/usr/share/maxima/5.32.1/src/hayat.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; **************************************************************
;;; ***** HAYAT ******* Finite Power Series Routines *************
;;; **************************************************************
;;; ** (c) Copyright 1982 Massachusetts Institute of Technology **
;;; ****** This is a read-only file! (All writes reserved) *******
;;; **************************************************************
(in-package :maxima)
;;; TOP LEVEL STRUCTURE
;;; Power series have the following format when seen outside the power
;;; series package:
;;;
;;; ((MRAT SIMP <varlist> <genvar> <tlist> trunc) <poly-form>)
;;;
;;; This is the form of the output of the expressions, to
;;; be displayed they are RATDISREPed and passed to DISPLA.
;;; The <poly-forms> consist of a header and list of exponent-coefficient
;;; pairs as shown below. The PS is used to distinguish power series
;;; from their coefficients which have a similar representation.
;;;
;;; (PS (<var> . <ord-num>) (<trunc-lvl>)
;;; (<exponent> . <coeff>) (<exponent> . <coeff>) . . .)
;;;
;;; The <var> component of the power series is a gensym which represents the
;;; kernel of the power series. If the package is called with the arguments:
;;; Taylor(<expr>, x, a, n) then the kernel will be (x - a).
;;; The <ord-num> is a relative ordering for the various kernels in a
;;; multivariate expansion.
;;; <trunc-lvl> is the highest degree of the variable <var> which is retained
;;; in the current power series.
;;; The terms in the list of exponent-coefficient pairs are ordered by
;;; increasing degree.
;;; Problem: fix expansion of logs so that taylor(log(1+exp(-1/x)),x,0,3)
;;; works. Done.
;;;
;;; Problem: taylor(log(1+exp(-1/x)),x,0,5) loses because, while
;;; taylor_simplify_recurse'ing exp(-3/x) get trunc level = -3. FIxed.
;;;
;;; Problem: Need to fix things so that asymptotic kernels aren't put onto
;;; tvars via tlist merge etc. in taylor1. Done.
;;;
;;; Problem: get-series returns 0 for taylor(log(1+exp(-1/x)),x,0,5) and
;;; need to make log(exp(1/x)) -> 1/x. Fixed.
;;;
;;; Problem: Fix psexpt-fn so that it doesn't lose via the invert-var
;;; scheme, e.g. try taylor(exp(exp(-1/x)+x),x,0,5). Note that if it did
;;; just that scheme. Done.
;;;
;;; Problem: fix adjoin-tvar so that the new tvars are ordered correctly
;;; according to their strength. This is necessary in order to read the limit
;;; directly from the leading term. E.g. see the misordered:
;;; taylor(subst(1/x,x,part(screw2,1)),x,0,2) from ALJABR;SCREW2 LIMIT.
;;; Note that the answer given for this appear to be incorrect when the
;;; truncation on x is < 4. Is this due to the misordering?
;;; Also taylor(screwa,x,0,4)+taylor(screwb,x,0,8) doesn't agree with
;;; taylor(screw,x,0,8) where it should (here screwa = part(screw,1),
;;; screwb = part(screw, 2); is this a truncation problem on the
;;; gvar exp(1/x)?).
;;;
;;; Problem: new gvars have to be intro'd for logs just as for exp's instead
;;; of treating them like constants as currently done. For example,
;;; taylor(log(1+1/log(x)),x,0,2) currently doesn't expand. Done.
;;;
;;; Problem: The display routines need pieces of the taylor environment
;;; (tvar-limits, tvars, tlist, etc.) to figure out how to order terms.
;;; This means we'll probably have to store some of this on the local tlist.
;;; When this is done the commented out code in psdisrep and psdisrep2 can
;;; be re-inserted. Psdisrep2expand will also need to be modified.
;;; I just fixed srdisrep to get the local env it needs; psdisrep2expand
;;; still needs to be updated. The display order problem is still around
;;; however: try taylor(exp(exp(-1/x)+x),x,0,3). After more investigation,
;;; it seems that the term reversal always occurs for ps's that are coeff's
;;; of terms whose expt is < 0. Probably the psdisrep routines should reverse
;;; these terms to account for this (the bug is somewhere in the DISPLA
;;; routines, possible DIM-MPLUS).
;;;
;;; Problem: Since gvar's like exp(-1/x) can't be put on genvar, they have
;;; to be saved somewhere locally and restored by everyone who needs to setup
;;; disrep info etc. Done for re-taylor.
;;;
;;; Problem: All new code needs to be checked to ensure it does the correct
;;; thing when the expansion point is infinite (e.g. see the code in
;;; TSEXPT-RED which handles this case).
;;;
;;; Perhaps the code for exp's and log's which pushes trunc degrees
;;; can be done by first computing exp(c0) or log(c0) first and see
;;; how much to push by looking at this series. Done for exp in tsexpt-red.
;;;
;;; Problems: taylor(part(screwa,2)-2/x,x,0,1) shouldn't be exact.
;;; taylor(screwa,x,0,-2) misses the degree -2 term. This part is now fixed.
;;;
;;; Tvar-limits should be stored locally so that psdisrep need not recompute
;;; each gvar limit when disrepping.
(macsyma-module hayat)
(defmvar tlist nil)
(defvar *within-srf?* nil)
(load-macsyma-macros mhayat rzmac ratmac)
;;; Subtitle Special Stuff for Compiling
(declare-top
(special vlist
varlist ;List of all the variables occuring in a power
;series, the power series variables at the end
genvar ;The list of gensyms corresponding to varlist
modulus ;
*a* ;Temporary special
sub-exprs ;
silent-taylor-flag ;If true indicates that errors will be
;returned via a throw to TAY-ERR
tlist ;An association list which contains the
;relevant information for the expansion which
;is passed in at toplevel invocation.
$float ;Indicates whether to convert rational numbers
;to floating point numbers.
$keepfloat ;When true retains floatin point numbers
;internal to Taylor.
$radexpand ;
log-1 ;What log(-1) should be log(-1) or pi*i.
log%i ;Similarly for log(i)
exact-poly ;Inicates whether polynomials are to be
;considered exact or not. True within SRF,
;false within TAYLOR.
ngps ;
num-syms ;
loc-gensym ;
syms ;
tvars ;
pssyms ;
half%pi ;Has pi/2 to save space.
const-funs ;
const-exp-funs ;
tay-const-expand ;For rediculousness like csch(log(x))
$exponentialize ;which we do by exponentiation.
tay-pole-expand ;
trigdisp ;
last-exp ;last-expression through taylor2
$taylordepth ;
$ratexpand ;
genpairs ;List of dotted pairs
ps-bmt-disrep ;
ivars ;Pairlist if gensym and disreped version
key-vars ;Pairlist of gensym and key var (for searching
;TLIST)
$algebraic ;
*psacirc ;
*pscirc ;
full-log ;
$logarc ;
trunclist ;
*within-srf?* ;flag for in srf
mainvar-datum ;
least_term? ; If non-null then the addition routines
; are adding or subtracting coeff's of the
; least term of a sum so they should do
; zero checking on it if it is desired.
taylor_simplifier ; This is set by taylor1 to the object
; which will be funcalled whenever
; coefficient simplification is desired.
zerolist ; A list of constant expressions which have
; been verified to be zero by a call to
; $TAYLOR_SIMPLIFIER in taylor2. It is used to
; suppress the message that TAYLOR is assumming
; an expression to be zero.
; 0p-funord lexp-non0 ; referenced only in commented-out code, so comment out here too
$zerobern $simp)
) ;Don't want to see closed compilation notes.
(defmvar $psexpand ()
"When TRUE extended rational function expressions will be displayed fully
expanded. (RATEXPAND will also cause this.) If FALSE, multivariate
expressions will be displayed just as in the rational function package.
If PSEXPAND:MULTI, then terms with the same total degree in the variables
are grouped together.")
(defmvar $maxtayorder t
"When true TAYLOR retains as many terms as are certain to be correct
during power series arithmetic. Otherwise, truncation is controlled
by the arguments specified to TAYLOR.")
(defmvar $taylor_truncate_polynomials t
"When FALSE polynomials input to TAYLOR are considered to have infinite
precison; otherwise (the default) they are truncated based upon the input
truncation levels.")
(defmvar $taylor_logexpand t
"Unless FALSE log's of products will be expanded fully in TAYLOR (the default)
to avoid identically-zero constant terms which involve log's. When FALSE,
only expansions necessary to produce a formal series will be executed.")
;Note! The value of this must be a symbol, because it is checked with
; FBOUNDP.
(defmvar $taylor_simplifier 'simplify
"A function of one argument which TAYLOR uses to simplify coefficients
of power series.")
(defvar taylor_simplifier nil)
;;; Subtitle General Macsyma Free Predicates
(defun zfree (e x)
(cond ((equal e x) () )
((atom e) 't)
((eq (caar e) 'mrat)
(null (member x (cdr ($listofvars e)) :test #'equal)))
('t (do ((l (cdr e) (cdr l))) ((null l) 't)
(or (zfree (car l) x) (return () ))))))
(defun mfree (exp varl)
(declare (special dummy-variable-operators))
(cond ((atom exp) (not (member exp varl :test #'eq)))
((eq (caar exp) 'mrat)
(do ((l (mrat-varlist exp) (cdr l)))
((null l) 't)
(unless (mfree (car l) varl) (return () ))))
((or (member (caar exp) dummy-variable-operators :test #'eq)
(member 'array (cdar exp) :test #'eq))
(do ((vars varl (cdr vars)))
((null vars) 't)
(unless (freeof (car vars) exp) (return () ))))
('t (and (mfree (caar exp) varl) (mfreel (cdr exp) varl)))))
(defun mfreel (l varl)
(or (null l) (and (mfree (car l) varl) (mfreel (cdr l) varl))))
;;; Subtitle Coefficient Arithmetic
(defun rcexpt (x y)
(cond ((equal x (rcone)) (rcone))
((rczerop y) (rcone))
((and (equal (cdr y) 1) (fixnump (car y)))
(ratexpt x (car y)))
((and $radexpand (numberp (car y)) (numberp (cdr y)))
(if (floatp (car y))
(setq y (maxima-rationalize (quot (car y) (cdr y)))))
(ratexpt (rcquo (rcexpt1 (car x) (cdr y))
(rcexpt1 (cdr x) (cdr y)))
(car y)))
(t (let ($keepfloat)
(prep1 (m^ (rcdisrep x) (rcdisrep y)))))))
(defun rcexpt1 (p n)
(cond ((equal p 1) (rcone))
((pcoefp p) (prep1 (m^ (pdis p) (*red 1 n))))
;; psfr does a square-free decom on p yielding (p1 e1 p2 e2 ... pn en)
;; where p = p1^e1 p2^e2 ... pn^en, the pi being square-free
(t (do ((l (psqfr p) (cddr l))
(ans (rcone)))
((null l) ans)
(if (not (equal (rem (cadr l) n) 0))
(setq ans (rctimes ans (prep1 (m^ (pdis (car l))
(*red (cadr l) n)))))
;; If pi<0, n=2m and n|ei then ei=2e and
;; (pi^ei)^(1/(2m)) = (-pi)^(e/m)
(progn
(when (and (evenp n) (eq ($sign (pdis (car l))) '$neg))
(rplaca l (pminus (car l))))
(setq ans (rctimes ans (ratexpt (cons (car l) 1)
(truncate (cadr l) n))))))))))
(defun rccoefp (e) ;a sure check, but expensive
(and (null (atom e))
(or (atom (car e))
(member (caar e) genvar :test #'eq))
(or (atom (cdr e))
(member (cadr e) genvar :test #'eq))))
;;; Subtitle Exponent arithmetic
(defun ezerop (x)
(and (not (infp x)) (signp e (car x))))
(defun e+ (x y)
(cond ((or (infp x) (infp y)) (inf))
((and (equal (cdr x) 1) (equal (cdr y) 1))
(cons (+ (car x) (car y)) 1))
(t (ereduce (+ (* (car x) (cdr y)) (* (cdr x) (car y)))
(* (cdr x) (cdr y))))))
(defun ediff (x y)
(cond ((infp x) (inf))
((and (equal (cdr x) 1) (equal (cdr y) 1))
(cons (- (car x) (car y)) 1))
(t (ereduce (- (* (car x) (cdr y)) (* (cdr x) (car y)))
(* (cdr x) (cdr y))))))
(defun emin (x y)
(cond ((infp x) y)
((infp y) x)
((equal (cdr x) (cdr y)) (cons (min (car x) (car y)) (cdr x)))
((< (* (car x) (cdr y)) (* (cdr x) (car y))) x)
(t y)))
(defun emax (x y)
(cond ((or (infp x) (infp y)) (inf))
((equal (cdr x) (cdr y)) (cons (max (car x) (car y)) (cdr x)))
((> (* (car x) (cdr y)) (* (cdr x) (car y))) x)
(t y)))
(defun e* (x y)
(cond ((or (infp x) (infp y)) (inf))
((and (equal (cdr x) 1) (equal (cdr y) 1))
(cons (* (car x) (car y)) 1))
(t (ereduce (* (car x) (car y)) (* (cdr x) (cdr y))))))
(defun erecip (e)
(if (minusp (car e))
(cons (- (cdr e)) (- (car e)))
(cons (cdr e) (car e))))
(defun equo (x y)
(cond ((infp x) (inf))
((infp y) (rczero))
(t (ereduce (* (car x) (cdr y))
(* (cdr x) (car y))))))
(defun e1+ (x)
(cond ((infp x) (inf))
((= (cdr x) 1) (cons (1+ (car x)) 1))
(t (cons (+ (cdr x) (car x)) (cdr x)))))
(defun e1- (x)
(cond ((infp x) (inf))
((equal (cdr x) 1) (cons (1- (car x)) 1))
(t (cons (- (car x) (cdr x)) (cdr x)))))
(defun e> (x y)
(cond ((infp x) t)
((infp y) ())
((equal (cdr x) (cdr y)) (> (car x) (car y)))
(t (> (* (car x) (cdr y)) (* (car y) (cdr x))))))
(defun e= (e1 e2)
(cond ((eq e1 e2) t)
((or (null e1) (null e2)) ())
(t (and (equal (car e1) (car e2))
(equal (cdr e1) (cdr e2))))))
(defun ereduce (n d)
(if (signp l d) (setq d (- d) n (- n)))
(if (zerop n) (rczero)
(let ((gcd (gcd n d)))
(cons (/ n gcd) (/ d gcd)))))
(defun egcd (x y)
(let ((xn (abs (car x))) (xd (cdr x))
(yn (abs (car y))) (yd (cdr y)))
(cons (gcd xn yn) (* xd (/ yd (gcd xd yd))))))
;;; Subtitle polynomial arithmetic
(declare-top (special vars))
(defun ord-vector (p)
(let ((vars (mapcar #'(lambda (datum) (list (int-gvar datum))) tlist)))
(declare (special vars))
(cond ((not (cdr vars)) (ncons (ps-le* p)))
(t (ord-vect1 p) (mapcar #'(lambda (x) (or (cdr x) (rczero))) vars)))))
(defun ord-vect1 (p)
(declare (special vars))
(unless (pscoefp p)
(let ((data (assoc (gvar p) vars :test #'eq))
(le (ps-le p)))
(rplacd data (cond ((not (cdr data)) le)
(t (emin (cdr data) le))))
(mapl #'(lambda (l) (ord-vect1 (lc l))) (terms p)))))
(defun trunc-vector (p min?)
(let ((vars (mapcar #'(lambda (datum) (list (int-gvar datum))) tlist)))
(declare (special vars))
(if (null (cdr vars)) (ncons (if (psp p) (trunc-lvl p) () ))
(progn
(trunc-vect1 p min?)
(mapcar 'cdr vars)))))
(defun trunc-vect1 (p min?)
(declare (special vars))
(unless (pscoefp p)
(let ((data (assoc (gvar p) vars :test #'eq))
(trunc (trunc-lvl p)))
(when trunc
(rplacd data (if (null (cdr data)) trunc
(if min? (emin (cdr data) trunc)
(emax (cdr data) trunc))))))
(dolist (term (terms p))
(trunc-vect1 (c term) min?))))
