This file is indexed.

/usr/share/maxima/5.32.1/src/hayat.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;   **************************************************************
;;;   ***** HAYAT ******* Finite Power Series Routines *************
;;;   **************************************************************
;;;   ** (c) Copyright 1982 Massachusetts Institute of Technology **
;;;   ****** This is a read-only file! (All writes reserved) *******
;;;   **************************************************************

(in-package :maxima)

;;;		TOP LEVEL STRUCTURE

;;;	Power series have the following format when seen outside the power
;;; series package:
;;;
;;;    ((MRAT SIMP <varlist> <genvar> <tlist> trunc) <poly-form>)
;;;
;;; This is the form of the output of the expressions, to
;;; be displayed they are RATDISREPed and passed to DISPLA.

;;; The <poly-forms> consist of a header and list of exponent-coefficient
;;; pairs as shown below.  The PS is used to distinguish power series
;;; from their coefficients which have a similar representation.
;;;
;;;   (PS (<var> . <ord-num>) (<trunc-lvl>)
;;;	  (<exponent> . <coeff>) (<exponent> . <coeff>) . . .)
;;;
;;; The <var> component of the power series is a gensym which represents the
;;; kernel of the power series.  If the package is called with the arguments:
;;; Taylor(<expr>, x, a, n)  then the kernel will be (x - a).
;;; The <ord-num> is a relative ordering for the various kernels in a
;;; multivariate expansion.
;;; <trunc-lvl> is the highest degree of the variable <var> which is retained
;;; in the current power series.
;;; The terms in the list of exponent-coefficient pairs are ordered by
;;; increasing degree.

;;; Problem: fix expansion of logs so that taylor(log(1+exp(-1/x)),x,0,3)
;;; works. Done.
;;;
;;; Problem: taylor(log(1+exp(-1/x)),x,0,5) loses because, while
;;; taylor_simplify_recurse'ing exp(-3/x) get trunc level = -3. FIxed.
;;;
;;; Problem: Need to fix things so that asymptotic kernels aren't put onto
;;; tvars via tlist merge etc. in taylor1. Done.
;;;
;;; Problem: get-series returns 0 for taylor(log(1+exp(-1/x)),x,0,5) and
;;; need to make log(exp(1/x)) -> 1/x. Fixed.
;;;
;;; Problem: Fix psexpt-fn so that it doesn't lose via the invert-var
;;; scheme, e.g. try taylor(exp(exp(-1/x)+x),x,0,5). Note that if it did
;;; just that scheme. Done.
;;;
;;; Problem: fix adjoin-tvar so that the new tvars are ordered correctly
;;; according to their strength. This is necessary in order to read the limit
;;; directly from the leading term. E.g. see the misordered:
;;; taylor(subst(1/x,x,part(screw2,1)),x,0,2) from ALJABR;SCREW2 LIMIT.
;;; Note that the answer given for this appear to be incorrect when the
;;; truncation on x is < 4. Is this due to the misordering?
;;; Also taylor(screwa,x,0,4)+taylor(screwb,x,0,8) doesn't agree with
;;; taylor(screw,x,0,8) where it should (here screwa = part(screw,1),
;;; screwb = part(screw, 2); is this a truncation problem on the
;;; gvar exp(1/x)?).
;;;
;;; Problem: new gvars have to be intro'd for logs just as for exp's instead
;;; of treating them like constants as currently done. For example,
;;; taylor(log(1+1/log(x)),x,0,2) currently doesn't expand. Done.
;;;
;;; Problem: The display routines need pieces of the taylor environment
;;; (tvar-limits, tvars, tlist, etc.) to figure out how to order terms.
;;; This means we'll probably have to store some of this on the local tlist.
;;; When this is done the commented out code in psdisrep and psdisrep2 can
;;; be re-inserted. Psdisrep2expand will also need to be modified.
;;; I just fixed srdisrep to get the local env it needs; psdisrep2expand
;;; still needs to be updated. The display order problem is still around
;;; however: try taylor(exp(exp(-1/x)+x),x,0,3). After more investigation,
;;; it seems that the term reversal always occurs for ps's that are coeff's
;;; of terms whose expt is < 0. Probably the psdisrep routines should reverse
;;; these terms to account for this (the bug is somewhere in the DISPLA
;;; routines, possible DIM-MPLUS).
;;;
;;; Problem: Since gvar's like exp(-1/x) can't be put on genvar, they have
;;; to be saved somewhere locally and restored by everyone who needs to setup
;;; disrep info etc. Done for re-taylor.
;;;
;;; Problem: All new code needs to be checked to ensure it does the correct
;;; thing when the expansion point is infinite (e.g. see the code in
;;; TSEXPT-RED which handles this case).
;;;
;;; Perhaps the code for exp's and log's which pushes trunc degrees
;;; can be done by first computing exp(c0) or log(c0) first and see
;;; how much to push by looking at this series. Done for exp in tsexpt-red.
;;;
;;; Problems: taylor(part(screwa,2)-2/x,x,0,1) shouldn't be exact.
;;; taylor(screwa,x,0,-2) misses the degree -2 term. This part is now fixed.
;;;
;;; Tvar-limits should be stored locally so that psdisrep need not recompute
;;; each gvar limit when disrepping.

