1 (1+ c))
	 (d)
	 (mul 1))
	((> c m)
	 (and *det* (setq mul* (ptimes mul* mul)))
	 (polyize ax r m mul))
      (cond ((equal 1 (setq d (cdr (aref ax r c)))) nil)
	    (t (setq mul (ptimes mul (pquotient d (pgcd mul d)))))))))

;; The author of the following programs is Tadatoshi Minamikawa (TM).
;; This program is one-step fraction-free Gaussian elimination with
;; optimal pivotting.  DRB claims the hair in this program is not
;; necessary and that straightforward Gaussian elimination is sufficient,
;; for sake of future implementors.

;; To debug, delete the comments around PRINT and BREAK statements.

(declare-top (special permsign a rank delta nrow nvar n m variableorder
		      dependentrows inconsistentrows l k))

(defun tfgeli1 (ax n m)
  (prog (k l delta variableorder inconsistentrows
	 dependentrows nrow nvar rank permsign result)
     (setq ax (get-array-pointer ax))
     (setq *col* (make-array (1+ m) :initial-element 0))
     (setq *row* (make-array (1+ n) :initial-element 0))
     (setq *colinv* (make-array (1+ m) :initial-element 0))
     ;; (PRINT 'ONESTEP-LIPSON-WITH-PIVOTTING)
     (setq nrow n)
     (setq nvar (cond (*rank* m) (*det* m) (*inv* n) (*ech* m) (*tri* m) (t (1- m))))
     (do ((i 1 (1+ i)))
	 ((> i n))
       (setf (aref *row* i) i))
     (do ((i 1 (1+ i)))
	 ((> i m))
       (setf (aref *col* i) i) (setf (aref *colinv* i) i))
     (setq result
	   (cond (*rank* (forward t) rank)
		 (*det* (forward t)
			(cond ((= nrow n) (cond (permsign  (pminus delta))
						(t delta)))
			      (t 0)))
		 (*inv* (forward t) (backward) (recoverorder1))
		 (*ech* (forward nil) (recoverorder2))
		 (*tri* (forward nil) (recoverorder2))
		 (t (forward t) (cond ($backsubst (backward)))
		    (recoverorder2)
		    (list dependentrows inconsistentrows variableorder))))
     (return result)))

;;FORWARD ELIMINATION
;;IF THE SWITCH *CPIVOT IS NIL, IT AVOIDS THE COLUMN PIVOTTING.
(defun forward (*cpivot)
  (setq delta 1)		  ;DELTA HOLDS THE CURRENT DETERMINANT
  (do ((k 1 (1+ k))
       (nvar nvar)   ;PROTECTS AGAINST TEMPORARAY RESETS DONE IN PIVOT
       (m m))
      ((or (> k nrow) (> k nvar)))
    (cond ((pivot ax k *cpivot) (return nil)))
    ;; PIVOT IS T IF THERE IS NO MORE NON-ZERO ROW LEFT. THEN GET OUT OF THE LOOP
    (do ((i (1+ k) (1+ i)))
	((> i nrow))
      (do ((j (1+ k) (1+ j)))
	  ((> j m))
	(setf (aref ax (aref *row* i) (aref *col* j))
	       (pquotient (pdifference (ptimes (aref ax (aref *row* k) (aref *col* k))
					       (aref ax (aref *row* i) (aref *col* j)))
				       (ptimes (aref ax (aref *row* i) (aref *col* k))
					       (aref ax (aref *row* k) (aref *col* j))))
			  delta))))
    (do ((i (1+ k) (1+ i)))
	((> i nrow))
      (setf (aref ax (aref *row* i) (aref *col* k)) 0))
    (setq delta (aref ax (aref *row* k) (aref *col* k))))
  ;; UNDOES COLUMN HACK IN PIVOT.
  (or *cpivot (do ((i 1 (1+ i))) ((> i m)) (setf (aref *col* i) i)))
  (setq rank (min nrow nvar)))

;; BACKWARD SUBSTITUTION
(defun backward ()
  (do ((i (1- rank) (1- i)))
      ((< i 1))
    (do ((l (1+ rank) (1+ l)))
	((> l m))
      (setf (aref ax (aref *row* i) (aref *col* l))
	     (pquotient (pdifference
			 (ptimes (aref ax (aref *row* i) (aref *col* l))
				 (aref ax (aref *row* rank) (aref *col* rank)))
			 (do ((j (1+ i) (1+ j)) (sum 0))
			     ((> j rank) sum)
			   (setq sum (pplus sum (ptimes (aref ax (aref *row* i) (aref *col* j))
							(aref ax (aref *row* j) (aref *col* l)))))))
			(aref ax (aref *row* i) (aref *col* i)))))
    (do ((l (1+ i) (1+ l)))
	((> l rank))
      (setf (aref ax (aref *row* i) (aref *col* l)) 0)))
  ;; PUT DELTA INTO THE DIAGONAL MATRIX
  (setq delta (aref ax (aref *row* rank) (aref *col* rank)))
  (do ((i 1 (1+ i)))
      ((> i rank))
    (setf (aref ax (aref *row* i) (aref *col* i)) delta)))

;;RECOVER THE ORDER OF ROWS AND COLUMNS.