(declare-top (unspecial vars))
(defun psplus (x y)
(cond ((pscoefp x)
(cond ((pscoefp y) (rcplus x y))
((rczerop x) y)
(t (pscplus x y))))
((pscoefp y) (if (rczerop y) x (pscplus y x)))
((eqgvar (gvar-o x) (gvar-o y)) (psplus1 x y))
((pointerp (gvar-o x) (gvar-o y)) (pscplus y x))
(t (pscplus x y))))
(defun rcplus! (x y)
(if (not (and least_term? taylor_simplifier)) (rcplus x y)
(prep1 (funcall taylor_simplifier (m+ (rcdisrep x) (rcdisrep y))))))
(defun psdiff (x y)
(cond ((pscoefp x) (cond ((pscoefp y) (rcdiff x y))
((rczerop x) (pstimes (rcmone) y))
(t (pscdiff x y () ))))
((pscoefp y) (if (rczerop y) x (pscdiff y x t)))
((eqgvar (gvar-o x) (gvar-o y)) (psdiff1 x y))
((pointerp (gvar-o x) (gvar-o y)) (pscdiff y x t))
(t (pscdiff x y () ))))
(defun rcdiff! (x y)
(if (not (and least_term? taylor_simplifier)) (rcdiff x y)
(prep1 (funcall taylor_simplifier (m- (rcdisrep x) (rcdisrep y))))))
(defun psplus1 (x y)
(let ((ans (cons () () )))
(psplus2 (gvar-o x) (emin (trunc-lvl x) (trunc-lvl y))
(cons 0 (terms x)) (cons 0 (terms y)) ans ans)))
(defun pscplus (c p)
(if (e> (rczero) (trunc-lvl p)) p
(pscheck (gvar-o p) (poly-data p) (pscplus1 c (terms p)))))
(defun pscdiff (c p fl)
(if (e> (rczero) (trunc-lvl p))
(if fl p (psminus p))
(pscheck (gvar-o p) (poly-data p)
(cond ((not fl) (pscplus1 c (psminus-terms (terms p))))
(t (pscplus1 (psminus c) (terms p)))))))
(defun strip-zeroes (terms ps?)
(cond ((or (null terms) (null taylor_simplifier)) terms)
((null ps?)
(do ((terms terms (n-term terms)))
((null terms) () )
(change-lc terms (strip-zeroes (lc terms) 't))
(unless (rczerop (lc terms)) (return terms))))
((pscoefp terms)
(if (null taylor_simplifier) terms
(let ((exp (rcdisrep terms)))
;; If a pscoeff is not free of tvars then the ps is a
;; multivar series and we can't handle a recursive
;; call to taylor (as opposed to a call to prep1, as below)
;; because this would be circuler (e.g. try
;; taylor(x/ (x^2+1),[x],%i,-1) ). Besides, in this case
;; the pscoeff contains a tvar hence should not be 0.
(if (not (mfree exp tvars)) terms
(prep1 (funcall taylor_simplifier exp))))))
(t (pscheck (gvar-o terms) (poly-data terms)
(strip-zeroes (terms terms) () )))))
(defun pscplus1 (c l)
(cond ((null l) (list (term (rczero) c)))
((rczerop (le l)) (setq c (psplus c (lc l)))
(if (rczerop c) (strip-zeroes (n-term l) () )
(cons (term (rczero) c) (n-term l))))
((e> (le l) (rczero)) (cons (term (rczero) c) l))
(t (cons (lt l) (let ((least_term?)) (pscplus1 c (n-term l)))))))
;;; Both here and in psdiff2 xx and yy point one before where one
;;; might think they should point so that extensions will be retained.
(defun psplus2 (varh trunc xx yy ans a)
(prog (c)
a (cond ((mono-term? xx)
(if (mono-term? yy) (go end) (go null)))
((mono-term? yy) (setq yy xx) (go null)))
(cond ((equal (le (n-term xx)) (le (n-term yy)))
(setq xx (n-term xx) yy (n-term yy))
(setq c (let ((least_term? (null (n-term ans))))
(psplus (lc xx) (lc yy))))
(if (rczerop c) (go a) (add-term a (le xx) c)))
((e> (le (n-term xx)) (le (n-term yy)))
(setq yy (n-term yy))
(add-term a (lt yy)))
(t (setq xx (n-term xx))
(add-term a (lt xx))))
(setq a (n-term a))
(go a)
null (if (or (mono-term? yy) (e> (le (n-term yy)) trunc))
(go end)
(progn
(setq yy (n-term yy))
(add-term-&-pop a (lt yy))
(go null)))
end (return (pscheck varh (list trunc) (cdr ans)))))
(defun psdiff1 (x y)
(let ((ans (cons () () )))
(psdiff2 (gvar-o x) (emin (trunc-lvl x) (trunc-lvl y))
(cons 0 (terms x)) (cons 0 (terms y)) ans ans)))
(defun psdiff2 (varh trunc xx yy ans a)
(prog (c)
a (cond ((mono-term? xx)
(if (mono-term? yy)
(go end)
(progn
(setq yy
(cons 0 (mapcar #'(lambda (q)
(term (e q) (psminus (c q))))
(cdr yy))))
(go null))))
((mono-term? yy)
(setq yy xx) (go null)))
(cond ((equal (le (n-term xx)) (le (n-term yy)))
(setq xx (n-term xx) yy (n-term yy))
(setq c (let ((least_term? (null (n-term ans))))
(psdiff (lc xx) (lc yy))))
(if (rczerop c) (go a)
(add-term a (le xx) c)))
((e> (le (n-term xx)) (le (n-term yy)))
(setq yy (n-term yy))
(add-term a (le yy) (psminus (lc yy))))
(t (setq xx (n-term xx))
(add-term a (lt xx))))
(setq a (n-term a))
(go a)
null (if (or (mono-term? yy) (e> (le (n-term yy)) trunc))
(go end)
(progn
(setq yy (n-term yy))
(add-term-&-pop a (le yy) (lc yy))
(go null)))
end (return (pscheck varh (list trunc) (cdr ans)))))
(defun psminus (x)
(if (psp x) (make-ps x (psminus-terms (terms x)))
(rcminus x)))
(defun psminus-terms (terms)
(let ((ans (cons () () )))
(do ((q terms (n-term q))
(a ans (cdr a)))
((null q) (cdr ans))
(add-term a (le q) (psminus (lc q))))))
(defun pscheck (a b terms)
(cond ((null terms) (rczero))
((and (mono-term? terms) (rczerop (le terms)))
(lc terms))
(t (make-ps a b terms))))
(defun pstrim-terms (terms e)
(do () (())
(cond ((null terms) (return () ))
((null (e> e (le terms))) (return terms))
(t (setq terms (n-term terms))))))
(defun psterm (terms e)
(psterm1 (pstrim-terms terms e) e))
(defun psterm1 (l e)
(cond ((null l) (rczero))
((e= (le l) e) (lc l))
(t (rczero))))
(defun pscoeff1 (a b c) ;a is an mrat!!!
(let ((tlist (mrat-tlist a)))
(cons (nconc (list 'mrat 'simp (mrat-varlist a) (mrat-genvar a))
(do ((l (mrat-tlist a) (cdr l))
(ans () (cons (car l) ans)))
((null l) ans)
(when (alike1 (caar l) b)
(return
(and (or ans (cdr l))
(list (nreconc ans (cdr l)) 'trunc))))))
(pscoef (mrat-ps a) (int-gvar (get-datum b)) (prep1 c)))))
(defun pscoef (a b c)
(cond ((pscoefp a) (if (rczerop c) a (rczero)))
((eq b (gvar a)) (psterm (terms a) c))
(t (do ((gvar-o (gvar-o a))
(poly-data (poly-data a))
(ans (rczero))
(terms (terms a) (n-term terms))
(temp))
((null terms) ans)
(unless (rczerop (setq temp (pscoef (lc terms) b c)))
(setq ans (psplus ans
(make-ps gvar-o poly-data
(ncons (term (le terms)
temp))))))))))
(defun psdisextend (p)
(cond ((not (psp p)) p)
(t (make-ps p (mapcar #'(lambda (q) (cons (car q) (psdisextend (cdr q))))
(terms p))))))
(defun psfloat (p)
(if (psp p) (psfloat1 p (trunc-lvl p) (terms p) (ncons 0))
(rctimes (rcfone) p)))
(defun psfloat1 (p trunc l ans)
(do (($float 't)
(a (last ans) (n-term a)))
((or (null l) (e> (le l) trunc))
(pscheck (gvar-o p) (poly-data p) (cdr ans)))
(add-term a (le l) (psfloat (lc l)))
(setq l (n-term l))))
(defun pstrunc (p)
(pstrunc1 p (mapcar #'(lambda (q) (cons (int-gvar q) (current-trunc q)))
tlist)))
(defun pstrunc1 (p trlist)
(cond ((not (psp p))
p)
(t
(let ((trnc (cdr (assoc (gvar p) trlist :test #'eq))) (trunc-ps) (a nil))
(do ((l (terms p) (n-term l)))
((null l) (pscheck (gvar-o p) (ncons (trunc-lvl p)) (nreverse a)))
(when (e> (le l) trnc)
(return (pscheck (gvar-o p) (ncons trnc) (nreverse a))))
(unless (rczerop (setq trunc-ps (pstrunc1 (lc l) trlist)))
(push (term (le l) trunc-ps) a)))))))
(defun pstimes (x y)
(cond ((or (rczerop x) (rczerop y)) (rczero))
((pscoefp x) (cond ((pscoefp y) (rctimes x y))
((equal x (rcone)) y)
(t (psctimes* x y))))
((pscoefp y) (if (equal y (rcone)) x (psctimes* y x)))
((eqgvar (gvar-o x) (gvar-o y)) (pstimes*1 x y))
((pointerp (gvar-o x) (gvar-o y)) (psctimes* y x))
(t (psctimes* x y))))
(defun psctimes* (c p)
(make-ps p (maplist #'(lambda (l)
(term (le l) (pstimes c (lc l))))
(terms p))))
(defun pstimes*1 (xa ya)
(let ((ans (cons () () ))
(trunc (let ((lex (ps-le xa)) (ley (ps-le ya)))
(e+ (emin (e- (trunc-lvl xa) lex) (e- (trunc-lvl ya) ley))
(e+ lex ley)))))
(unless $maxtayorder
(setq trunc (emin trunc (t-o-var (gvar xa)))))
(pstimes*2 xa ya trunc ans)))
(defun pstimes*2 (xa ya trunc ans)
(prog (a c e x y yy)
(setq x (terms xa) y (setq yy (terms ya)) a ans)
a (cond ((or (null y) (e> (setq e (e+ (le x) (le y))) trunc))
(go b))
((not (rczerop (setq c (pstimes (lc x) (lc y)))))
(add-term-&-pop a e c)))
(setq y (n-term y))
(go a)
b (unless (setq x (n-term x))
(return (pscheck (gvar-o xa) (list trunc) (cdr ans))))
(setq y yy a ans)
c (when (or (null y) (e> (setq e (e+ (le x) (le y))) trunc))
(go b))
(setq c (pstimes (lc x) (lc y)))
d (cond ((or (mono-term? a) (e> (le (n-term a)) e))
(add-term-&-pop a e c))
((e> e (le (n-term a)))
(setq a (n-term a))
(go d))
(t (setq c (psplus c (lc (n-term a))))
(if (rczerop c)
(rplacd a (n-term (n-term a)))
(progn
(change-lc (n-term a) c)
(setq a (n-term a))))))
(setq y (n-term y))
(go c)))
(defun pscsubst (c v p)
(cond ((pscoefp p) p)
((eq v (gvar p)) (pscsubst1 c p))
((pointerp v (gvar p)) p)
(t (make-ps p (maplist
#'(lambda (q) (term (le q)
(pscsubst c v (lc q))))
(terms p))))))
(defun pscsubst1 (v u)
(do ((a (rczero))
(ul (terms u) (n-term ul)))
((null ul) a)
(setq a (psplus a (pstimes (lc ul) (psexpt v (le ul)))))))
(defun get-series (func trunc var e c)
(let ((pw (e// trunc e)))
(setq e (if (and (equal e (rcone)) (equal c (rcone)))
(getexp-fun func var pw)
(psmonsubst (getexp-fun func var pw) trunc e c)))
(if (and $float $keepfloat) (psfloat e) e)))
(defun psmonsubst (p trunc e c)
(if (psp p)
(psmonsubst1 p trunc e c
`(() . ,(terms p)) (ncons () ) (rcone) (rczero))
p))
(defun psmonsubst1 (p trunc e c l ans cc el)
;; We set $MAXTAYORDER to () here so that the calls to psexpt below
;; won't do needless extra work, e.g. see rwg's complaint of 9/7/82.
(prog (a ee varh $maxtayorder)
(setq a ans varh (gvar-o p))
a (cond ((or (mono-term? l)
(e> (setq ee (e* e (le (n-term l)))) trunc))
(go end))
((rczerop (setq cc
(pstimes cc
(psexpt c (e- (le (setq l (n-term l)))
el))))))
((mono-term? a)
(add-term a ee (pstimes cc (lc l)))))
(setq a (n-term a) el (le l))
(go a)
end (return (pscheck varh (list trunc) (cdr ans)))))
(defun psexpon-gcd (terms)
(do ((gcd (le terms) (egcd (le l) gcd))
(l (n-term terms) (n-term l)))
((null l) gcd)))
(defun psfind-s (p)
(if (psp p) (psfind-s (psterm (terms p) (rczero)))
(psfind-s1 p)))
(defun psfind-s1 (r)
(cond ((null (atom (cdr r))) (rczero))
((atom (car r)) r)
(t (do ((p (ptterm (cdar r) 0) (ptterm (cdr p) 0)))
((atom p) (cons p (cdr r)))))))
(defun psexpt (p n)
(cond ((rczerop n) ;; p^0
(if (rczerop p) ;; 0^0
(merror (intl:gettext "taylor: 0^0 is undefined."))
(rcone))) ;; Otherwise can let p^0 = 1
((or (equal n (rcone)) (equal n (rcfone))) p) ;; p^1 cases
((pscoefp p) (rcexpt p n))
((mono-term? (terms p)) ;; A monomial to a power
(let ((s (psfind-s n)) (n-s) (x) (l (terms p)))
;; s is the numeric part of the exponent
(if (floatp (car s)) ;; Perhaps we souldn't
;; rationalize if $keepfloat is true?
(setq s (maxima-rationalize (quot (car s) (cdr s)))))
(setq n-s (psdiff n s) ;; the non-numeric part of exponent
x (e* s (le l))) ;; the degree of the lowest term
(setq x (if (and (null $maxtayorder) ;; if not getting all terms
(e> x (t-o-var (gvar p))))
;; and result is of high order
(rczero) ;; then zero is enough
(pscheck (gvar-o p) ;; otherwise
(ncons (e+ (trunc-lvl p) ;; new trunc-level
(e- x (le l)))) ;; kick exponent
(ncons (term x (psexpt (lc l) n))))))
;; x is now p^s
(if (or (rczerop n-s) (rczerop x)) ;; is that good enough?
x ;; yes! The rest is bletcherous.
(pstimes x (psexpt (prep1 (m^ (get-inverse (gvar p))
(rcdisrep n-s)))
(ps-le p))))))
(t (prog (l lc le inc trunc s lt mr lim lcinv ans)
(setq lc (lc (setq l (terms p)))
le (le l) lt (lt l) trunc (trunc-lvl p)
inc (psexpon-gcd l) s (psfind-s n))
(when (floatp (car s))
(setq s (maxima-rationalize (quot (car s) (cdr s)))))
(setq ans (psexpt (setq lt (pscheck (gvar-o p) (list trunc)
(list lt))) n)
lcinv (psexpt lc (rcmone))
mr (e+ inc (e* s le))
lim (if (and (infp trunc) (not (e> s (rczero))))
(t-o-var (gvar p))
;; See the comment in PSEXPT1 below which tells
;; why we don't allow inf. trunc's here.
(e+ (if (and (infp trunc) (not (rcintegerp s)))
(if (infp (setq lim (t-o-var (gvar p))))
(infin-ord-err)
lim)
trunc)
(e* (e1- s) le)))
ans
(if (or (pscoefp ans) (null (eq (gvar p) (gvar ans))))
(list 0 (term (rczero) ans))
(cons 0 (terms ans))))
(and (null $maxtayorder)
(or (not (infp lim))
(not (rcintegerp s))
(e> (e* s (le (last l))) (t-o-var (gvar p))))
(setq lim (emin lim (t-o-var (gvar p)))))
;;(and (infp lim) (n-term l) (e> (rczero) n)
;; (infin-ord-err))
(return (psexpt1 (gvar-o p)
lim l n s inc 1 mr ans le lcinv))))))
(defun psexpt1 (varh trunc l n s inc m mr ans r linv)
;; n is the power we are raising the series to
;; inc is the exponent increment
;; mr is the current exponent
;; tr is the truncation level desired
;; m is the term index
(declare (fixnum m))
;; s ;Ignored <- not true, see below. Who wrote this?
(prog (a (k 0) ak cm-k c ma0 sum kr tr)
(declare (fixnum k))
;; truly unfortunate that we need so many variables in this hack
(setq a (last ans) tr trunc)
;; I don't see what's wrong with truncating exact series when
;; raising them to fractional powers so we'll allow it for now.
;; This is accomplished above in PSEXPT (see the comment). Thus,
;; presumably, this check should never be needed anymore.
;; Bugs catching this clause were sqrt(1-x)*taylor(f1,x,0,0)
;; and sqrt(taylor(x+x^2,x,0,2)),taylor_truncate_polynomials=false.