(macsyma-module hayat)

(defmvar tlist nil)

(defvar *within-srf?* nil)

(load-macsyma-macros mhayat rzmac ratmac)

;;;		 Subtitle Special Stuff for Compiling

(declare-top
 (special vlist
	  varlist		;List of all the variables occuring in a power
				;series, the power series variables at the end
	  genvar		;The list of gensyms corresponding to varlist
	  modulus		;
	  *a*			;Temporary special
	  sub-exprs		;
	  silent-taylor-flag	;If true indicates that errors will be
				;returned via a throw to TAY-ERR
	  tlist			;An association list which contains the
				;relevant information for the expansion which
				;is passed in at toplevel invocation.
	  $float		;Indicates whether to convert rational numbers
				;to floating point numbers.
	  $keepfloat		;When true retains floatin point numbers
				;internal to Taylor.
	  $radexpand		;
	  log-1			;What log(-1) should be log(-1) or pi*i.
	  log%i			;Similarly for log(i)
	  exact-poly		;Inicates whether polynomials are to be
				;considered exact or not.  True within SRF,
				;false within TAYLOR.
	  ngps			;
	  num-syms		;
	  loc-gensym		;
	  syms			;
	  tvars			;
	  pssyms		;
	  half%pi		;Has pi/2 to save space.
	  const-funs		;
	  const-exp-funs	;
	  tay-const-expand	;For rediculousness like csch(log(x))
	  $exponentialize	;which we do by exponentiation.
	  tay-pole-expand	;
	  trigdisp		;
	  last-exp		;last-expression through taylor2
	  $taylordepth		;
	  $ratexpand		;
	  genpairs		;List of dotted pairs
	  ps-bmt-disrep		;
	  ivars			;Pairlist if gensym and disreped version
	  key-vars		;Pairlist of gensym and key var (for searching
				;TLIST)
	  $algebraic		;
	  *psacirc		;
	  *pscirc		;
	  full-log		;
	  $logarc		;
	  trunclist		;
	  *within-srf?*		;flag for in srf
	  mainvar-datum		;
	  least_term?		; If non-null then the addition routines
				; are adding or subtracting coeff's of the
				; least term of a sum so they should do
				; zero checking on it if it is desired.
	  taylor_simplifier	; This is set by taylor1 to the object
				; which will be funcalled whenever
				; coefficient simplification is desired.
	  zerolist		; A list of constant expressions which have
				; been verified to be zero by a call to
				; $TAYLOR_SIMPLIFIER in taylor2. It is used to
				; suppress the message that TAYLOR is assumming
				; an expression to be zero.
	; 0p-funord lexp-non0	; referenced only in commented-out code, so comment out here too
	$zerobern $simp)
 )				;Don't want to see closed compilation notes.