(defun recoverorder1 ()
  ;;(PRINT 'REARRANGE)
  (do ((i nvar (1- i)))
      ((= i 0))
    (setq variableorder (cons i variableorder)))
  (do ((i (1+ rank) (1+ i)))
      ((> i n))
    (cond ((equal (aref ax (aref *row* i) (aref *col* m)) 0)
	   (setq dependentrows (cons (aref *row* i) dependentrows)))
	  (t (setq inconsistentrows (cons (aref *row* i) inconsistentrows)))))
  (do ((i 1 (1+ i)))
      ((> i n))
    (cond ((not (= (aref *row* (aref *colinv* i)) i))
	   (prog ()
	      (moverow ax n m i 0)
	      (setq l i)
	      loop
	      (setq k (aref *row* (aref *colinv* l)))
	      (setf (aref *row* (aref *colinv* l)) l)
	      (cond ((= k i) (moverow ax n m 0 l))
		    (t (moverow ax n m k l)
		       (setq l k)
		       (go loop))))))))

(defun recoverorder2 ()
  (do ((i nvar (1- i)))
      ((= i 0))
    (setq variableorder (cons (aref *col* i) variableorder)))
  (do ((i (1+ rank) (1+ i)))
      ((> i n))
    (cond ((equal (aref ax (aref *row* i) (aref *col* m)) 0)
	   (setq dependentrows (cons (aref *row* i) dependentrows)))
	  (t (setq inconsistentrows (cons (aref *row* i) inconsistentrows)))))
  (do ((i 1 (1+ i)))
      ((> i n))
    (cond ((not (= (aref *row* i) i))
	   (prog ()
	      (moverow ax n m i 0)
	      (setq l i)
	      loop
	      (setq k (aref *row* l))
	      (setf (aref *row* l) l)
	      (cond ((= k i) (moverow ax n m 0 l))
		    (t (moverow ax n m k l)
		       (setq l k)
		       (go loop)))))))
  (do ((i 1 (1+ i)))
      ((> i nvar))
    (cond ((not (= (aref *col* i) i))
	   (prog ()
	      (movecol ax n m i 0)
	      (setq l i)
	      loop2
	      (setq k (aref *col* l))
	      (setf (aref *col* l) l)
	      (cond ((= k i) (movecol ax n m 0 l))
		    (t (movecol ax n m k l)
		       (setq l k)
		       (go loop2))))))))

;;THIS PROGRAM IS USED IN REARRANGEMENT
(defun moverow (ax n m i j)
  (do ((k 1 (1+ k))) ((> k m))
    (setf (aref ax j k) (aref ax i k))))

(defun movecol (ax n m i j)
  (do ((k 1 (1+ k))) ((> k n))
    (setf (aref ax k j) (aref ax k i))))

;;COMPLEXITY IS DEFINED AS FOLLOWS
;; COMPLEXITY(0)=0
;; COMPLEXITY(CONSTANT)=1
;; COMPLEXITY(POLYNOMIAL)=1+SUM(COMPLEXITY(C(N))+COMPLEXITY(E(N)), FOR N=0,1 ...M)
;; WHERE POLYNOMIAL IS OF THE FORM
;;    SUM(C(N)*X^E(N), FOR N=0,1 ... M)     X IS THE VARIABLE

(defun complexity (exp)
  (cond ((null exp) 0)
	((equal exp 0) 0)
	((atom  exp) 1)
	(t (+ (complexity (car exp)) (complexity (cdr exp))))))

(defun complexity/row (ax i j1 j2)
  (do ((j j1 (1+ j)) (sum 0))
      ((> j j2) sum)
    (incf sum (complexity (aref ax (aref *row* i) (aref *col* j))))))

(defun complexity/col (ax j i1 i2)
  (do ((i i1 (1+ i)) (sum 0))
      ((> i i2) sum)
    (incf sum (complexity (aref ax (aref *row* i) (aref *col* j))))))

(defun zerop/row (ax i j1 j2)
  (do ((j j1 (1+ j)))
      ((> j j2) t)
    (cond ((not (equal (aref ax (aref *row* i) (aref *col* j)) 0)) (return nil)))))