(when (infp tr)
(if (rcintegerp s)
(setq tr (e* s (le (last l))))
(merror (intl:gettext "taylor: expected an integer, instead found: ~:M") s)))
(when (infp tr) (setq tr (t-o-var (car varh))))
b (and (e> mr tr) (go end))
(setq kr inc ak l ma0 (pstimes (cons 1 m) linv)
k 1 sum (rczero))
a (if (or (> k m) (null (setq cm-k (psterm (cdr ans) (e- mr kr)))))
(go add-term))
(setq ak (or (pstrim-terms ak (e+ kr r)) (go add-term))
c (pstimes (psdiff (pstimes (cons k 1) n)
(cons (- m k) 1))
(pstimes (if (e= (e+ kr r) (le ak))
(lc ak)
(rczero))
cm-k)))
(setq sum (psplus sum c)
k (1+ k) kr (e+ kr inc))
(go a)
add-term
(and (null (rczerop sum))
(add-term-&-pop a mr (pstimes ma0 sum)))
(setq m (1+ m) mr (e+ mr inc))
(go b)
end (return (pscheck varh (list trunc) (cdr ans)))))
(defun psderivative (p v)
(cond ((pscoefp p) (rcderiv p v))
((eq v (gvar p))
(if (prog1 (rczerop (ps-le p))
(setq p (psderiv1 (gvar-o p)
(trunc-lvl p) (cons 0 (terms p)) (list 0))))
(strip-zeroes p 't) p))
(t (psderiv2 (gvar-o p)
(trunc-lvl p) v (cons 0 (terms p)) (list 0)))))
(defun psderiv1 (varh trunc l ans)
(do ((a (last ans)))
((or (mono-term? l) (e> (le (n-term l)) trunc))
(pscheck varh (list (e1- trunc)) (cdr ans)))
(setq l (n-term l))
(when (not (rczerop (le l)))
(add-term-&-pop a (e1- (le l)) (pstimes (le l) (lc l))))))
(defun psderiv2 (varh trunc v l ans)
(do ((a (last ans) (n-term a)) (c))
((or (mono-term? l) (e> (le (n-term l)) trunc))
(pscheck varh (list trunc) (cdr ans)))
(setq l (n-term l))
(or (rczerop (setq c (psderivative (lc l) v)))
(add-term a (le l) c))))
(defun psdp (p)
(let (temp temp2)
(cond ((pscoefp p) (rcderivx p))
((or (rczerop (setq temp (getdiff (gvar-o p))))
(eq (car temp) 'multi))
(setq temp2 (psdp2 (gvar-o p) (trunc-lvl p)
(cons 0 (terms p)) (list 0)))
(if (eq (car temp) 'multi)
(pstimes temp2
(make-ps (gvar-o p) (ncons (inf))
(list (term (cdr temp) (rcone)))))
temp2))
(t (psdp1 (gvar-o p)
(trunc-lvl p) (cons 0 (terms p))
(list 0) temp)))))
(defun psdp1 (varh trunc l ans dx)
(do ((a (last ans)) (c (rczero)))
((or (mono-term? l) (e> (le (n-term l)) trunc))
(psplus c (pscheck varh (list (e1- trunc)) (cdr ans))))
(setq l (n-term l))
(if (rczerop (le l)) (setq c (psdp (lc l)))
(add-term-&-pop
a (e1- (le l)) (pstimes (le l) (pstimes dx (lc l)))))))
(defun psdp2 (varh trunc l ans)
(do ((a (last ans)) (c))
((or (mono-term? l) (e> (le (n-term l)) trunc))
(pscheck varh (list trunc) (cdr ans)))
(setq l (n-term l))
(when (null (rczerop (setq c (psdp (lc l)))))
(add-term-&-pop a (le l) c))))
;;; Currently unused
;;;
;;; (defun psintegrate (p v)
;;; (cond ((rczerop p) (rczero))
;;; ((pscoefp p)
;;; (pstimes p (taylor2 (get-inverse (car v)))))
;;; ((eqgvar v (gvar-o p))
;;; (psinteg1 (gvar-o p)
;;; (trunc-lvl p) (cons 0 (terms p)) (list 0)))
;;; (t (psinteg2 (gvar-o p)
;;; (trunc-lvl p) v (cons 0 (terms p)) (list 0)))))
;;;
;;; (defun psinteg1 (varh trunc l ans)
;;; (prog (a)
;;; (setq a (last ans))
;;; a (if (or (null (n-term l)) (e> (le (n-term l)) trunc))
;;; (go end)
;;; (add-term a (e1+ (le (setq l (n-term l))))
;;; (pstimes (le l)
;;; (if (e= (le l) (rcmone))
;;; (prep1 (list '(%LOG)
;;; (get-inverse
;;; (car varh))))
;;; (lc l))))
;;; (setq a (n-term a)))
;;; (go a)
;;; end (return (pscheck varh (list (e1+ trunc)) (cdr ans)))))
;;; (defun psinteg2 (varh trunc v l ans)
;;; (prog (a)
;;; (setq a (last ans))
;;; a (if (or (null (n-term l)) (e> (le (n-term l)) trunc))
;;; (go end)
;;; (add-term a (le l)
;;; (psintegrate (lc (setq l (n-term l))) v))
;;; (setq a (n-term a)))
;;; (go a)
;;; end (return (pscheck varh (list trunc) (cdr ans)))))
(defun psexpt-log-ord (p)
(cond ((null $maxtayorder) (emin (trunc-lvl p) (t-o-var (gvar p))))
((infp (trunc-lvl p)) (t-o-var (gvar p)))
(t (trunc-lvl p))))
;(defun ps-infp (p)
; (if (pscoefp p) ()
; (get-) "..."))
(defun psexpt-fn (p)
(let (ans ord<0?)
(cond ((pscoefp p) (psexpt-fn2 (rcdisrep p)))
((ps-lim-infp p) (psexpt-fn-sing p))
((prog2 (setq ord<0? (e> (rczero) (ps-le p)))
(null (n-term (terms p))))
(setq ans (get-series '%ex (psexpt-log-ord p) (gvar-o p)
(if ord<0? (e- (ps-le p)) (ps-le p))
(ps-lc p)))
(if ord<0? (ps-invert-var ans) ans))
((if ord<0?
(when (e= (rczero) (e (setq ans (ps-gt p))))
(pstimes (psexpt-fn (pscheck (gvar-o p) (list (trunc-lvl p))
(delete ans (terms p) :test #'eq)))
(psexpt-fn2 (srdis (c ans)))))
(when (e= (rczero) (ps-le p))
(pstimes (psexpt-fn2 (srdis (lc (terms p))))
(psexpt-fn (pscheck (gvar-o p) (list (trunc-lvl p))
(n-term (terms p))))))) )
(t (prog (l inc trunc ea0 ans)
(setq l (terms p))
(when ord<0?
;(return (ps-invert-var (psexpt-fn (ps-invert-var p))))
(setq l (invert-terms l)))
(setq trunc (trunc-lvl p)
inc (psexpon-gcd l) ea0 (rcone))
(unless (e> (le l) (rczero))
;; MEANING OF FOLLOWING MESSAGE IS OBSCURE
(merror "PSEXPT-FN: unreachable point."))
(setq ans
(if (or (pscoefp ea0) (null (eq (gvar p) (gvar ea0))))
(list 0 (term (rczero) ea0))
(cons 0 (terms ea0))))
(unless $maxtayorder
(setq trunc (emin trunc (t-o-var (gvar p)))))
(when (infp trunc) (setq trunc (t-o-var (gvar p))))
(setq ans (psexpt-fn1 (gvar-o p) trunc l inc 1 inc ans))
(return (if ord<0? (ps-invert-var ans) ans)))))))
(defun psexpt-fn-sing (p)
(let ((inf-var? (member (gvar-lim (gvar p)) '($inf $minf) :test #'eq))
(c*logs (c*logs (lt-poly p))) c strongest-term)
;; Must pull out out logs here: exp(ci*log(ui)+x) -> ui^ci*exp(x)
;; since its much harder for adjoin-tvar to do this transformation
;; below after things have been disrepped.
(setq c (exp-c*logs c*logs) p (psdiff p (sum-c*logs c*logs)))
(if (not (ps-lim-infp p))
;; Here we just subtracted the only infinite term, e.g.
;; p = 1/2*log(x)+1/log(x)+...
(pstimes c (psexpt-fn p))
(progn
(setq strongest-term (if inf-var? (ps-gt p) (ps-lt p)))
;; If the strongest term has degree 0 in the mainvar then the singular
;; terms occur in some other weaker var. There may be terms in this
;; coef which arent singular (e.g. 1 in (1/x+1+...)+exp(-1/x)+...) so
;; we must recursively psexpt-fn this term to get only what we need.
(if (rczerop (e strongest-term))
(setq c (pstimes c (psexpt-fn (c strongest-term))))
(dolist (exp (expand-and-disrep strongest-term p))
(setq c (pstimes c (adjoin-tvar (m^ '$%e exp))))))
(pstimes c (psexpt-fn (pscheck (gvar-o p) (list (trunc-lvl p))
(if inf-var?
(delete strongest-term (terms p) :test #'eq)
(n-term (terms p))))))))))
(defun gvar-logp (gvar)
(let ((var (get-inverse gvar)))
(and (consp var) (eq (caar var) 'mexpt) (equal (caddr var) -1)
(consp (setq var (cadr var))) (eq (caar var) '%log)
var)))
(defun c*logs (p)
(if (pscoefp p) ()
(let ((log (gvar-logp (gvar p))) c)
(if (not log)
()
(progn
(setq c (psconst (psterm (terms p) (rcmone))))
;; We don't want e.g. exp(x^a*log(x)) -> x^x^a
(if (not (mfree (rcdisrep c) tvars)) ()
(cons (cons c (cons log p))
(c*logs (psterm (terms p) (rczero))))))))))
(defun psconst (p)
(if (pscoefp p) p (psconst (psterm (terms p) (rczero)))))
(defun exp-c*logs (c*logs)
(if (null c*logs) (rcone)
(pstimes (taylor2 `((mexpt) ,(cadr (cadr (car c*logs)))
,(rcdisrep (caar c*logs))))
(exp-c*logs (cdr c*logs)))))
(defun sum-c*logs (c*logs)
(if (null c*logs) (rczero)
(let ((ps (cddr (car c*logs))))
(psplus (make-ps ps (ncons (term (ps-le ps) (caar c*logs))))
(sum-c*logs (cdr c*logs))))))
;; Calculatest the limit of a series at the expansion point. Returns one of
;; {$zeroa, $zerob, $pos, $neg, $inf, $minf}.
(defvar tvar-limits ()
"A list of the form ((gvar . limit(gvar)) ...)")
(defun ps-lim-infp (ps)
(if (pscoefp ps) ()
;; Assume taylor vars at 0+ for now. Should handle the cases when
;; the expansion point is INF, MINF,etc.
(let* ((lim (gvar-lim (gvar ps)))
(strongest-term
(if (member lim '($inf $minf) :test #'eq) (ps-gt ps) (ps-lt ps))))
(if (ezerop (e strongest-term))
(ps-lim-infp (c strongest-term))
(progn
(setq lim (lim-power lim (e strongest-term)))
(and (lim-infp lim) (not (eq lim '$infinity))))))))
(defun lim-zerop (lim)
(member lim '($zeroa $zerob $zeroim) :test #'eq))
(defun lim-plusp (lim)
(member lim '($zeroa $pos $inf $finite) :test #'eq))
(defun lim-finitep (lim)
(member lim '($pos $neg $im $finite) :test #'eq))
(defun lim-infp (lim)
(member lim '($inf $minf $infinity) :test #'eq))
(defun lim-imagp (lim)
(member lim '($im $infinity) :test #'eq))
(defun lim-minus (lim)
(cdr (assoc lim '(($zeroa . $zerob) ($zerob . $zeroa) ($pos . $neg) ($zero . $zero)
($neg . $pos) ($inf . $minf) ($minf . $inf)
($im . $im) ($infinity . $infinity) ($finite . $finite)) :test #'eq)))
(defun lim-abs (lim)
(or (cdr (assoc lim '(($zerob . $zeroa) ($neg . $pos) ($minf . $inf)) :test #'eq))
lim))
(defun lim-times (lim1 lim2)
(let (lim)
(cond ((or (eq lim1 '$zero) (eq lim2 '$zero)) (setq lim '$zero))
((and (lim-infp lim1) (lim-infp lim2)) (setq lim '$inf))
((and (lim-zerop lim1) (lim-zerop lim2)) (setq lim '$pos))
((or (when (lim-finitep lim2) (exch lim1 lim2) 't)
(lim-finitep lim1))
(when (and (eq lim1 '$finite) (lim-infp lim1))
(break "Undefined finite*inf in lim-times"))
(setq lim (lim-abs lim2)))
(t (break "Undefined limit product ~A * ~A in lim-times" lim1 lim2)))
(if (or (lim-imagp lim1) (lim-imagp lim2))
(if (lim-infp lim) '$infinity '$im)
(if (and (lim-plusp lim1) (lim-plusp lim2)) lim (lim-minus lim)))))
(defun lim-power (lim power)
(cond ((ezerop power) '$pos)
((e> (rczero) power) (lim-recip (lim-power lim (e- power))))
((not (oddp (car power)))
(if (lim-plusp lim) lim (lim-minus lim)))
(t lim)))
(defun lim-recip (lim)
(or (cdr (assoc lim '(($zeroa . $inf) ($zerob . $minf)
($inf . $zeroa) ($minf . $zerob)) :test #'eq))
(if (eq lim '$finite) (break "inverting $finite?")
lim)))
(defun lim-exp (lim)
(case lim
(($zeroa $zerob $zero $pos $neg $minf) '$zeroa)
(($inf $finite) lim)
($infinity '$infinity) ; actually only if Re lim = inf
(t (break "Unhandled limit in lim-exp"))))
(defun lim-log (lim)
(case lim
($zeroa '$minf)
($inf '$inf)
($minf '$infinity)
($zerob '$infinity)
(t (break "Unhandled limit in lim-log"))))
(defun expand-and-disrep (term p)
(let ((x^n (list '(mexpt) (get-inverse (gvar p)) (edisrep (e term))))
(a (c term)))
(if (pscoefp a) (ncons (m* (srdis a) x^n))
(mapcar #'(lambda (subterm)
(m* (cons '(mtimes) (expand-and-disrep subterm a)) x^n))
(terms a)))))
(defun adjoin-sing-datum (d)
(let ((r (prep1 (datum-var d))) (g (gensym)) (kernel (datum-var d))
(no (1+ (cdr (int-var (car (last tlist)))))))
(unless (and (equal (car r) 1) (equal (cddr r) '(1 1)))
(break "bad singular datum"))
(putprop g kernel 'disrep)
(rplacd (cdddr d) (cons g no))
(adjoin-datum d)
(push (cons (cadr r) kernel) key-vars)
(push (cons g kernel) key-vars)
(push (car key-vars) ivars)
;(push (cons kernel (cons (pget g) 1)) genpairs)
(push (cons g (exp-pt d)) tvar-limits)))
(defun adjoin-tvar (exp) (rat->ps (prep1 exp)))
(defun rat->ps (rat)
(pstimes (poly->ps (car rat))
(psexpt (poly->ps (cdr rat)) (rcmone))))
(defun poly->ps (poly)
(if (or (pcoefp poly) (mfree (pdis poly) tvars)) (prep1 poly)
(let ((g (p-var poly)) datum (pow (rcone)))
(if (setq datum (key-var-pow g)) (desetq (g . pow) datum)
(desetq (g . pow) (adjoin-pvar g)))
(if (and (not (atom g)) (psp g))
g
(progn
(setq datum (gvar-data g))
(do ((po-terms (p-terms poly) (p-red po-terms))
(ps-terms ()
(push (term (e* pow (prep1 (pt-le po-terms)))
(poly->ps (pt-lc po-terms)))
ps-terms)))
((null po-terms)
;; This must be exact so that when we invert in rat-ps above
;; we dont lose any terms. E.g. try
;; taylor(log(1+exp(-1/x)),x,0,5). When taylor2'ing exp(-1/x),
;; if you used current trunc here this would return exp(1/x)...5
;; which would then be trunc'd to degree 3 by psexpt.