(defmvar $psexpand ()
 "When TRUE extended rational function expressions will be displayed fully
  expanded. (RATEXPAND will also cause this.) If FALSE, multivariate
  expressions will be displayed just as in the rational function package.
  If PSEXPAND:MULTI, then terms with the same total degree in the variables
  are grouped together.")

(defmvar $maxtayorder t
 "When true TAYLOR retains as many terms as are certain to be correct
  during power series arithmetic. Otherwise, truncation is controlled
  by the arguments specified to TAYLOR.")

(defmvar $taylor_truncate_polynomials t
 "When FALSE polynomials input to TAYLOR are considered to have infinite
  precison; otherwise (the default) they are truncated based upon the input
  truncation levels.")

(defmvar $taylor_logexpand t
 "Unless FALSE log's of products will be expanded fully in TAYLOR (the default)
  to avoid identically-zero constant terms which involve log's. When FALSE,
  only expansions necessary to produce a formal series will be executed.")

;Note!  The value of this must be a symbol, because it is checked with
; FBOUNDP.
(defmvar $taylor_simplifier 'simplify
 "A function of one argument which TAYLOR uses to simplify coefficients
  of power series.")

(defvar taylor_simplifier nil)

;;;		 Subtitle General Macsyma Free Predicates

(defun zfree (e x)
    (cond ((equal e x) () )
	  ((atom e) 't)
	  ((eq (caar e) 'mrat)
	   (null (member x (cdr ($listofvars e)) :test #'equal)))
	  ('t (do ((l (cdr e) (cdr l))) ((null l) 't)
		 (or (zfree (car l) x) (return () ))))))

(defun mfree (exp varl)
  (declare (special dummy-variable-operators))
   (cond ((atom exp) (not (member exp varl :test #'eq)))
	 ((eq (caar exp) 'mrat)
	  (do ((l (mrat-varlist exp) (cdr l)))
	      ((null l) 't)
	     (unless (mfree (car l) varl) (return () ))))
	 ((or (member (caar exp) dummy-variable-operators :test #'eq)
	      (member 'array (cdar exp) :test #'eq))
	  (do ((vars varl (cdr vars)))
	      ((null vars) 't)
	     (unless (freeof (car vars) exp) (return () ))))
	 ('t (and (mfree (caar exp) varl) (mfreel (cdr exp) varl)))))

(defun mfreel (l varl)
  (or (null l) (and (mfree (car l) varl) (mfreel (cdr l) varl))))

;;; Subtitle Coefficient Arithmetic

(defun rcexpt (x y)
       (cond ((equal x (rcone)) (rcone))
	     ((rczerop y) (rcone))
	     ((and (equal (cdr y) 1) (fixnump (car y)))
	      (ratexpt x (car y)))
	     ((and $radexpand (numberp (car y)) (numberp (cdr y)))
	      (if (floatp (car y))
		  (setq y (maxima-rationalize (quot (car y) (cdr y)))))
	      (ratexpt (rcquo (rcexpt1 (car x) (cdr y))
			      (rcexpt1 (cdr x) (cdr y)))
		       (car y)))
	     (t (let ($keepfloat)
		     (prep1 (m^ (rcdisrep x) (rcdisrep y)))))))

(defun rcexpt1 (p n)
   (cond ((equal p 1) (rcone))
	 ((pcoefp p) (prep1 (m^ (pdis p) (*red 1 n))))
	 ;; psfr does a square-free decom on p yielding (p1 e1 p2 e2 ... pn en)
	 ;; where p = p1^e1 p2^e2 ... pn^en, the pi being square-free
	 (t (do ((l (psqfr p) (cddr l))
		 (ans (rcone)))
		((null l) ans)
	       (if (not (equal (rem (cadr l) n) 0))
		   (setq ans (rctimes ans (prep1 (m^ (pdis (car l))
						     (*red (cadr l) n)))))
		  ;; If pi<0, n=2m and n|ei then ei=2e and
		  ;;	    (pi^ei)^(1/(2m)) = (-pi)^(e/m)
		   (progn
		     (when (and (evenp n) (eq ($sign (pdis (car l))) '$neg))
		       (rplaca l (pminus (car l))))
		     (setq ans (rctimes ans (ratexpt (cons (car l) 1)
						   (truncate (cadr l) n))))))))))