;;PIVOTTING ALGORITHM
(defun pivot (ax k *cpivot)
  (prog (row/optimal col/optimal complexity/i/min complexity/j/min
	 complexity/i complexity/j complexity/det complexity/det/min dummy)
     (setq row/optimal k complexity/i/min 1000000. complexity/j/min 1000000.)
     ;;TEST THE SINGULARITY
     (cond ((do ((i k (1+ i)) (isallzero t))
		((> i nrow) isallzero)
	     loop (cond ((zerop/row ax i k nvar)
			 (cond (*inv* (merror (intl:gettext "solve: singular matrix.")))
			       (t (exchangerow i nrow)
				  (decf nrow)))
			 (unless (> i nrow) (go loop)))
			(t (setq isallzero nil))))
	    (return t)))

     ;; FIND AN OPTIMAL ROW
     ;; IF *CPIVOT IS NIL, (AX I K) WHICH IS TO BE THE PIVOT MUST BE NONZERO.
     ;; BUT IF *CPIVOT IS T, IT IS UNNECESSARY BECAUSE WE CAN DO THE COLUMN PIVOT.
     findrow
     (do ((i k (1+ i)))
	 ((> i nrow))
       (cond ((or *cpivot (not (equal (aref ax (aref *row* i) (aref *col* k)) 0)))
	      (cond ((> complexity/i/min
			(setq complexity/i (complexity/row ax i k m)))
		     (setq row/optimal i complexity/i/min complexity/i))))))
     ;; EXCHANGE THE ROWS K AND ROW/OPTIMAL
     (exchangerow k row/optimal)

     ;; IF THE FLAG *CPIVOT IS NIL, THE FOLLOWING STEPS ARE NOT EXECUTED.
     ;; THIS TREATMENT WAS DONE FOR THE LSA AND ECHELONTHINGS WHICH ARE NOT
     ;; HAPPY WITH THE COLUMN OPERATIONS.
     (cond ((null *cpivot)
	    (cond ((not (equal (aref ax (aref *row* k) (aref *col* k)) 0))
		   (return nil))
		  (t (do ((i k (1+ i))) ((= i nvar))
		       (setf (aref *col* i) (aref *col* (1+ i))))
		     (setq nvar (1- nvar) m (1- m))
		     (go findrow)))))

     ;;STEP3 ... FIND THE OPTIMAL COLUMN
     (setq col/optimal 0
	   complexity/det/min 1000000.
	   complexity/j/min 1000000.)

     (do ((j k (1+ j)))
	 ((> j nvar))
       (cond ((not (equal (aref ax (aref *row* k) (aref *col* j)) 0))
	      (cond ((> complexity/det/min
			(setq complexity/det
			      (complexity (aref ax (aref *row* k) (aref *col* j)))))
		     (setq col/optimal j
			   complexity/det/min complexity/det
			   complexity/j/min (complexity/col ax j (1+ k) n)))
		    ((equal complexity/det/min complexity/det)
		     (cond ((> complexity/j/min
			       (setq complexity/j
				     (complexity/col ax j (1+ k) n)))
			    (setq col/optimal j
				  complexity/det/min complexity/det
				  complexity/j/min complexity/j))))))))

     ;; EXCHANGE THE COLUMNS K AND COL/OPTIMAL
     (exchangecol  k col/optimal)
     (setq dummy (aref *colinv* (aref *col* k)))
     (setf (aref *colinv* (aref *col* k)) (aref *colinv* (aref *col* col/optimal)))
     (setf (aref *colinv* (aref *col* col/optimal)) dummy)
     (return nil)))

(defun exchangerow (i j)
  (prog (dummy)
     (setq dummy (aref *row* i))
     (setf (aref *row* i) (aref *row* j))
     (setf (aref *row* j) dummy)
     (cond ((= i j) (return nil))
	   (t (setq permsign (not permsign))))))

(defun exchangecol (i j)
  (prog (dummy)
     (setq dummy (aref *col* i))
     (setf (aref *col* i) (aref *col* j))
     (setf (aref *col* j) dummy)
     (cond ((= i j) (return nil))
	   (t (setq permsign (not permsign))))))

;; Displays list of solutions.

(defun solve2 (llist)
  (setq $multiplicities nil)
  (map2c #'(lambda (equatn multipl)
	     (setq equations
		   (nconc equations (list (displine equatn))))
	     (push multipl $multiplicities)
	     (if (and (> multipl 1) $dispflag)
		 (mtell (intl:gettext "solve: multiplicity ~A~%") multipl)))
	 llist)
  (setq $multiplicities (cons '(mlist simp) (nreverse $multiplicities))))

;; Displays an expression and returns its linelabel.

(defmfun displine (exp)
  (let ($nolabels (tim 0))
    (elabel exp)
    (cond ($dispflag (remprop *linelabel* 'nodisp)
		     (setq tim (get-internal-run-time))
		     (mterpri)
		     (displa (list '(mlabel) *linelabel* exp))
		     (timeorg tim))
	  (t (putprop *linelabel* t 'nodisp)))
    *linelabel*))

(declare-top (unspecial permsign a rank delta nrow nvar n m variableorder
			dependentrows inconsistentrows l k))