(make-ps (int-var datum)
(ncons (current-trunc datum))
(if (eq g (data-gvar datum)) ps-terms
(invert-terms ps-terms))))))))))
(defun key-var-pow (g)
(let ((var (get-key-var g)) datum)
(when var
(setq datum (get-datum var))
(if (eq g (setq g (data-gvar datum))) (cons g (rcone))
(cons g (rcmone))))))
(defun adjoin-pvar (g)
(let ((kernel (get g 'disrep)) g* lim datum ans
(no (1+ (cdr (int-var (car (last tlist)))))) (pow (rcone)) expt)
(when (assol kernel tlist) (break "bad1"))
(if (and (eq (caar kernel) 'mexpt) (eq (cadr kernel) '$%e)
(not (atom (setq expt (caddr kernel))))
(eq (caar expt) 'mtimes) (not (mfree expt (ncons '$%i))))
(destructuring-let (((rpart . ipart) (trisplit expt)))
(cons (pstimes (prep1 (m^ '$%e rpart))
(psplus (adjoin-tvar `((%cos) ,ipart))
(pstimes (prep1 '$%i)
(adjoin-tvar `((%sin) ,ipart)))))
pow))
(progn
(when (eq (caar kernel) 'mexpt)
(when (and (not (atom (setq expt (caddr kernel))))
(eq (caar expt) 'mtimes)
($ratnump (cadr expt)))
(setq pow (cadr expt) kernel (m^ kernel (m// pow))
g (prep1 kernel) pow (prep1 pow))
(unless (and (equal (cdr g) 1) (equal (cdar g) '(1 1)))
(break "Illegal kernel in `adjoin-pvar'"))
(setq g (caar g) kernel (get g 'disrep))))
(if (setq ans (key-var-pow g))
(cons (car ans) (e* pow (cdr ans)))
(progn
(when (lim-infp (or lim (setq lim (tvar-lim kernel))))
(setq g* g g (gensym) kernel (m// kernel)
lim (lim-recip lim) pow (e* (rcmone) pow))
(putprop g kernel 'disrep)
;(push g genvar) (push kernel varlist)
(push (cons g* kernel) key-vars))
(when (assol kernel tlist) (break "bad2"))
(setq datum (list* kernel
;(mapcar #'(lambda (e) (emax e (rczero)))
; (trunc-stack (car tlist)))
(copy-list (trunc-stack (car tlist)))
lim () g no))
;(setq tlist (nconc tlist (ncons datum)))
(adjoin-datum datum)
(push (cons g kernel) key-vars)
(push (car key-vars) ivars)
;(push (cons kernel (cons (pget g) 1)) genpairs)
(push (cons g lim) tvar-limits)
(cons g pow)))))))
(defun adjoin-datum (datum)
(do ((tlist* tlist (cdr tlist*))
(tlist** () tlist*))
((null tlist*) (setq tlist (nconc tlist (ncons datum))))
(when (stronger-var? (datum-var (car tlist*)) (datum-var datum))
(return (if (null tlist**)
(progn
(push datum tlist)
(renumber-tlist tlist))
(progn
(rplacd tlist** (cons datum tlist*))
(renumber-tlist (cdr tlist**))))))))
;; Maybe this should just permute the numbering in case it isn't sequential?
(defun renumber-tlist (tlist)
(rplacd (data-gvar-o (car tlist)) (cdr (data-gvar-o (cadr tlist))))
(do ((tlist* (cdr tlist) (cdr tlist*)))
((null tlist*))
(rplacd (data-gvar-o (car tlist*))
(1+ (cdr (data-gvar-o (car tlist*)))))))
(defun tvar? (var) (or (atom var) (member 'array (cdar var) :test #'eq)))
;; Needs to be extended to handle singular tvars in > 1 var's.
(defun stronger-var? (v1 v2)
(let ((e1 (rcone)) (e2 (rcone)) reverse? ans)
(when (alike1 v1 v2)
(tay-err (intl:gettext "taylor: stronger-var? called on equal vars.")))
(when (and (mexptp v1) ($ratnump (caddr v1)))
(setq e1 (prep1 (caddr v1)) v1 (cadr v1)))
(when (and (mexptp v2) ($ratnump (caddr v2)))
(setq e2 (prep1 (caddr v2)) v2 (cadr v2)))
(if (alike1 v1 v2)
(if (equal e1 e2)
(tay-err
(intl:gettext "taylor: stronger-var? called on equal vars."))
(e> e1 e2))
(progn
(when (eq (tvar-lim v2) '$finite)
(exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
(if (eq (tvar-lim v1) '$finite)
(if (eq (tvar-lim v2) '$finite)
(great v1 v2) reverse?)
(progn
(when (mtimesp v2)
(exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
(setq ans
(if (mtimesp v1)
(stronger-vars? (order-vars-by-strength (cdr v1))
(order-vars-by-strength (if (mtimesp v2) (cdr v2)
(ncons (m^ v2 (edisrep e2))))))
(progn
(when (tvar? v2)
(exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
(if (tvar? v1)
(cond ((tvar? v2)
(let ((n1 (cdr (data-gvar-o (get-datum v1 t))))
(n2 (cdr (data-gvar-o (get-datum v2 t)))))
(> n1 n2)))
((mfree v2 (ncons v1))
(tay-err
(intl:gettext "taylor: Unhandled multivar datum comparison.")))
((eq (caar v2) '%log) 't)
((and (eq (caar v2) 'mexpt) (eq (cadr v2) '$%e))
(stronger-var? `((%log) ,v1) (caddr v2)))
(t (tay-err (intl:gettext "taylor: Unhandled var in stronger-var?."))))
(progn
(when (eq (caar v2) '%log)
(exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
(if (eq (caar v1) '%log)
(cond ((eq (caar v2) '%log)
(stronger-var? (cadr v1) (cadr v2)))
((and (eq (caar v2) 'mexpt) (eq (cadr v2) '$%e))
(stronger-var? `((%log) ,v1) (caddr v2)))
(t (tay-err (intl:gettext "taylor: Unhandled var in stronger-var?"))))
(if (and (eq (caar v1) 'mexpt) (eq (cadr v1) '$%e)
(eq (caar v2) 'mexpt) (eq (cadr v2) '$%e))
(stronger-var? (caddr v1) (caddr v2))
(tay-err (intl:gettext "taylor: Unhandled var in stronger-var?")))))))))
(if reverse? (not ans) ans)))))))
(defun neg-monom? (exp)
(and (mtimesp exp) (equal (cadr exp) -1) (null (cdddr exp))
(caddr exp)))
(defun order-vars-by-strength (vars)
(do ((vars* vars (cdr vars*)) (ordvars () ))
((null vars*) ordvars)
(unless (mfree (car vars*) tvars) ; ignore constants
(do ((ordvars* ordvars (cdr ordvars*)))
((null ordvars*)
(if (null ordvars) (setq ordvars (ncons (car vars*)))
(rplacd (last ordvars) (ncons (car vars*)))))
(when (stronger-var? (car vars*) (car ordvars*))
(rplacd ordvars* (cons (car ordvars*) (cdr ordvars*)))
(rplaca ordvars* (car vars*))
(return () ))))))
(defun stronger-vars? (vars1 vars2)
(do ((vars1* vars1 (cdr vars1*))
(vars2* vars2 (cdr vars2*)))
(())
(cond ((null vars1*)
(if (null vars2*)
;; two equal vars generated
(return 't)
(let ((lim (tvar-lim (car vars2*))))
(return
(cond ((lim-infp lim) ())
((lim-zerop lim) 't)
(t (break "var with non-zero finite lim?")))))))
((null vars2*)
(let ((lim (tvar-lim (car vars1*))))
(return
(cond ((lim-infp lim) 't)
((lim-zerop lim) ())
(t (break "var with non-zero finite lim?"))))))
((alike1 (car vars1*) (car vars2*)) )
((return (stronger-var? (car vars1*) (car vars2*)))))))
(defun stronger-datum? (d1 d2)
(setq d1 (datum-var d1) d2 (datum-var d2))
(do ((end-flag) (answer))
(end-flag (member answer '($yes $y) :test #'eq))
(setq answer (retrieve `((mtext) |Is | ,d1 | stronger than | ,d2 |?|)
nil))
(if (member answer '($yes $y $no $n) :test #'eq) (setq end-flag 't)
(mtell "~%Acceptable answers are: yes, y, no, n~%"))))
(defun datum-lim (datum)
(if (not (tvar? (datum-var datum)))
(exp-pt datum)
(let ((pt (exp-pt datum)))
(if (member pt '($inf $minf) :test #'eq) pt '$zeroa))))
(defun tvar-lim (kernel)
(if (mfree kernel tvars) (coef-sign kernel)
(let ((datum (get-datum kernel t)) lim)
(or (and datum (datum-lim datum))
(and (setq datum (get-datum (m// kernel) t))
(setq lim (datum-lim datum))
(lim-recip lim))
(progn
(setq lim
(cond ((eq (caar kernel) 'mexpt)
(cond ((and (setq datum (get-datum (cadr kernel) t))
($ratnump (caddr kernel)))
(lim-power (datum-lim datum)
(prep1 (caddr kernel))))
(($ratnump (caddr kernel))
(lim-power (tvar-lim (cadr kernel))
(prep1 (caddr kernel))))
((eq (cadr kernel) '$%e)
(lim-exp (tvar-lim (caddr kernel))))
(t (tay-error "Unhandled case in tvar-lim" kernel))))
((eq (caar kernel) 'mtimes)
(do ((ans (tvar-lim (cadr kernel))
(lim-times ans (tvar-lim (car facs))))
(facs (cddr kernel) (cdr facs)))
((null facs) ans)))
((eq (caar kernel) '%log)
(lim-log (datum-lim (get-datum (cadr kernel) t))))
((member (caar kernel) '(%sin %cos) :test #'eq)
(unless (lim-infp (tvar-lim (cadr kernel)))
(tay-error "Invalid trig kernel in tvar-lim" kernel))
'$finite)
(t (tay-error "Unhandled kernel in tvar-lim" kernel))))
lim)))))
(defun coef-sign (coef)
(if (not ($freeof '$%i ($rectform coef)))
'$im
($asksign coef)))
(defun gvar-lim (gvar)
(or (cdr (assoc gvar tvar-limits :test #'eq))
(if (member (gvar->var gvar) tvars :test #'eq) '$zeroa ; user tvars assumed 0+ now
(break "Invalid gvar"))))
(defun psexpt-fn1 (varh trunc l inc m mr ans)
(declare (fixnum m ))
(prog (a (k 0) ak cm-k c sum kr lim)
(declare (fixnum k ))
;; truly unfortunate that we need so many variables in this hack
(setq a (last ans))
b (and (e> mr trunc) (go end))
(setq kr inc ak l k 1 sum (rczero) lim m)
a (cond ((or (> k lim)
(null (setq cm-k (psterm (cdr ans) (e- mr kr)))))
(go add-term)))
(setq ak (or (pstrim-terms ak kr)
(go add-term))
c (pstimes (ereduce k m)
(pstimes (psterm1 ak kr) cm-k))
sum (psplus sum c))
(setq k (1+ k) kr (e+ kr inc))
(go a)
add-term
(unless (rczerop sum) (add-term-&-pop a mr sum))
(setq m (1+ m) mr (e+ mr inc))
(go b)
end
(return (pscheck varh (list trunc) (cdr ans)))))
;;; PSEXPT-FN2 and RED-MONO-LOG are needed to reduce exponentials of logs.
(defun psexpt-fn2 (p)
(cond ((atom p) (if (get-datum p)
(psexpt-fn (taylor2 p))
(prep1 `((mexpt) $%e ,p))))
((eq (caar p) '%log)
(if (get-datum (cadr p)) (taylor2 (cadr p)) (prep1 (cadr p))))
((or (eq (caar p) 'mplus) (eq (caar p) 'mtimes))
(let ((e ($ratexpand p)) temp)
(cond ((not (and (consp e) (member (caar e) '(mplus mtimes) :test #'eq)))
(psexpt-fn2 e))
(t
(if (eq (caar e) 'mplus)
(do ((sumnds (cdr e) (cdr sumnds)) (log-facs) (l))
((null sumnds)
(cond ((not log-facs) (tsexpt '$%e p))
(t (tstimes (cons (m^t '$%e (m+l l)) log-facs)))))
(if (setq temp (red-mono-log (car sumnds)))
(push temp log-facs)
(push (car sumnds) l)))
(progn
(setq temp (red-mono-log e))
(if temp
(taylor2 temp)
(prep1 (power '$%e p)))))))))
(t (prep1 (power '$%e p)))))
(defun red-mono-log (e)
(cond ((atom e) ())
((eq (caar e) '%log) (cadr e))
((mtimesp e)
(do ((facs (cdr e) (cdr facs)) (log-term))
((null facs)
(when log-term
(m^t (cadr log-term) (m*l (remove log-term (cdr e) :test #'eq)))))
(if (and (null (atom (car facs))) (eq (caaar facs) '%log))
(if log-term (return ()) (setq log-term (car facs)))
(unless (mfree (car facs) tvars) (return nil)))))
(t nil )))
(defun pslog (p)
(if (pscoefp p) (pslog2 (rcdisrep p))
(let ((terms (terms p)))
(cond ((mono-term? terms) ; log(c x^n) = log(c) + n log(x)
;; do this always for now
(if 't ;$TAYLOR_LOGEXPAND
;(psplus (pslog (lc terms))
; (pstimes (le terms) (pslog-of-gvar (gvar p))))
(pslog-monom p)
;(prep1 `((%LOG) ,(term-disrep (lt terms) p)))
))
;; expand log(1+ax^n) directly by series substitution
((not (or (n-term (setq terms (terms (psplus p (rcmone)))))
;(e> (rczero) (le terms))
(ps-lim-infp p)))
(setq p (get-series '%log (psexpt-log-ord p) (gvar-o p)
(if (e> (rczero) (le terms)) (e- (le terms))
(le terms))
(lc terms)))
(if (e> (rczero) (le terms)) (ps-invert-var p) p))
(t (prog (l inc trunc lt ans lterm $maxtayorder gvar-lim gt)
;; log(lt+y) = log(lt) + log(1 + y/lt) = lterm + p
(setq trunc (trunc-lvl p))
(if (not (member (setq gvar-lim (gvar-lim (gvar p)))
'($zeroa $zerob $inf $minf) :test #'eq))
(tay-error "bad gvar lim" gvar-lim)
(if (member gvar-lim '($inf $minf) :test #'eq)
(setq lt (ps-gt p) gt lt)
(setq lt (ps-lt p) gt () )))
(setq lterm (pslog
(setq lt (pscheck (gvar-o p)
(ncons trunc)
(ncons lt))))
p (pstimes p (let (($maxtayorder 't))
(psexpt lt (rcmone)))))
(when (and (member gvar-lim '($inf $minf) :test #'eq)
(e> (le terms) (rczero)))
(return (psplus lterm (pslog p))))
(when (pscoefp p)
(unless (equal p (rcone))
(merror "PSLOG: internal error."))
(return lterm))
(setq l (terms p) inc (psexpon-gcd l))
(if gt (setq l (delete (last l) l :test #'equal))
(setq l (n-term l)))
(setq ans (ncons 0))
(unless $maxtayorder
(setq trunc (emin trunc (t-o-var (gvar p)))))
;; When we've divided by the greatest term, all terms
;; have non-positive exponents and we must perform the
;; transformation x -> 1/x befor calling pslog1 and then
;; perform the inverse afterwards.
(when gt (setq l (invert-terms l)))
(when (e> (rczero) inc) (setq inc (e- inc)))
(setq ans (psplus lterm
(pslog1 (gvar-o p) trunc l inc 1 inc ans)))
(return
(if (and gt (psp ans) (eq (gvar ans) (gvar p)))
(ps-invert-var ans)
ans))))))))
(defun invert-terms (terms)
(nreverse (mapc #'(lambda (x) (rplaca x (e- (e x)))) terms)))
(defun ps-invert-var (ps)
(when (psp ps) (rplacd (cddr ps) (invert-terms (terms ps))))
ps)
(defun ps-gt (ps)
(if (pscoefp ps) (term (rczero) ps)
(lt (last (terms ps)))))
(defun pslog1 (varh trunc l inc m mr ans)
(declare (fixnum m ))
(prog (a (k 0) ak cm-k c sum kr m-kr)
(declare (fixnum k ))
;; truly unfortunate that we need so many variables in this hack
;;
(setq a (last ans))
b (and (e> mr trunc) (go end))
(setq kr inc ak l k 1 sum (rczero))
a (cond ((or (= k m)
(null (setq cm-k (psterm (cdr ans)
(setq m-kr (e- mr kr))))))
(go add-term)))
(setq ak (or (pstrim-terms ak kr)
(go add-term))
c (pstimes m-kr (pstimes (psterm1 ak kr) cm-k))
sum (psplus sum c)
k (1+ k) kr (e+ kr inc))
(go a)
add-term
(cond ((setq c (pstrim-terms ak mr))
(setq c (psterm1 c mr)))
((setq c (rczero))))
(setq sum (psdiff c (pstimes sum (e// mr))))
(unless (rczerop sum) (add-term-&-pop a mr sum))
(setq m (1+ m) mr (e+ mr inc))
(go b)
end
(return (pscheck varh (list trunc) (cdr ans)))))
;; Computes log(monom), where monom = c x^n. Is extra careful trying to keep
;; singular logs going to INF and not generating log(-1)'s unless it is
;; necessary to transform a log at MINF to INF.
(defun pslog-monom (monom)
(let* ((gvar (gvar monom))
(datum (gvar-data gvar)) var pt logvar c)
(if (switch 'multivar datum)
(pslog (ps-lc monom))
(progn
(setq var (datum-var datum))
(if (tvar? var)
(if (not (member (setq pt (exp-pt datum)) '($inf $minf) :test #'eq))
(setq logvar (adjoin-tvar `((%log) ,(m- var pt))))
(progn
;; At x = inf: log(c (1/x)^n) -> log(c) - n log(x)
;; At x = minf: log(c (-1/x)^n) -> log(c (-1)^n) - n log(x)
(setq logvar (psminus (adjoin-tvar `((%log) ,var))))
(when (eq pt '$minf)
(setq c (rcexpt (rcmone) (ps-le monom))))))
(if (eq (caar var) 'mexpt)
(if (equal (caddr var) -1);; var must be 1/log(y)
;; Try to keep inf's real. Here we want
;; log(c (1/log(x))^n) -> log(c (-1)^n) - n log(-log(x))
(if (equal (tvar-lim (cadr var)) '$minf)
(setq c (rcexpt (rcmone) (ps-le monom))
logvar
(psminus (adjoin-tvar
`((%log) ,(m- (cadr var))))))
(setq logvar (psminus
(adjoin-tvar `((%log) ,(cadr var))))))
(if (equal (cadr var) '$%e)
(setq logvar (taylor2 (caddr var)))
(break "Unhandled gvar in `pslog-of-gvar'")))))
(psplus (pslog (if c (pstimes c (ps-lc monom)) (ps-lc monom)))
(pstimes (ps-le monom) logvar))))))
;; Computes log(p), where p is an rcdisrep'd pscoef.