(defun rccoefp (e)		;a sure check, but expensive
       (and (null (atom e))
	    (or (atom (car e))
		(member (caar e) genvar :test #'eq))
	    (or (atom (cdr e))
		(member (cadr e) genvar :test #'eq))))

;;;		 Subtitle Exponent arithmetic

(defun ezerop (x)
  (and (not (infp x)) (signp e (car x))))

(defun e+ (x y)
    (cond ((or (infp x) (infp y)) (inf))
	  ((and (equal (cdr x) 1) (equal (cdr y) 1))
	   (cons (+ (car x) (car y)) 1))
	  (t (ereduce (+ (* (car x) (cdr y)) (* (cdr x) (car y)))
		      (* (cdr x) (cdr y))))))

(defun ediff (x y)
    (cond ((infp x) (inf))
	  ((and (equal (cdr x) 1) (equal (cdr y) 1))
	   (cons (- (car x) (car y)) 1))
	  (t (ereduce (- (* (car x) (cdr y)) (* (cdr x) (car y)))
		      (* (cdr x) (cdr y))))))

(defun emin (x y)
    (cond ((infp x) y)
	  ((infp y) x)
	  ((equal (cdr x) (cdr y)) (cons (min (car x) (car y)) (cdr x)))
	  ((< (* (car x) (cdr y)) (* (cdr x) (car y))) x)
	  (t y)))

(defun emax (x y)
    (cond ((or (infp x) (infp y)) (inf))
	  ((equal (cdr x) (cdr y)) (cons (max (car x) (car y)) (cdr x)))
	  ((> (* (car x) (cdr y)) (* (cdr x) (car y))) x)
	  (t y)))

(defun e* (x y)
    (cond ((or (infp x) (infp y)) (inf))
	  ((and (equal (cdr x) 1) (equal (cdr y) 1))
	   (cons (* (car x) (car y)) 1))
	  (t (ereduce (* (car x) (car y)) (* (cdr x) (cdr y))))))

(defun erecip (e)
       (if (minusp (car e))
	   (cons (- (cdr e)) (- (car e)))
	   (cons (cdr e) (car e))))

(defun equo (x y)
       (cond ((infp x) (inf))
	     ((infp y) (rczero))
	     (t (ereduce (* (car x) (cdr y))
			 (* (cdr x) (car y))))))

(defun e1+ (x)
    (cond ((infp x) (inf))
	  ((= (cdr x) 1) (cons (1+ (car x)) 1))
	  (t (cons (+ (cdr x) (car x)) (cdr x)))))

(defun e1- (x)
    (cond ((infp x) (inf))
	  ((equal (cdr x) 1) (cons (1- (car x)) 1))
	  (t (cons (- (car x) (cdr x)) (cdr x)))))

(defun e> (x y)
    (cond ((infp x) t)
	  ((infp y) ())
	  ((equal (cdr x) (cdr y)) (> (car x) (car y)))
	  (t (> (* (car x) (cdr y)) (* (car y) (cdr x))))))

(defun e= (e1 e2)
	  (cond ((eq e1 e2) t)
		((or (null e1) (null e2)) ())
		(t (and (equal (car e1) (car e2))
			(equal (cdr e1) (cdr e2))))))

(defun ereduce (n d)
       (if (signp l d) (setq d (- d) n (- n)))
       (if (zerop n) (rczero)
	   (let ((gcd (gcd n d)))
		(cons (/ n gcd) (/ d gcd)))))

(defun egcd (x y)
       (let ((xn (abs (car x))) (xd (cdr x))
	     (yn (abs (car y))) (yd (cdr y)))
	    (cons (gcd xn yn) (* xd (/ yd (gcd xd yd))))))

;;;		 Subtitle polynomial arithmetic

(declare-top (special vars))

(defun ord-vector (p)
  (let ((vars (mapcar #'(lambda (datum) (list (int-gvar datum))) tlist)))
    (declare (special vars))
    (cond ((not (cdr vars)) (ncons (ps-le* p)))
	  (t (ord-vect1 p) (mapcar #'(lambda (x) (or (cdr x) (rczero))) vars)))))

(defun ord-vect1 (p)
  (declare (special vars))
  (unless (pscoefp p)
     (let ((data (assoc (gvar p) vars :test #'eq))
	   (le (ps-le p)))
	(rplacd data (cond ((not (cdr data)) le)
			   (t (emin (cdr data) le))))
	(mapl #'(lambda (l) (ord-vect1 (lc l))) (terms p)))))

(defun trunc-vector (p min?)
   (let ((vars (mapcar #'(lambda (datum) (list (int-gvar datum))) tlist)))
     (declare (special vars))
      (if (null (cdr vars)) (ncons (if (psp p) (trunc-lvl p) () ))
	 (progn
	   (trunc-vect1 p min?)
	   (mapcar 'cdr vars)))))

(defun trunc-vect1 (p min?)
  (declare (special vars))
   (unless (pscoefp p)
      (let ((data (assoc (gvar p) vars :test #'eq))
	    (trunc (trunc-lvl p)))
	 (when trunc
	    (rplacd data (if (null (cdr data)) trunc
			   (if min? (emin (cdr data) trunc)
			      (emax (cdr data) trunc))))))
      (dolist (term (terms p))
	(trunc-vect1 (c term) min?))))

(declare-top (unspecial vars))

(defun psplus (x y)
   (cond ((pscoefp x)
	  (cond ((pscoefp y) (rcplus x y))
		((rczerop x) y)
		(t (pscplus x y))))
	 ((pscoefp y) (if (rczerop y) x (pscplus y x)))
	 ((eqgvar (gvar-o x) (gvar-o y)) (psplus1 x y))
	 ((pointerp (gvar-o x) (gvar-o y)) (pscplus y x))
	 (t (pscplus x y))))

(defun rcplus! (x y)
   (if (not (and least_term? taylor_simplifier)) (rcplus x y)
      (prep1 (funcall taylor_simplifier (m+ (rcdisrep x) (rcdisrep y))))))

(defun psdiff (x y)
   (cond ((pscoefp x) (cond ((pscoefp y) (rcdiff x y))
			    ((rczerop x) (pstimes (rcmone) y))
			    (t (pscdiff x y () ))))
	 ((pscoefp y) (if (rczerop y) x (pscdiff y x t)))
	 ((eqgvar (gvar-o x) (gvar-o y)) (psdiff1 x y))
	 ((pointerp (gvar-o x) (gvar-o y)) (pscdiff y x t))
	 (t (pscdiff x y () ))))

(defun rcdiff! (x y)
   (if (not (and least_term? taylor_simplifier)) (rcdiff x y)
      (prep1 (funcall taylor_simplifier (m- (rcdisrep x) (rcdisrep y))))))

(defun psplus1 (x y)
   (let ((ans (cons () () )))
      (psplus2 (gvar-o x) (emin (trunc-lvl x) (trunc-lvl y))
	       (cons 0 (terms x)) (cons 0 (terms y)) ans ans)))

(defun pscplus (c p)
   (if (e> (rczero) (trunc-lvl p)) p
      (pscheck (gvar-o p) (poly-data p) (pscplus1 c (terms p)))))

(defun pscdiff (c p fl)
   (if (e> (rczero) (trunc-lvl p))
       (if fl p (psminus p))
       (pscheck (gvar-o p) (poly-data p)
		(cond ((not fl) (pscplus1 c (psminus-terms (terms p))))
		      (t (pscplus1 (psminus c) (terms p)))))))