(defun pslog2 (p) (let ($logarc) (pslog3 p)))
(defun pslog3 (p)
(cond ((atom p)
(prep1 (cond ((equal p 1) 0)
((equal p -1) log-1)
((eq p '$%i) log%i)
((eq p '$%e) 1)
((equal p 0)
(merror (intl:gettext "taylor: log(0) encountered while processing ~:M") last-exp))
(t `((%log) ,p)))))
((eq (caar p) 'rat)
(prep1 (cond ((not $taylor_logexpand) `((%log) ,p))
(t (m- `((%log) ,(cadr p)) `((%log) ,(caddr p)))))))
((and full-log (not (free p '$%i)))
(let ((full-log () )) (pslog3 ($polarform p))))
((eq (caar p) 'mexpt)
;; Must handle things like x^a, %e^(a*x), etc. which are pscoef's.
(pstimes (taylor2 (caddr p)) (pslog (taylor2 (cadr p)))))
((and (eq (caar p) 'mtimes) $taylor_logexpand)
(do ((l (cddr p) (cdr l))
(ans (pslog3 (cadr p)) (psplus ans (pslog3 (car l)))))
((null l) ans)))
(t (prep1 `((%log) ,p)))))
;;; Subtitle Extending Routines
(defun getfun-lt (fun)
(let ((exp-datum (get (oper-name fun) 'exp-form)))
(cond (exp-datum
;; Info not needed yet.
;; (or (atom (car exp-datum))
;; (setq 0p-funord (copy-tree (cdar exp-datum))))
(exp-datum-lt fun exp-datum))
((setq exp-datum (get (oper-name fun) 'sp2))
(setq exp-datum (get-lexp (subst (dummy-var) 'sp2var exp-datum)
(rcone) ()))
;; Info not needed yet; need to bind lexp-non0 to T when
;; this is used though so n-term will be there.
;; (and (rczerop (le exp-datum))
;; (setq 0p-funord (le (n-term exp-datum))))
(if (psp exp-datum) (ps-lt exp-datum)
(term (rczero) exp-datum)))
(t (merror "GETFUN-LT: unknown function ~A" fun)))))
(declare-top (special var))
(defun getexp-fun (fun var pw)
(declare (special var))
(let ((exp-datum (copy-tree (get (oper-name fun) 'exp-form))))
(cond ((infp pw) (infin-ord-err))
((null exp-datum)
(if (null (setq exp-datum
(get-ps-form (if (atom fun) fun (caar fun)))))
(merror (intl:gettext "taylor: power series unavailable for function ~A") fun)
(progn
(unless (atom fun)
(do ((subvals (cdr fun) (cdr subvals))
(subs (safe-get (caar fun) 'sp2subs) (cdr subs)))
((or (null subvals) (null subs))
(when (or subvals subs)
(merror (intl:gettext "taylor: incorrect number of subscripts to the deftaylor'd function ~A") (caar fun))))
(setq exp-datum (maxima-substitute (car subvals) (car subs)
exp-datum))))
(ts-formula exp-datum var pw))))
((e> (exp-datum-le fun exp-datum) pw) (pszero var pw))
((setq exp-datum
(apply (exp-fun exp-datum)
(if (atom fun) (cons pw (cdr exp-datum))
(cons pw (cons (cdr fun) (cdr exp-datum))))))
(cond ((null exp-datum) (pszero var pw))
((psp exp-datum) exp-datum)
(t (make-ps var (ncons pw) exp-datum)))))))
(declare-top (unspecial var))
(defun expexp-funs (pw l sign chng inc)
(prog (e lt-l)
(setq e (e l) lt-l (setq l (ncons l)))
a (cond ((e> (setq e (e+ e inc)) pw) (return l))
(t (add-term-&-pop
lt-l
e
(rctimes (e// sign
(cond ((e= inc (rcone)) e)
((e* e (e1- e)))))
(cons 1 (cdr (lc lt-l)))))
(setq sign (e* sign chng))))
(go a)))
(defun explog-funs (pw l sign chng inc)
(prog (e lt-l)
(setq e (e l) lt-l (setq l (ncons l)))
a (cond ((e> (setq e (e+ e inc)) pw) (return l))
(t (add-term lt-l e (e// sign e))
(setq lt-l (n-term lt-l)
sign (e* sign chng))))
(go a)))
(defun exptan-funs (pw l chng)
(prog (e lt-l sign fact pow)
(setq e (e l) lt-l (setq l (ncons l))
sign (rcone) fact '(1 . 2) pow '(4 . 1))
a (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
(t (setq fact (e// fact (e* e (e1+ e)))
pow (e* '(4 . 1) pow)
sign (e* chng sign))
(add-term lt-l e (e* (e* sign fact)
(e* (prep1
($bern (rcdisrep (e1+ e))))
(e* pow (e1- pow)))))
(setq lt-l (n-term lt-l))))
(go a)))
(defun expcot-funs (pw l sign chng plus)
(prog (e lt-l fact pow)
(setq e (e l) lt-l (setq l (ncons l))
fact (rcone) pow (rcone))
a (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
(t (setq fact (e// fact (e* e (e1+ e)))
pow (e* '(4 . 1) pow)
sign (e* chng sign))
(add-term lt-l e (e* (e* sign fact)
(e* (prep1
($bern (rcdisrep (e1+ e))))
(e+ pow plus))))
(setq lt-l (n-term lt-l))))
(go a)))
(defun expsec-funs (pw l chng)
(prog (e lt-l sign fact)
(setq e (e l) lt-l (setq l (ncons l))
sign (rcone) fact (rcone))
a (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
(t (setq fact (e// fact (e* e (e1- e)))
sign (e* chng sign))
(add-term lt-l e (e* (e* sign fact)
(prep1 ($euler (rcdisrep e)))))
(setq lt-l (n-term lt-l))))
(go a)))
(defun expasin-funs (pw l chng)
(prog (e lt-l sign n d)
(setq e (e l) lt-l (setq l (ncons l)) sign 1 n 1 d 1)
a (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
(t (setq n (* n (car (e- e (rctwo))))
d (* d (car (e1- e)))
sign (* sign chng))
(add-term lt-l e ; need to reduce here ? - check this.
(let ((x (*red (* n sign)
(* d (car e)))))
(if (atom x) x
(cons (cadr x) (caddr x)))))
(setq lt-l (n-term lt-l))))
(go a)))
;;; This is the table of expansion data for known functions.
;;; The format of the EXP-FORM property is as follows:
;;; (<name of the expanding routine for the function or
;;; (name . le of n-term) if expansion is of order 0>
;;; <first term in the expansion or the name of a routine which
;;; computes the order when it may depend on parameters (e.g subsripts)>
;;; <data for the expanding routine>)
(loop for (fun exp) on
'(%ex ((expexp-funs 1 . 1) ((0 . 1) 1 . 1) (1 . 1) (1 . 1) (1 . 1))
%sin (expexp-funs ((1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (2 . 1))
%cos ((expexp-funs 2 . 1) ((0 . 1) 1 . 1) (-1 . 1) (-1 . 1) (2 . 1))
%sinh (expexp-funs ((1 . 1) 1 . 1) (1 . 1) (1 . 1) (2 . 1))
%cosh ((expexp-funs 2 . 1) ((0 . 1) 1 . 1) (1 . 1) (1 . 1) (2 . 1))
%log (explog-funs ((1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (1 . 1))
%atan (explog-funs ((1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (2 . 1))
%atanh (explog-funs ((1 . 1) 1 . 1) (1 . 1) (1 . 1) (2 . 1))
%cot (expcot-funs ((-1 . 1) 1 . 1) (1 . 1) (-1 . 1) (0 . 1))
%csc (expcot-funs ((-1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (-2 . 1))
%csch (expcot-funs ((-1 . 1) 1 . 1) (-1 . 1) (1 . 1) (-2 . 1))
%coth (expcot-funs ((-1 . 1) 1 . 1) (1 . 1) (1 . 1) (0 . 1))
%tan (exptan-funs ((1 . 1) 1 . 1) (-1 . 1))
%tanh (exptan-funs ((1 . 1) 1 . 1) (1 . 1))
%sec ((expsec-funs 2 . 1) ((0 . 1) 1 . 1) (-1 . 1))
%sech ((expsec-funs 2 . 1) ((0 . 1) 1 . 1) (1 . 1))
%asin (expasin-funs ((1 . 1) 1 . 1) 1)
%asinh (expasin-funs ((1 . 1) 1 . 1) -1)
%gamma (expgam-fun ((-1 . 1) 1 . 1))
$li (exp$li-fun li-ord)
$psi (expplygam-funs plygam-ord))
by #'cddr
do (putprop fun exp 'exp-form))
(defun known-ps (fun)
(getl fun '(exp-form sp2)))
;;; Autoload Properties
;;; Taylor series expansion routines
;;; SRF is only called externally; by RATF and SIMPEXPT.
(defun srf (x)
(let ((exact-poly t) (tlist) (*within-srf?* 't))
(setq x (taylor1 x ()) tlist (mrat-tlist x))
;; Set trunc levels in the local tlist to correspond to the maximum
;; level occuring in any series.
(do ((data tlist (cdr data))
(truncs (trunc-vector (mrat-ps x) () )))
((null data))
(when (and (car truncs) (e> (car truncs) (current-trunc (car data))))
(setf (current-trunc (car data)) (car truncs))))
x))
;;; [var, pt, order, asymp]
(defmfun $taylor (e &rest args)
(when (not ($ratp e))
;; Not a mrat expression. Remove the special representation.
(setq e (specrepcheck e)))
(taylor* e args))
(defun taylor* (arg l)
;; We must bind $MAXTAYORDER to () below because of the problem of constants
;; not retaining their truncation level. This means that when we add a
;; series which has more terms than the user-specified truncation to a
;; constant we must truncate the series with more terms down to the user
;; specified level because, in the worst case, the constant could be a
;; series no better than to the user-specified level. Hence $MAXTAYORDER
;; is essentially useless until the constant problem is fixed. If one
;; decides to not bind $MAXTAYORDER below then the sum routines must
;; be updated to truncate series with more terms than the user-specified
;; level down to that level---taylor(sin(x)^2-cos(x)^2-1,x,0,1) would
;; give x^2+... in this case if the sum routines weren't updated.
;; Also, batch(mquery,160,aljabr) for another truncation bug which crops
;; up when $maxtayorder isn't bound here. Similarly, loadfile(taybad,rl,
;; aljabr) and see tomh's bug note of 4/15/81.
(let ((tlist () ) ($maxtayorder () ) (*within-srf?* () )
(exact-poly (if l (not $taylor_truncate_polynomials) 'user-specified)))
(declare (special *within-srf?*))
(parse-tay-args l)
(taylor1 arg (ncons tlist))))
(defun tay-order (n)
(let (($float) (modulus))
(cond ((eq n '$inf) (ncons (inf)))
((null n) (wna-err '$taylor))
((null (mnump n))
(merror (intl:gettext "taylor: expansion order must be a number; found: ~:M") n))
(t (ncons (prep1 n))))))
(defun re-erat (head exp)
(taylor1 exp (list (cadddr (cdr head)))))
(defun parse-tay-args (l)
(cond ((null l) )
((numberp (car l))
(merror (intl:gettext "taylor: variable of expansion cannot be a number: ~M") (car l)))
((or (symbolp (car l)) (not (eq (caaar l) 'mlist)))
(parse-tay-args1 (list (car l) ($ratdisrep (cadr l)) (caddr l)))
(parse-tay-args (cdddr l)))
((do ((l (cddar l) (cdr l)))
((null l) () )
(and (or (mnump (car l)) (eq (car l) '$inf))
(return 't)))
(parse-tay-args1 (cdar l))
(parse-tay-args (cdr l)))
(t (parse-tay-args2 (list (car l) (cadr l) (caddr l)))
(parse-tay-args (cdddr l)))))
(defun parse-tay-args1 (l)
(if ($listp (car l)) (parse-tay-args2 l)
(let ((v (car l))
(pt ($ratdisrep (cadr l)))
(ord (tay-order (caddr l)))
(switches (make-switch-list (cdddr l))))
(push (list v ord pt switches) tlist))))
(defun parse-tay-args2 (l)
(let ((label (gensym))
(vs (cdar l))
(pts (make-long-list (if ($listp (cadr l))
(copy-list (cdadr l))
(ncons (ratdisrep (cadr l))))))
(ord (caddr l))
(switches (make-switch-list (cdddr l)))
(lcm 1)
(max 0))
(if (atom ord)
(setq lcm ord max ord ord (make-long-list (ncons ord)))
(do ((a vs (cdr a))
(l (cdr ord) (cdr l)))
((null a) (setq ord (cdr ord)))
(cond ((not l) (merror "PARSE-TAY-ARGS2: ran out of truncation levels."))
(t (setq lcm (lcm lcm (car l)) max (max max (car l)))))))
(push (list label (tay-order max) 0
(ncons (list 'multivar lcm vs)))
tlist)
(do ((vl vs (cdr vl))
(ordl ord (cdr ordl))
(ptl pts (cdr ptl)))
((null vl) )
(cond ((not ptl) (merror "PARSE-TAY-ARGS2: ran out of matching points of expansion."))
(t
(push
(list (car vl) (tay-order (car ordl)) (car ptl)
(cons (list 'multi label (timesk lcm (expta (car ordl) -1))) switches))
tlist))))))
(defun make-switch-list (l)
(mapcar #'(lambda (q) (cons q t)) l))
(defun make-long-list (q)
(nconc q q))
;;; This checks to ensure that there isn't more than one set of multi-
;;; dependent variables with different orders of expansion, e.g.
;;; taylor(u+v+x+y,[u,v],0,[2,3],[x,y],0,[5,7]) is one.
(defun ratwtsetup (l)
(do ((l l (cdr l)) (a) (sw))
((null l) )
(when (setq a (switch 'multivar (car l)))
(do ((ll (cadr a) (cdr ll)))
((null ll) )
(cond ((equal (cadr (switch 'multi (get-datum (car ll)))) 1) )
(sw (merror (intl:gettext "taylor: multiple dependent variables must all have the same order of expansion.")))
('t (setq sw 't) (return 't)))))))
(defmvar $taylor_order_coefficients t
"When `true', coefficients of taylor series will be ordered canonically.")
(defun taylor1 (e tlist)
(declare (special *within-srf?* ))
(setq tlist (tlist-merge (nconc (find-tlists e) tlist)))
(prog ($zerobern $simp $algebraic genpairs varlist tvars sing-tvars
log-1 log%i ivars key-vars ans full-log last-exp
mainvar-datum zerolist taylor_simplifier least_term? tvar-limits
genvar)
(setq tlist (mapcan #'(lambda (d)
(if (tvar? (datum-var d))
(ncons d)
(progn
(push d sing-tvars)
() )))
tlist))
(setq $zerobern t $simp t $algebraic t last-exp e least_term? 't
log-1 '((%log simp) -1) log%i '((%log simp) $%i)
tvars (mapcar 'car tlist) varlist (copy-list tvars))
(when $taylor_simplifier
(setq taylor_simplifier
(if (fboundp $taylor_simplifier) $taylor_simplifier
'taylor_simplifier_caller)))
;; Ensure that the expansion points don't depend on the expansion vars.
;; This could cause an infinite loop, e.g. taylor(x,x,x,1).
(do ((tl tlist (cdr tl)))
((null tl) )
(unless (mfree (exp-pt (car tl)) tvars)
(merror (intl:gettext "taylor: attempt to expand ~M at a point depending on ~M.") e (caar tl))))
;; This drastic initialization ensures that ALGEBRAIC, TELLRAT, DISREP,
;; etc. prop's are removed from our gensyms. RATSETUP does not appear
;; to do this correctly, e.g. see ASB's bug of 1/10/83 (MQUERY 17).