(defun strip-zeroes (terms ps?)
   (cond ((or (null terms) (null taylor_simplifier)) terms)
	 ((null ps?)
	  (do ((terms terms (n-term terms)))
	      ((null terms) () )
	     (change-lc terms (strip-zeroes (lc terms) 't))
	     (unless (rczerop (lc terms)) (return terms))))
	 ((pscoefp terms)
	  (if (null taylor_simplifier) terms
	     (let ((exp (rcdisrep terms)))
		;; If a pscoeff is not free of tvars then the ps is a
		;; multivar series and we can't handle a recursive
		;; call to taylor (as opposed to a call to prep1, as below)
		;; because this would be circuler (e.g. try
		;; taylor(x/ (x^2+1),[x],%i,-1) ). Besides, in this case
		;; the pscoeff contains a tvar hence should not be 0.
		(if (not (mfree exp tvars)) terms
		   (prep1 (funcall taylor_simplifier exp))))))
	 (t (pscheck (gvar-o terms) (poly-data terms)
		     (strip-zeroes (terms terms) () )))))

(defun pscplus1 (c l)
   (cond ((null l) (list (term (rczero) c)))
	 ((rczerop (le l)) (setq c (psplus c (lc l)))
	  (if (rczerop c) (strip-zeroes (n-term l) () )
	     (cons (term (rczero) c) (n-term l))))
	 ((e> (le l) (rczero)) (cons (term (rczero) c) l))
	 (t (cons (lt l) (let ((least_term?)) (pscplus1 c (n-term l)))))))

;;; Both here and in psdiff2 xx and yy point one before where one
;;; might think they should point so that extensions will be retained.

(defun psplus2 (varh trunc xx yy ans a)
  (prog (c)
   a	(cond ((mono-term? xx)
	       (if (mono-term? yy) (go end) (go null)))
	      ((mono-term? yy) (setq yy xx) (go null)))
	(cond ((equal (le (n-term xx)) (le (n-term yy)))
	       (setq xx (n-term xx) yy (n-term yy))
	       (setq c (let ((least_term? (null (n-term ans))))
			  (psplus (lc xx) (lc yy))))
	       (if (rczerop c) (go a) (add-term a (le xx) c)))
	      ((e> (le (n-term xx)) (le (n-term yy)))
	       (setq yy (n-term yy))
	       (add-term a (lt yy)))
	      (t (setq xx (n-term xx))
		 (add-term a (lt xx))))
	(setq a (n-term a))
	(go a)
   null (if (or (mono-term? yy) (e> (le (n-term yy)) trunc))
	    (go end)
	    (progn
	      (setq yy (n-term yy))
	      (add-term-&-pop a (lt yy))
	      (go null)))
   end  (return (pscheck varh (list trunc) (cdr ans)))))

(defun psdiff1 (x y)
   (let ((ans (cons () () )))
      (psdiff2 (gvar-o x) (emin (trunc-lvl x) (trunc-lvl y))
	       (cons 0 (terms x)) (cons 0 (terms y)) ans ans)))

(defun psdiff2 (varh trunc xx yy ans a)
  (prog (c)
   a	(cond ((mono-term? xx)
	       (if (mono-term? yy)
		   (go end)
		   (progn
		     (setq yy
			   (cons 0 (mapcar #'(lambda (q)
					       (term (e q) (psminus (c q))))
					   (cdr yy))))
		     (go null))))
	      ((mono-term? yy)
	       (setq yy xx) (go null)))
	(cond ((equal (le (n-term xx)) (le (n-term yy)))
	       (setq xx (n-term xx) yy (n-term yy))
	       (setq c (let ((least_term? (null (n-term ans))))
			  (psdiff (lc xx) (lc yy))))
	       (if (rczerop c) (go a)
		   (add-term a (le xx) c)))
	      ((e> (le (n-term xx)) (le (n-term yy)))
	       (setq yy (n-term yy))
	       (add-term a (le yy) (psminus (lc yy))))
	      (t (setq xx (n-term xx))
		 (add-term a (lt xx))))
	(setq a (n-term a))
	(go a)
   null (if (or (mono-term? yy) (e> (le (n-term yy)) trunc))
	    (go end)
	    (progn
	      (setq yy (n-term yy))
	      (add-term-&-pop a (le yy) (lc yy))
	    (go null)))
   end	(return (pscheck varh (list trunc) (cdr ans)))))

(defun psminus (x)
   (if (psp x) (make-ps x (psminus-terms (terms x)))
      (rcminus x)))