(mapc #'(lambda (g) (setf (symbol-plist g) nil)) genvar)
(ratsetup varlist genvar)
(when (and $taylor_order_coefficients (not *within-srf?*)) (newvar e))
(orderpointer varlist)
(maplist #'(lambda (q g)
(push (cons (car g) (car q)) key-vars)
(let ((data (get-datum (car q))))
(rplaca q (transform-tvar (car q) data))
(push (cons (car g) (car q)) ivars)
;(setf (data-gvar-o data)
; (cons (car g) (valget (car g))))
(rplacd (cdddr data)
(cons (car g) (valget (car g))))))
(do ((v varlist (cdr v)))
((eq (car v) (car tvars)) v))
(do ((v varlist (cdr v))
(g genvar (cdr g)))
((eq (car v) (car tvars)) g)))
(setq genpairs (mapcar #'(lambda (y z)
(putprop z y 'disrep)
(cons y (cons (pget z) 1)))
varlist genvar))
(ratwtsetup tlist)
(setup-multivar-disrep () )
(setq mainvar-datum (car (last tlist)))
(mapc #'(lambda (d) (adjoin-sing-datum d)) sing-tvars)
(setq ans (catch 'tay-err (taylor3 e)))
(return
(if (atom (car ans)) (tay-error (car ans) (cadr ans)) ans))))
(defun transform-tvar (var data)
(if (not (tvar? var)) var
(cond ((and (signp e (exp-pt data)) (null (switch '$asymp data)))
var) ;Simple case
((member (exp-pt data) '($inf infinity) :test #'eq)
(m^ var -1))
((eq (exp-pt data) '$minf)
(m- (m^ var -1)))
((let ((temp (m- var (exp-pt data))))
(if (switch '$asymp data) (m^ temp -1) temp))))))
(defun taylor_simplifier_caller (exp)
(mcall $taylor_simplifier exp))
(defun taylor_simplify_recurse (ps)
(if (pscoefp ps) (taylor2 (funcall taylor_simplifier (rcdisrep ps)))
(let ((datum (ps-data ps)) (var () ))
;; We must treat multivars like 1, since they'll reappear again
;; when we call taylor2 on their disrep'd coeff's.
(if (switch 'multivar datum)
(setq datum '())
(progn
(setq var (getdisrep (gvar-o ps)))
;; Don't push pw's < 0, else constants will be truncated
(push-pw datum (emax (trunc-lvl ps) (rczero)))))
(do ((terms (terms ps) (n-term terms))
(ans (rczero) (psplus (if (null datum)
(taylor_simplify_recurse (lc terms))
(pstimes (taylor_simplify_recurse
(lc terms))
;; Don't do
;; (taylor2 (funcall taylor_simplifier
;; (m^ var (edisrep (le terms)))))
;; causes terms to be lost when inverting. E.g.
;; taylor(log(1+exp(-1/x)),x,0,5) calls psexpt(<exp(1/x)^3>...3,-1)
;; which must return a series good to 3+3(-1-1)=-3 which, when added
;; to other terms will truncate them to degree -3 also.
(if (ezerop (le terms)) (rcone)
(make-ps ps
(ncons
(term (le terms) (rcone)))))))
ans)))
((null terms)
(when datum (pop-pw datum))
ans)))))
(defun push-pw (datum pw)
(push pw (trunc-stack datum))
;; When changing the truncation on an internal multivar we must also
;; propagate the change to all var's which depend upon it. See WGD's
;; bug report of 9/15/82 which exhibits the necessity of this.
(when (setq datum (switch 'multivar datum))
(do ((vars (cadr datum) (cdr vars)))
((null vars) )
(push pw (trunc-stack (get-datum (car vars)))))))
(defun pop-pw (datum)
(pop (trunc-stack datum))
;; See the comment above in push-pw; here we must undo the propagation.
(when (setq datum (switch 'multivar datum))
(do ((vars (cadr datum) (cdr vars)))
((null vars) )
(pop (trunc-stack (get-datum (car vars)))))))
(defun setup-multivar-disrep (mrat?)
(let ((varlist varlist) (genvar genvar) (multivars () ))
(when mrat?
(setq varlist (mrat-varlist mrat?) genvar (mrat-genvar mrat?)))
(mapc #'(lambda (datum)
(when (switch 'multivar datum)
(push (car datum) multivars)
;; All genvar's corresponding to internally generated
;; multivars must "disappear" when disrep'd. If this
;; were not done then disrep'ing gx*gt would give x*t
;; which, upon, re-tayloring would give (gx*gt)*gt,
;; where t is the internal multivar for x, and gt, gx
;; are their genvars. An example where this would occur is
;; taylor(sin(x+y),[x],0,f1,[y],0,1).
(putprop (int-gvar datum) 1 'disrep)))
(if mrat? (mrat-tlist mrat?) tlist))
;; Here we must substitute 1 for any genvars which depend on multivars.
;; For example, taylor(x^n,[x],0,0) generates a multivar^n.
(when multivars
(do ((expl varlist (cdr expl))
(gvarl genvar (cdr gvarl)))
((null expl) )
(unless (mfree (car expl) multivars)
(putprop (car gvarl) 1 'disrep))))))
;; An example showing why this flag is need is given by
;; taylor(-exp(exp(-1/x)+2/x),x,0,-1). Without it, tstimes and
;; taylor_simplify_recurse end up trunc'ing the -1.
(defvar trunc-constants? 't)
(defun taylor3 (e)
(cond ((mbagp e) (cons (car e) (mapcar #'taylor3 (cdr e))))
((and (null tlist) (not (eq exact-poly 'user-specified)))
(xcons (prep1 e)
(list 'mrat 'simp varlist genvar)))
(t (xcons (if (null taylor_simplifier)
(taylor2 e)
(progn
(setq e (taylor2 e))
(let ((exact-poly () ) (trunc-constants? () ))
(taylor_simplify_recurse e))))
(list 'mrat 'simp varlist genvar tlist 'trunc)))))
(defun find-tlists (e) (let (*a*) (findtl1 e) *a*))
(defun findtl1 (e)
(cond ((or (atom e) (mnump e)) )
((eq (caar e) 'mrat)
(when (member 'trunc (car e) :test #'eq)
(push (mapcar #'copy-tree (mrat-tlist e)) *a*)))
(t (mapc #'findtl1 (cdr e)))))
(defun tlist-merge (tlists)
(do ((tlists tlists (cdr tlists)) (tlist () ))
((null tlists) (nreverse tlist))
(do ((a_tlist (car tlists) (cdr a_tlist)) (temp nil))
((null a_tlist) )
(if (null (setq temp (get-datum (datum-var (car a_tlist)) t)))
(if (prog2 (setq temp (car a_tlist))
(or (tvar? (datum-var temp))
(member (caar (datum-var temp)) '(mexpt %log) :test #'eq)))
(push (list (datum-var temp) (trunc-stack temp)
(exp-pt temp) (switches temp))
tlist)
(merror (intl:gettext "taylor: ~M cannot be a variable.") (datum-var temp)))
(progn
(if $maxtayorder
;; We must take the max truncation level when $maxtayorder
;; is T, cf. JPG's bug of 9/15/82.
(when (e> (current-trunc (car a_tlist)) (current-trunc temp))
(setf (current-trunc temp) (current-trunc (car a_tlist))))
(unless (e> (current-trunc (car a_tlist)) (current-trunc temp))
(setf (current-trunc temp) (current-trunc (car a_tlist)))))
(unless (alike1 (exp-pt temp) (exp-pt (car a_tlist)))
(merror (intl:gettext "taylor: cannot combine expressions expanded at different points.")))
(setf (switches temp)
(union* (switches temp) (switches (car a_tlist)))))))))
(defun compattlist (list)
(do ((l list (cdr l)))
((null l) t)
(or (alike1 (exp-pt (get-datum (datum-var (car l)))) (exp-pt (car l)))
(return () ))))
(defun taylor2 (e)
(let ((last-exp e)) ;; lexp-non0 should be bound here when needed
(cond ((assolike e tlist) (var-expand e 1 () ))
((or (mnump e) (atom e) (mfree e tvars))
(if (or (e> (rczero) (current-trunc mainvar-datum))
(lim-zerop e))
(pszero (data-gvar-o mainvar-datum)
(current-trunc mainvar-datum))
(if (and taylor_simplifier (not (atom e)))
(let ((e-simp (prep1 (funcall taylor_simplifier e))))
(when (and (rczerop e-simp) (not (member e-simp zerolist :test #'eq)))
(push e zerolist))
e-simp)
(prep1 e))))
((null (atom (caar e))) (merror "TAYLOR2: internal error."))
(($taylorp e)
(if (and (compatvarlist varlist (mrat-varlist e)
genvar (mrat-genvar e))
(compattlist (mrat-tlist e)))
(pstrunc (cdr e))
(let ((exact-poly () )) (re-taylor e))))
((eq (caar e) 'mplus) (tsplus (cdr e)))
((eq (caar e) 'mtimes) (tstimes (cdr e)))
((eq (caar e) 'mexpt) (tsexpt (cadr e) (caddr e)))
((eq (caar e) '%log) (tslog (cadr e)))
((and (or (known-ps (caar e)) (get (caar e) 'tay-trans))
(not (member 'array (cdar e) :test #'eq))
(try-expansion (if (cddr e) (cdr e) (cadr e))
(caar e))) )
((and (mqapplyp e)
(cond ((get (subfunname e) 'spec-trans)
(funcall (get (subfunname e) 'spec-trans) e))
((known-ps (subfunname e))
(try-expansion (caddr e) (cadr e))))) )
((and (member (caar e) '(%sum %product) :test #'eq)
(mfreel (cddr e) tvars))
(tsprsum (cadr e) (cddr e) (caar e)))
((eq (caar e) '%derivative) (tsdiff (cadr e) (cddr e) e))
((or (eq (caar e) '%at)
(do ((l (mapcar 'car tlist) (cdr l)))
((null l) t)
(or (free e (car l)) (return ()))))
(newsym e))
(t (let ((exact-poly () )) ; Taylor series aren't exact
(taylor2 (diff-expand e tlist)))))))
(defun compatvarlist (a b c d)
(cond ((null a) t)
((or (null b) (null c) (null d)) () )
((alike1 (car a) (car b))
(if (not (eq (car c) (car d))) ()
(compatvarlist (cdr a) (cdr b) (cdr c) (cdr d))))
(t (compatvarlist a (cdr b) c (cdr d)))))
(defun re-taylor (mrat)
(let ((old-tlist (mrat-tlist mrat)) (old-varlist (mrat-varlist mrat))
(old-genvar (mrat-genvar mrat)) old-ivars)
(declare (special old-tlist old-ivars))
;; Put back the old disrpes so rcdisrep's will work correctly.
(mapc #'(lambda (g v) (putprop g v 'disrep)) old-genvar old-varlist)
(setup-multivar-disrep mrat)
(setq old-ivars (mapcar #'(lambda (g v) (cons g v))
old-genvar old-varlist))
(prog1 (re-taylor-recurse (mrat-ps mrat))
;; Restore the correct disreps.
(mapc #'(lambda (g v) (putprop g v 'disrep)) genvar varlist)
(setup-multivar-disrep () ))))
(defun re-taylor-recurse (ps)
(declare (special old-tlist old-ivars))
(if (not (psp ps)) (taylor2 (rcdisrep ps))
(let (var (datum () ))
(setq var (cdr (assoc (gvar ps) old-ivars :test #'eq)))
;; We must treat multivars like 1, since they'll reappear again
;; when we call taylor2 or var-expand below.
(if (switch 'multivar (assoc var old-tlist :test #'equal))
(setq var () )
(when (setq datum (var-data var))
(push-pw datum (trunc-lvl ps))))
(prog1
(do ((terms (terms ps) (n-term terms))
(ans (rczero)
(psplus (if (null var) (re-taylor-recurse (lc terms))
(pstimes (re-taylor-recurse (lc terms))
(if datum
(var-expand (car datum)
(edisrep (le terms))
() )
(taylor2
(m^t var (edisrep (le terms)))))))
ans)))
((null terms) ans))
(when datum (pop-pw datum))))))
(defun var-expand (var exp dont-truncate?)
(let (($keepfloat) ($float) (modulus))
(setq exp (prep1 exp))) ;; exp must be a rational integer
(let ((temp (get-datum var 't)))
(cond ((null temp) (merror "VAR-EXPAND: invalid call."))
((member (exp-pt temp) '($inf $minf $infinity) :test #'eq)
(cond ((switch '$asymp temp)
(merror (intl:gettext "taylor: cannot create an asymptotic expansion at infinity.")))
((e> (setq exp (rcminus exp)) (current-trunc temp))
(rczero))
(t (make-ps (int-var temp)
(ncons (if exact-poly (inf) (current-trunc temp)))
(ncons (term exp
(if (eq (exp-pt temp) '$minf)
(rcmone)
(rcone))))))))
;; multivar expansion does not work at infinity, so
;; expansion at infinity is handled by above clause even if doing multivar.
((switch 'multi temp) ;; multivar expansion
(psexpt (psplus
;; The reason we call var-expand below instead of taylor2
;; is that we must be sure the call is not truncated to
;; 0 which would cause an error in psexpt if exp < 0.
;; For example, this occured in TAYLOR(X^2/Y,[X,Y],0,2).
(pstimes
;; Must ensure that we get back a series truncated
;; to at least what is specified by tlist. This means
;; we'll have to push-pw unless exp>0 since psexpt'n
;; kills (exp-1) terms. The bug that discovered this
;; is taylor(li[2](x+1/2)/x,[x],0,0) missing 2*log(2).
(if (not (e> exp (rczero)))
(let-pw (get-datum (car (switch 'multi temp)))
(e+ (current-trunc temp) (e- (e1- exp)))
(var-expand (car (switch 'multi temp)) 1 't))
(var-expand (car (switch 'multi temp)) 1 't))
(cons (list (int-gvar temp) 1 1) 1))
(taylor2 (exp-pt temp)))
exp))
((signp e (exp-pt temp))
(let ((exp>trunc? () ))
(if (and (e> exp (current-trunc temp)) (setq exp>trunc? 't)
(not dont-truncate?))
(rczero)
(make-ps (int-var temp)
(ncons (if exact-poly (inf)
(if exp>trunc? exp (current-trunc temp))))
(ncons (term (if (switch '$asymp temp) (rcminus exp)
exp)
(rcone)))))))
(t (psexpt (psplus
(make-ps (int-var temp)
(ncons (if exact-poly (inf) (current-trunc temp)))
(ncons (term (if (switch '$asymp temp)
(rcmone)
(rcone))
(rcone))))
(taylor2 (exp-pt temp)))
exp)))))
(defun expand (arg func)
(or (try-expansion arg func) (exp-pt-err)))
(defun try-expansion (arg func)
(prog (funame funord fun-lc argord psarg arg-trunc temp exact-poly)
;; We bind exact-poly to () since we dont want psexpt retaining
;; higher order terms when subst'ing into series (which aren't exact).
;; Try diff-expanding unknown subsripted functions.
(unless (or (atom func) (known-ps (caar func)))
(taylor2 (diff-expand `((mqapply) ,func ,arg) tlist)))
(when (setq temp (get (setq funame (oper-name func)) 'tay-trans))
(return (funcall temp arg func)))
(let ((lterm (getfun-lt func)))
(setq funord (e lterm) fun-lc (c lterm)))
begin-expansion
(when (rczerop (or psarg (setq psarg (get-lexp arg (rcone) () ))))
(if (e> (rczero) funord)
(if (rczerop (setq psarg (get-lexp arg (rcone) 't)))
(tay-depth-err)
(go begin-expansion))
(return (cond ((setq temp (assoc funame tay-pole-expand :test #'eq))
(funcall (cdr temp) arg psarg func))
((rczerop funord) fun-lc)
(t (rczero))))))
(when (pscoefp psarg) (setq psarg (taylor2 arg)))
(when (pscoefp psarg)
(return
(cond ((null (mfree (rdis psarg) tvars))
(symbolic-expand arg psarg func))
((setq temp (assoc funame tay-pole-expand :test #'eq))
(funcall (cdr temp) arg psarg func))
(t (prep1 (simplify
(if (atom func) `((,func) ,(rcdisrep psarg))
`((mqapply) ,func ,(rcdisrep psarg)))))))))
(when (e> (rczero) (setq argord (ps-le psarg)))
(cond ((not (member funame '(%atan %asin %asinh %atanh) :test #'eq))
(if (e> (rczero) (ps-le* (setq psarg (get-lexp arg (rcone) 't))))
(essen-sing-err)
(go begin-expansion)))
(t
(if (and (eq funame '%atan)
(eq (coef-sign arg) '$neg))
(return (psplus (atrigh arg func) (taylor2 (m- '$%pi))))
(return (atrigh arg func))))))
(setq temp (t-o-var (gvar psarg)))
(when (e> (e* funord argord) temp) (return (rczero)))
;; the following form need not be executed if psarg is really exact.
;; The constant problem does not allow one to determine this now,
;; so we always have to execute this currently.
;; This really should be
;; (unless (infp (trunc-lvl psarg)) ... )
;; Likewise, the infp checks shouldn't be there; have to assume
;; nothing is exact until constant problem is fixed.
(setq arg-trunc (if (and (not (infp (trunc-lvl psarg)))
(e= funord (rcone)))
temp
(e- temp (e* (e1- funord) argord)))
psarg (let-pw (get-datum (get-key-var (gvar psarg)))
arg-trunc
(if (or (infp (trunc-lvl psarg))
(e> arg-trunc (trunc-lvl psarg)))
(taylor2 arg)
(pstrunc psarg)))
;; We must recalculate argord since pstrunc may have "picked"
;; a coeff out of a constant monomial; e.g. this occurs in
;; taylor(sin(x+y),x,0,0,y,0,1) where psarg is (Y+...)*X^0+...
;; which truncates to Y+... of order 1.
argord (ps-le* psarg))
(if (rczerop argord)
(cond ((member funame '(%atan %asin %asinh %atanh) :test #'eq)
(return (atrigh arg func)))
((setq temp (assoc funame const-exp-funs :test #'eq))
(return (funcall (cdr temp) arg psarg func)))
((rczerop (ps-le* (setq psarg (get-lexp arg (rcone) 't))))
(return () )) ; Don't know an addition formula
(t (go begin-expansion)))
(return
(if (mono-term? (terms psarg))
(get-series func (current-trunc
(get-datum (get-key-var (gvar psarg))))
(gvar-o psarg) (ps-le psarg) (ps-lc psarg))
(progn
(setq temp (get-series func
(e// temp argord) (gvar-o psarg)
(rcone) (rcone)))
(cond ((not (psp temp)) temp)
(t (pscsubst1 psarg temp)))))))))
(defun symbolic-expand (ign psarg func) ; should be much stronger
(declare (ignore ign))
(prep1 (simplifya (if (atom func)
`((,func) ,(rcdisrep psarg))
`((mqapply) ,func ,(rcdisrep psarg)))
() )))
(defun expand-sing-trig? (arg func)
(cond ((member func *pscirc :test #'eq) (tay-exponentialize arg func))
((member func *psacirc :test #'eq) (atrigh arg func))
(t (essen-sing-err))))
(defun trig-const (a arg func)
(let ((const (ps-lc* arg)) (temp (cdr (assoc func trigdisp :test #'eq))))
(cond ((and (pscoefp const)
(member func '(%tan %cot) :test #'eq)
(multiple-%pi a (srdis const) func)))
(temp (funcall temp (setq const (psdisrep const))
(m- a const)))
(t (tsexpt `((,(get func 'recip)) ,(srdis arg)) -1)))))
(defun multiple-%pi (a const func)
(let (coef)
(and (equal ($hipow const '$%pi) 1)
($ratnump (setq coef ($ratcoef const '$%pi 1)))
(cond ((numberp coef) (expand (m- a const) func))
((equal (caddr coef) 2)
(psminus (expand (m- a const)
(cond ((eq func '%tan) '%cot)
((eq func '%cot) '%tan)
(t (merror "MULTIPLE-%PI: internal error in Taylor expansion."))))))))))
(setq *pscirc '(%cot %tan %csc %sin %sec %cos %coth
%tanh %csch %sinh %sech %cosh)
*psacirc '(%acot %atan %acsc %asin %asec %acos %acoth
%atanh %acsch %asinh %asech %acosh))
(setq const-exp-funs
`((%gamma . gam-const) ($psi . plygam-const)
. ,(mapcar #'(lambda (q) (cons q 'trig-const)) *pscirc))
trigdisp '((%sin . psina+b) (%cos . pscosa+b) (%tan . pstana+b)
(%sinh . psinha+b) (%cosh . pscosha+b) (%tanh . pstanha+b))
tay-pole-expand '((%gamma . plygam-pole) ($psi . plygam-pole))
tay-const-expand ; !these should be handled by symbolic-expand
; be sure to change this with tay-exponentialize!
(append (mapcar #'(lambda (q) (cons q 'tay-exponentialize)) *pscirc)
(mapcar #'(lambda (q) (cons q 'tay-exponentialize)) *psacirc)))
(mapc #'(lambda (q) (putprop q 'atrig-trans 'tay-trans))
'(%acos %acot %asec %acsc %acosh %acoth %asech %acsch))
(defprop mfactorial factorial-trans tay-trans)
(defun factorial-trans (arg func)
(declare (ignore func))
(taylor2 `((%gamma) ,(m1+ arg))))
;;; Not done properly yet
;;;
;;; (defprop $BETA BETA-TRANS TAY-TRANS)
(defun psina+b (a b)
(psplus (pstimes (expand a '%sin) (expand b '%cos))
(pstimes (expand a '%cos) (expand b '%sin))))
(defun pscosa+b (a b)
(psdiff (pstimes (expand a '%cos) (expand b '%cos))
(pstimes (expand a '%sin) (expand b '%sin))))
(defun pstana+b (a b)
(setq a (expand a '%tan) b (expand b '%tan))
(pstimes (psplus a b)
(psexpt (psdiff (rcone) (pstimes a b))
(rcmone))))
(defun psinha+b (a b)
(psplus (pstimes (expand a '%sinh) (expand b '%cosh))
(pstimes (expand a '%cosh) (expand b '%sinh))))
(defun pscosha+b (a b)
(psplus (pstimes (expand a '%cosh) (expand b '%cosh))
(pstimes (expand a '%sinh) (expand b '%sinh))))
(defun pstanha+b (a b)
(setq a (expand a '%tanh) b (expand b '%tanh))
(pstimes (psplus a b)
(psexpt (psplus (rcone) (pstimes a b))
(rcmone))))
(defun atrig-trans (arg func)
(taylor2
(cond ((eq func '%acos)
`((mplus) ,half%pi ((mtimes) -1 ((%asin) ,arg))))
((eq func '%acosh)
`((mtimes) -1 $%i ((mplus) ,half%pi ((mtimes) -1 ((%asin) ,arg)))))
(t
`((,(cdr (assoc func '((%acsc . %asin) (%asec . %acos)
(%acot . %atan) (%acsch . %asinh)
(%asech . %acosh) (%acoth . %atanh)) :test #'eq)))
,(m^ arg -1))))))
(defun atrigh (arg func)
(let ((full-log t) ($logarc t) (log-1 '((mtimes) $%i $%pi))
(log%i '((mtimes) ((rat) 1 2) $%i $%pi)))
(taylor2 (simplify `((,func) ,arg)))))
(defun tay-exponentialize (arg fun) ; !this should be in symbolic-expand!
(let (($exponentialize t) ($logarc t))
(setq arg (meval `((,fun) ,arg))))
(taylor2 arg))
(defun tsplus (l)
(do ((l (cdr l) (cdr l))
(ans (taylor2 (car l))
(psplus ans (taylor2 (car l)))))
((null l) ans)))
(defun ts-formula (form var pw)
(let ((datum (get-datum (get-key-var (car var)))))
(let-pw datum pw
(taylor2 (subst (get-inverse (car var)) 'sp2var form)))))
(defmacro next-series (l) `(cdadr ,l))
(defun tstimes-get-pw (l pw)
(do ((l l (cdr l)) (vect))
((null l) pw)
(setq pw (mapcar #'(lambda (pwq ple) (e+ pwq ple))
pw (setq vect (ord-vector (cdar l)))))
(rplacd (car l) (cons (cdar l) vect))))
(defun tstimes-l-mult (a)
(do ((l (cdr a) (cdr l)) ($maxtayorder t)
(a (car a) (pstimes a (car l))))
((null l) a)))
(defun mzfree (e l)
(do ((l l (cdr l)))
((null l) 't)
(or (zfree e (car l)) (return () ))))
;;; The lists posl, negl and zerl have the following format:
;;;
;;; ( (<expression> <expansion> <order vector>) . . . )
(defun tstimes (l)
(*bind* ((funl) (expl) (negl) (zerl) (posl)
(pw) (negfl) (temp) (fixl (rcone)))
(dolist (fun l) ;; find the exponentials
(if (mexptp fun)
(push (if (free (caddr fun) (car tvars)) fun
`((mexpt) $%e ,(m* (caddr fun)
`((%log) ,(cadr fun)))))
expl)
(push fun funl)))
(when expl
(setq expl (tsexp-comb expl)) ;; simplify exps
(setq expl (tsbase-comb expl))) ;; and again
(setq l (nconc expl funl)) ;; now try expanding
(let ((trunc-constants? () ))
(setq expl (cons 0 (mapcar #'(lambda (exp)
(cons exp (taylor2 exp)))
l))) )
;; EXPL is now of the form (0 ( <form> . <taylor2(form)> ) ...)
;; L points behind the cons considered for destructive updating.
(do ((l expl) (tem))
((null (cdr l)) )
(cond ((rczerop (cdadr l))
;; Consider taylor((a+1/x)*1/x,x,0,-2). Each factor will be on
;; zerl. Each factor will also appear to have le = 0 since its
;; series is 0, which would fool the get-pw routines below if
;; they tried to handle this case. The easiest fix for now
;; appears to be to always call get-lexp here, killing this:
(cond ;((null $maxtayorder)
; (setq zerl (cons (cadr l) zerl))
; (rplacd l (cddr l)))
((rczerop (setq tem (get-lexp (caadr l) (rcone) ())))
(return (setq zerl 0)))
('t (setq posl (cons (cons (caadr l) tem) posl))
(rplacd l (cddr l)))))
((pscoefp (cdadr l))
(cond ((mzfree (caadr l) tvars) ;must be zfree to permit ratfuns
(setq fixl (pstimes (cdadr l) fixl))
(rplacd l (cddr l)))
((setq zerl (cons (cadr l) zerl))
(rplacd l (cddr l)))))
((rczerop (ps-le (cdadr l)))
(setq zerl (cons (cadr l) zerl))
(rplacd l (cddr l)))
((e> (ps-le (cdadr l)) (rczero))
(setq posl (cons (cadr l) posl))
(rplacd l (cddr l)))
('t (setq l (cdr l)))))
(when (equal zerl 0) (return (rczero)))
(setq negl (cdr expl) temp (ord-vector fixl))
(mapcar #'(lambda (x) (and (e> (rczero) x) (setq negfl t))) temp)
(tstimes-get-pw zerl temp)
(setq pw (tstimes-get-pw posl (tstimes-get-pw negl temp)))
(if (or negl negfl)
(setq posl
(mapcar #'(lambda (x)
(prog2 (mapcar #'(lambda (datum lel pwl)
(push-pw datum
(e+ (current-trunc datum)
(e- lel pwl))))
tlist (cddr x) pw)
(taylor2 (car x))
(mapcar #'(lambda (datum) (pop-pw datum))
tlist)))
(nconc posl zerl negl)))
(setq posl (nconc (mapcar 'cadr posl) (mapcar 'cadr zerl)
(mapcar 'cadr negl))))
(setq posl (tstimes-l-mult posl))
(let ((ans (cond ((null fixl) posl)
((null posl) fixl)
('t (pstimes fixl posl)))))
(if $maxtayorder ans (pstrunc ans)))))
;;; This routine transforms a list of exponentials as follows:
;;;
;;; a^c*b^(n*c) ===> (a*b^n)^c, where n is free of var.
;;;
;;; This transformation is only applicable when c is not free of var.
(defun tsexp-comb (l) ;; ***** clobbers l *****
(setq l (cons '* l))
(do ((a l) (e)) ;; updated by a rplacd or cdr.
((null (cddr a)) (cdr l)) ;; get rid of the *
(rplaca (cddadr a) (setq e ($ratsimp (caddr (cadr a)))))
;; Must delete e^0 lest we divide by the 0 below. RWG's byzero bug
;; of 3/1/78 used to cause this.
(if (equal e 0) (rplacd a (cddr a))
(if (mfree (caddr (cadr a)) tvars) (pop a)
(do ((b (cddr a) (cdr b)) (n))
((null b) (setq a (cdr a)))
(when (mfree (setq n ($ratsimp (m// (caddar b)
(caddr (cadr a)))))
tvars)
(rplaca b (list '(mexpt simp)
(m* (cadadr a)
(m^ (cadar b) n)) ;; b^n
(caddr (cadr a))))
(rplacd a (cddr a)) ;; delete a^c
(return () )))))))
;;; This routine transforms a list of exponentials as follows:
;;;
;;; a^b*a^c ===> a^(b+c),
;;;
;;; this is only necessary when b and c depend on "var."
(defun tsbase-comb (l) ;;; *******clobbers l********
(setq l (cons '* l))
(do ((a l)) ;;; updated by a rplacd or cdr
((null (cddr a)) (cdr l))
(do ((b (cddr a) (cdr b)))
((null b) (pop a)) ;;; did not return early so pop.
(when (alike1 (cadar b) (cadadr a))
(rplaca b (m^ (cadar b) (m+ (caddar b) (caddr (cadr a)))))
(rplacd a (cddr a))
(return 't)))))
(defun tsexpt (b e)
(cond ((and (atom b) (mnump e)
(get-datum b)
(not (eq (exp-pt (get-datum b)) '$minf)))
;; one could remove this clause and let this case be handled by tsexpt1
(var-expand b e () ))
((mfree e tvars) (tsexpt1 b e))
((eq '$%e b) (tsexpt-red (list e)))
(t (tsexpt-red (list (list '(%log) b) e)))))
(defun tsexpt-red (l)
(*bind* ((free) (nfree) (full-log) ($logarc t) (expt) (ps) (e)
(log-1 '((mtimes) $%i $%pi))
(log%i '((mtimes) ((rat) 1 2) $%i $%pi)))
(declare (special e))
a (do ((l l (cdr l)))
((null l) )
(cond ((mtimesp (car l)) (setq l (append l (cdar l))))
((mfree (car l) tvars) (push (car l) free))
(t (push (car l) nfree))))
(cond ((or (cdr nfree) (atom (car nfree))) )
((eq (caaar nfree) '%log)
(return (tsexpt1 (cadar nfree) (m*l free))))
((member (caaar nfree) *psacirc :test #'eq)
(setq l (ncons (simplifya ;; simplify after removing simp flag
(cons (ncons (caaar nfree)) (cdar nfree))
() ))
nfree (cdr nfree))
(go a)))
;; Must have truncs > 0 so that logs in the expt aren't trunc'd.
;; E.g, consider taylor(x^(x-1),x,0,-1).
(tlist-mapc d (push-pw d (emax (current-trunc d) (rcone))))
(setq ps (taylor2 (setq expt (m*l (append nfree free)))))
(tlist-mapc d (pop-pw d))
;; Here we must account for the truncation gain or lossage that
;; is encountered in exp(c*log(x)+y) -> x^c*exp(y).
(let ((c0 (if (pscoefp ps) ps (psterm (terms ps) (rczero))))
e^c0 ord-e^c0)
(unless (rczerop c0)
(setq ord-e^c0 (ord-vector (setq e^c0 (psexpt-fn c0))))
;; Must emax with 0 so that new singular kernals won't be trunc'd
;; e.g exp(1/x+...) to degree -2 should be exp(-1/x)+...
;; Also try taylor(screwa,x,0,-2).
(mapc #'(lambda (d o) (push-pw d (emax (e- (current-trunc d) o)
(rczero))))
tlist ord-e^c0)
(setq ps (psdiff (taylor2 expt) c0)))
(setq ps (psexpt-fn ps))
(when e^c0
(tlist-mapc d (pop-pw d))
(setq ps (pstimes e^c0 ps)))
(pstrunc ps))))
;; Taylor's b^e, where e is independent of tvars.
(defun tsexpt1 (b e)
(prog (s le pw tb)
(setq e (let ((modulus () )) ; Don't mod exponents! See WGM's bug
(prog2 (mapcar ; of 3/6/83 for an example.
#'(lambda (datum)
(push-pw datum
(emax (current-trunc datum) (rczero))))
tlist)
(taylor2 e)
(mapcar #'(lambda (datum) (pop-pw datum)) tlist)))
s (psfind-s e)
tb (taylor2 b)
pw (if (psp tb) (current-trunc (get-datum
(get-key-var (gvar tb))))
;; Constant problem kludge.
(if (rczerop tb) (current-trunc (car tlist)) (rczero))))
(if (floatp (car s))
(setq s (maxima-rationalize (quot (car s) (cdr s)))))
;; We must ensure that the lc is non-zero since it will be inverted in
;; psexpt.
(setq tb (strip-zeroes tb 't))
(cond ((rczerop tb)
(when (or ;; When 1 > s we need more terms since -le*(s-1) > 0.
(e> (rcone) s)
(and (e> (rczero) pw) (e> s (rcone))))
(setq tb (get-lexp b () 't)))
(setq le (ps-le* tb)))
((psp tb) (setq le (ps-le tb)))
(t (return (rcexpt tb e))))
(and (e> (e* s le) pw) (null $maxtayorder) (return (rczero)))
(setq s (e- pw (e* le (e1- s))))
;(setq le (increment-truncs tb))
(return
(psexpt
(if (e> pw s)
(if $maxtayorder tb
(pstrunc1 tb (list (cons (gvar tb) s))))
;; because of constants not retaining info, have to
;; just keep the constant here
(cond ((not (psp tb)) tb)
(t (let-pw (get-datum (get-key-var (gvar tb))) s (strip-zeroes (taylor2 b) 't)))))
e))))
;;; the method of calculating truncation levels below is incorrect.
;;; (i.e. increment-truncs & decrement-truncs, also used above)
;;; Examples which exhibit this incorrectness are:
;;; taylor(log(sin(y)+x),x,0,2,y,0,1) is missing a y/6*x and -1/6*x^2
;;; taylor(log(sin(z)+sin(y)+x),x,0,f1,y,0,3,z,0,5) misses a z^5*y^3 term.
;;; TSLOG must find the lowest degree term in the expansion of the
;;; log arg, then expand with the orders of all var's in this low term
;;; incremented by their order in this low term. Note that this is
;;; only necessary for var's with ord > 0, since otherwise we have
;;; already expanded to a higher ord than required. Also we must
;;; not do this for var's with trunc < 0, since this may incorrectly
;;; truncate terms which should end up as logs.
(defun increment-truncs (ps)
(do ((ps ps (ps-lc ps)) (trunc (t-o-var (gvar ps))) (data () ))
((pscoefp ps) data)
(when (e> (ps-le ps) (rczero))
(push (assoc (get-key-var (gvar ps)) tlist :test #'eq) data)
(push-pw (car data) (e+ (e* (e+ trunc (rctwo)) (ps-le ps))
(current-trunc (car data))))
(setq trunc (e+ trunc (current-trunc (car data))))
)))
(defun decrement-truncs (data)
(mapc #'(lambda (data) (pop-pw data)) data))
(defun tslog (arg)
(let ((psarg (taylor2 arg)) datum)
(when (rczerop psarg) (setq psarg (get-lexp arg () 't)))
;; We must ensure that the lc is non-zero since it will be inverted in pslog
(setq psarg (strip-zeroes psarg 't))
(do ((ps psarg (ps-lc ps)) (shift (rcone) (e* shift (rctwo))))
((pscoefp ps)
(when datum
(when (rczerop (setq psarg (taylor2 arg)))
(setq psarg (get-lexp arg () 't)))
(mapc #'(lambda (data) (pop-pw data)) datum))
(pslog psarg))
(push (get-datum (get-key-var (gvar ps))) datum)
(if (and (e> (ps-le ps) (rczero))
(e> (current-trunc (car datum)) (rczero)))
(push-pw (car datum) (e+ (e* shift (ps-le ps))
(current-trunc (car datum))))
(pop datum)))))
;; When e-start is non-null we start expanding at order e-start, ... , 2^m,
;; then 2^m*pow, instead of the normal sequence pow, ... , 2^m*pow
;; (where m = $taylordepth, pow = ord of var). This is done because it is
;; usually much more efficient for large, non-trivial expansions when we only
;; want the lowest order term.
(defun get-lexp (exp e-start zerocheck?)
(if (equal exp 0)
(if zerocheck?
(tay-depth-err)
(rczero))
(progn
(tlist-mapc d (push-pw d (or e-start (emax (orig-trunc d) (rcone)))))
(do ((psexp) (i (1+ $taylordepth) (1- i)))
((signp e i)
(tlist-mapc d (pop-pw d))
(if zerocheck?
(tay-depth-err)
(progn
(unless silent-taylor-flag (zero-warn exp))
(rczero))))
(declare (fixnum i))
(cond ((and (rczerop (setq psexp (if zerocheck?
(strip-zeroes (taylor2 exp) 't)
(taylor2 exp))))
(not (member exp zerolist :test #'eq))) )
;; Info not needed yet.
;; ((and lexp-non0 (rczerop (le (terms psexp)))
;; (mono-term? (terms psexp))))
(t (tlist-mapc d (pop-pw d))
(return psexp)))
(cond ((and (= i 1) e-start)
(setq e-start () i 2)
(tlist-mapc d (push-pw d (prog1 (e* (orig-trunc d) (current-trunc d))
(pop-pw d)))))
(t (tlist-mapc d (push-pw d (prog1 (e* (rctwo) (current-trunc d))
(pop-pw d))))))))))
(defun 1p (x)
(or (equal x 1) (equal x 1.0)))
(defun [max-trunc] ()
(do ((l tlist (cdr l)) (emax (rczero)))
((null l) (1+ (truncate (car emax) (cdr emax))))
(when (e> (current-trunc (car l)) emax)
(setq emax (orig-trunc (car l))))))
(defun tsprsum (f l type)
(if (mfree f tvars) (newsym f)
(let ((li (ncons (car l))) (hi (caddr l)) (lv (ncons (cadr l))) a aa
($maxtayorder () ));; needed to determine when terms are 0
(if (and (numberp (car lv)) (numberp hi) (> (car lv) hi))
(if (eq type '%sum) (taylor2 0) (taylor2 1))
(progn
(if (eq type '%sum) (setq type '()))
(do ((m (* ([max-trunc]) (ash 1 $taylordepth)))
(k 0 (1+ k))
(ans (taylor2 (maxima-substitute (car lv) (car li) f))))
((equal hi (car lv)) ans)
(rplaca lv (m1+ (car lv)))
;; A cheap heuristic to catch infinite recursion when
;; possible, should be improved in the future
(if (> k m) (exp-pt-err)
(setq a ;(mlet li lv (taylor2 (setq aa (meval f))))
(taylor2 (maxima-substitute (car lv) (car li) f))))
(if type
(if (and (1p (car a)) (1p (cdr a)) (not (1p aa)))
(return ans)
(setq ans (pstimes a ans)))
(if (and (rczerop a) (not (signp e aa)))
(return ans)
(setq ans (psplus ans a))))))))))
(defun tsdiff (e l check)
(*bind* ((n) (v) (u))
(do ((l l (cddr l)))
((null l))
(if (and (atom (car l)) (numberp (cadr l))
(assoc (car l) tlist :test #'eq))
(setq n (cons (cadr l) n) v (cons (car l) v))
(setq u (cons (car l) (cons (cadr l) u)))))
(or n (return (prep1 check)))
(if u (setq e (meval (cons '($diff) (cons e l)))))
(setq l (mapcar #'(lambda (x) (get-datum x)) v))
(mapcar #'(lambda (datum pw)
(push-pw datum (e+ (current-trunc datum) (prep1 pw))))
l n)
(setq e (taylor2 e))
(mapc #'(lambda (datum) (pop-pw datum)) l)
(do ((vl v (cdr vl))
(nl n (cdr nl)))
((null vl ) e)
(do ((i 1 (1+ i)))
((> i (car nl)) )
(mapc #'(lambda (a b)
(putprop a (prep1 (sdiff b (car v)))
'diff))
genvar varlist)
(setq e (psdp e))))))
(defun no-sing-err (x) ;; try to catch all singularities
(let ((errorsw t))
(declare (special errorsw))
(let ((ans (catch 'errorsw (eval x))))
(if (eq ans t) (unfam-sing-err) ans))))
;; evaluate deriv at location var=pt
;; if this results in division by zero, use unevaluated form of deriv
;; in order to get series expansions such as
;; taylor(gamma_incomplete(1/2, x), x, 0, 5) ->
;; sqrt(%pi)+97*sqrt(x)/512+113*x^(3/2)/512-2207*x^(5/2)/5120
;; +997*x^(7/2)/3072-5845*x^(9/2)/36864
(defun eval-deriv (deriv var pt)
(let ((errorsw t))
(declare (special errorsw))
(let ((ans (catch 'errorsw (eval `(meval '(($at) ,deriv ((mequal) ,var ,pt)))))))
(if (eq ans t)
deriv
ans))))
(defun check-inf-sing (pt-list) ; don't know behavior of random fun's @ inf
(and (or (member '$inf pt-list :test #'eq) (member '$minf pt-list :test #'eq))
(unfam-sing-err)))
(defun diff-expand (exp l) ;l is tlist
(check-inf-sing (mapcar (function caddr) l))
(cond ((not l) exp)
(t
(setq exp (diff-expand exp (cdr l)))
(do ((deriv (sdiff exp (caar l)) (sdiff deriv var))
(var (caar l))
(coef 1 (* coef (1+ cnt)))
(cnt 1 (1+ cnt))
(pt (exp-pt (car l)))
(lim (rcdisrep (current-trunc (car l))))
(ans (list (no-sing-err `(meval '(($at) ,exp ((mequal) ,(caar l) ,(exp-pt (car l)))))))
(cons `((mtimes) ((rat simp) 1 ,coef)
,(eval-deriv deriv var pt)
((mexpt) ,(sub* var pt) ,cnt))
ans)))
((or (great cnt lim) (equal deriv 0)) (cons '(mplus) ans))))))
;;; subtitle disreping routines
(defun edisrep (e)
(if (= (cdr e) 1) (car e) (list '(rat) (car e) (cdr e))))
(defun striptimes (a)
(if (mtimesp a) (cdr a) (ncons a)))
(defun srdis (x)
(let (($psexpand () )) ; Called only internally, no need to expand.
($ratdisrep
(cons (list 'mrat 'simp varlist genvar tlist 'trunc)
x))))
(defun srdisrep (r)
(let ((varlist (mrat-varlist r)) (genvar (mrat-genvar r)))
(mapc #'(lambda (exp genv) (putprop genv exp 'disrep))
varlist genvar)
(setup-multivar-disrep r)
;; This used to return 0 if psdisrep returned () but this is wrong
;; since taylor(false,x,0,0) would lose. If psdisrep really wants to
;; return () for 0 then we will probably find out soon.
(if (eq $psexpand '$multi) (psdisexpand (cdr r))
(psdisrep (cdr r)))))
(defun psdisrep (p)
(if (psp p)
(psdisrep+ (psdisrep2 (terms p) (getdisrep (gvar-o p)) (trunc-lvl p))
(if (or $psexpand (trunc-lvl p)) '(mplus trunc)
'(mplus exact)))
(rcdisrep p)))
(defun psdisrep^ (n var)
;; If var = () then it is an internal var generated in a multivariate
;; expansion so it shouldn't be displayed. If var = 1 then it probably
;; resulted from the substitution in srdisrep, so it depends on an
;; internal var and likewise shouldn't be displayed.
(cond ((or (rczerop n) (null var) (equal var 1)) 1)
((equal n (rcone)) var)
((and ps-bmt-disrep (mexptp var) (equal (caddr var) -1))
(psdisrep^ (e- n) (cadr var)))
('t `((mexpt ratsimp) ,var ,(edisrep n)))))
;;; There used to be a hack below that would print a series consisting
;;; of merely one term as exact polynomial (i.e. no trailing "..."'s).
;;; This is, of course, wrong but the problem with the fix is that
;;; now exact things like taylor(y*x,x,0,f1,y,0,1) will display like
;;; (y+...) x+... because of the problem with $MAXTAYORDER being internally
;;; bound to ()---which causes exact things to look inexact, such as
;;; x and y above. See the comment above taylor* for the $MAXTAYORDER problem.
(defun psdisrep+ (p plush &aux lowest-degree-term)
(if;; An exact sum of one arg is just that arg.
(and (null (cdr p)) (eq (cadr plush) 'exact))
(car p)
(progn
;; Since the DISPLAY package prints trunc'd sum's arguments
;; from right to left we must put the terms of any constant term
;; in decreasing order. Note that only a constant (wrt to the
;; mainvar) term can be a term which is a sum.
(when (mplusp (setq lowest-degree-term (car (last p))))
(rplacd lowest-degree-term (nreverse (cdr lowest-degree-term))))
(cons plush p))))
(defun psdisrep* (a b)
(cond ((equal a 1) b)
((equal b 1) a)
(t (cons '(mtimes ratsimp)
(nconc (striptimes a) (striptimes b))))))
(defun psdisrep2 (p var trunc)
(if (or $ratexpand $psexpand) (psdisrep2expand p var)
(do ((a () (cons (psdisrep* (psdisrep (lc p)) (psdisrep^ (le p) var))
a))
(p p (cdr p)))
((or (null p) (e> (le p) trunc)) a))))
(defun psdisrep2expand (p var)
(do ((p p (cdr p))
(l () (nconc (psdisrep*expand (psdisrep (lc p)) (psdisrep^ (le p) var))
l)))
((null p) l)))
(defun psdisrep*expand (a b)
(cond ((equal a 1) (list b))
((equal b 1) (list a))
((null (mplusp a))
(list (cons '(mtimes ratimes) (nconc (striptimes a) (striptimes b)))))
('t (mapcar #'(lambda (z) (psdisrep* z b))
(cdr a)))))
(defun psdisexpand (p)
(let ((ans (ncons ())))
(declare (special ans)) ;used in pans-add
(psdisexcnt p () (rczero))
(setq ans
(nreverse
(mapcar #'(lambda (x) (cond ((not (cddr x)) (cadr x))
(t (cons '(mplus trunc) (cdr x)))))
(cdr ans))))
(cond ((not (cdr ans)) (car ans))
(t (cons '(mplus trunc) ans)))))
(defun psdisexcnt (p l n)
(if (psp p)
(do ((var (getdisrep (gvar-o p))) (ll (terms p) (n-term ll)))
((null ll) ())
(if (rczerop (le ll)) (psdisexcnt (lc ll) l n)
(psdisexcnt (lc ll)
(cons (psdisrep^ (le ll) var) l)
(e+ (le ll) n))))
(psans-add (cond ((not l) (rcdisrep p))
(t (psdisrep* (rcdisrep p)
(cond ((not (cdr l)) (car l))
(t (cons '(mtimes trunc) l))))))
n)))
(defun psans-add (exp n)
(declare (special ans)) ;bound in psdisexpand
(do ((l ans (cdr l)))
((cond ((null (cdr l)) (rplacd l (ncons (list n exp))))
((e= (caadr l) n) (rplacd (cadr l) (cons exp (cdadr l))))
((e> (caadr l) n) (rplacd l (cons (list n exp) (cdr l))))))))
(defun srconvert (r)
(cond ((not (atom (caadr (cdddar r))))
(cons (car r) (psdisextend (cdr r))))
(t
(*bind* ((trunclist (cadr (cdddar r)))
(tlist)
(gps)
(temp)
(vs (caddar r))
(gens (cadddr (car r))))
(setq gps (mapcar #'cons gens vs))
(do ((tl (cdr trunclist) (cddr tl)))
((null tl) (cons (list 'mrat 'simp vs gens tlist 'trunc) (srconvert1 (cdr r))))
(setq temp (cdr (assoc (car tl) gps :test #'eq)))
(cond ((null (member (car tl) (cdr trunclist) :test #'eq)))
((mplusp temp) (merror "SRCONVERT: internal error."))
(t
(setq tlist
(cons (list* temp (tay-order (cadr tl)) 0 nil
(cons (car tl) (symbol-value (car tl))))
tlist)))))))))
(defun srconvert1 (p)
(cond ((not (member (car p) genvar :test #'eq)) p)
(t
(do ((l (cdr p) (cddr l))
(a nil (cons (term (prep1 (car l)) (srconvert1 (cadr l))) a)))
((null l)
(make-ps (cons (car p) (symbol-value (car p)))
(tay-order (oldget trunclist (car p))) a))))))
;;; subtitle error handling
(defun tay-error (msg exp)
(if silent-taylor-flag (throw 'taylor-catch ())
(if exp
(merror "taylor: ~A~%~M" msg exp)
(merror "taylor: ~A" msg))))
(defun exp-pt-err ()
(tay-err (intl:gettext "unable to expand at a point specified in:")))
(defun essen-sing-err ()
(tay-err (intl:gettext "encountered an essential singularity in:")))
(defun unfam-sing-err ()
(tay-err (intl:gettext "encountered an unfamiliar singularity in:")))
(defun infin-ord-err ()
(tay-err (intl:gettext "expansion to infinite order?")))
(defun tay-depth-err ()
(tay-err (intl:gettext "'taylordepth' exceeded while expanding:")))
;;; Subtitle TAYLORINFO
(defun taylor-trunc (q)
(setq q (current-trunc q))
(cond ((null q) '$inf)
((equal (cdr q) 1) (car q))
(t `((rat) ,(car q) ,(cdr q)))))
(defun taylor-info (q)
(let ((acc-var nil) (acc-pt nil) (acc-ord nil) (qk) (acc))
(cond ((null q) nil)
(t
(setq qk (pop q))
(cond ((and (fourth qk) (consp (fourth qk)) (eq (caar (fourth qk)) 'multivar)) nil)
((and (fourth qk) (consp (fourth qk)) (eq (caar (fourth qk)) 'multi))
(while (and (fourth qk) (consp (fourth qk)) (eq (caar (fourth qk)) 'multi))
(setq acc nil)
(push (taylor-trunc qk) acc-ord)
(push (exp-pt qk) acc-pt)
(push (datum-var qk) acc-var)
(setq qk (pop q)))
(push '(mlist) acc-ord)
(push '(mlist) acc-pt)
(push '(mlist) acc-var)
(setq q (taylor-info q))
(if (null q) (list acc-var acc-pt acc-ord) (append q (list acc-var acc-pt acc-ord))))
(t
(setq acc (if (and (fourth qk) (consp (fourth qk)) (eq '$asympt (caar (fourth qk))))
(list '$asympt) nil))
(push (taylor-trunc qk) acc)
(push (exp-pt qk) acc)
(push (datum-var qk) acc)
(push '(mlist) acc)
(setq q (taylor-info q))
(if (null q) (list acc) (append q (list acc)))))))))
(defun $taylorinfo (x)
(if (and (consp x) (member 'trunc (first x) :test #'eq))
(cons '(mlist) (taylor-info (mrat-tlist x)))
nil))
;;; Local Modes:
;;; Lisp let-pw Indent:2
;;; End:
|