(defun psminus-terms (terms)
   (let ((ans (cons () () )))
      (do ((q terms (n-term q))
	   (a ans (cdr a)))
	  ((null q) (cdr ans))
	 (add-term a (le q) (psminus (lc q))))))

(defun pscheck (a b terms)
   (cond ((null terms) (rczero))
	 ((and (mono-term? terms) (rczerop (le terms)))
	  (lc terms))
	 (t (make-ps a b terms))))

(defun pstrim-terms (terms e)
   (do () (())
      (cond ((null terms) (return () ))
	    ((null (e> e (le terms))) (return terms))
	    (t (setq terms (n-term terms))))))

(defun psterm (terms e)
   (psterm1 (pstrim-terms terms e) e))

(defun psterm1 (l e)
   (cond ((null l) (rczero))
	 ((e= (le l) e) (lc l))
	 (t (rczero))))

(defun pscoeff1 (a b c)		;a is an mrat!!!
   (let ((tlist (mrat-tlist a)))
      (cons (nconc (list 'mrat 'simp (mrat-varlist a) (mrat-genvar a))
		   (do ((l (mrat-tlist a) (cdr l))
			(ans () (cons (car l) ans)))
		       ((null l) ans)
		      (when (alike1 (caar l) b)
			 (return
			  (and (or ans (cdr l))
			       (list (nreconc ans (cdr l)) 'trunc))))))
	    (pscoef (mrat-ps a) (int-gvar (get-datum b)) (prep1 c)))))

(defun pscoef (a b c)
   (cond ((pscoefp a) (if (rczerop c) a (rczero)))
	 ((eq b (gvar a)) (psterm (terms a) c))
	 (t (do ((gvar-o (gvar-o a))
		 (poly-data (poly-data a))
		 (ans (rczero))
		 (terms (terms a) (n-term terms))
		 (temp))
		((null terms) ans)
	       (unless (rczerop (setq temp (pscoef (lc terms) b c)))
		  (setq ans (psplus ans
				    (make-ps gvar-o poly-data
					     (ncons (term (le terms)
							  temp))))))))))

(defun psdisextend (p)
  (cond ((not (psp p)) p)
	(t (make-ps p (mapcar #'(lambda (q) (cons (car q) (psdisextend (cdr q))))
			      (terms p))))))

(defun psfloat (p)
   (if (psp p) (psfloat1 p (trunc-lvl p) (terms p) (ncons 0))
      (rctimes (rcfone) p)))

(defun psfloat1 (p trunc l ans)
   (do (($float 't)
	(a (last ans) (n-term a)))
       ((or (null l) (e> (le l) trunc))
	(pscheck (gvar-o p) (poly-data p) (cdr ans)))
      (add-term a (le l) (psfloat (lc l)))
      (setq l (n-term l))))

(defun pstrunc (p)
  (pstrunc1 p (mapcar #'(lambda (q) (cons (int-gvar q) (current-trunc q)))
		      tlist)))

(defun pstrunc1 (p trlist)
  (cond ((not (psp p))
	 p)
	(t
	 (let ((trnc (cdr (assoc (gvar p) trlist :test #'eq))) (trunc-ps) (a nil))
	   (do ((l (terms p) (n-term l)))
	       ((null l) (pscheck (gvar-o p) (ncons (trunc-lvl p)) (nreverse a)))
	     (when (e> (le l) trnc)
	       (return (pscheck (gvar-o p) (ncons trnc) (nreverse a))))
	     (unless (rczerop (setq trunc-ps (pstrunc1 (lc l) trlist)))
	       (push (term (le l) trunc-ps) a)))))))

(defun pstimes (x y)
   (cond ((or (rczerop x) (rczerop y)) (rczero))
	 ((pscoefp x) (cond ((pscoefp y) (rctimes x y))
			    ((equal x (rcone)) y)
			    (t (psctimes* x y))))
	 ((pscoefp y) (if (equal y (rcone)) x (psctimes* y x)))
	 ((eqgvar (gvar-o x) (gvar-o y)) (pstimes*1 x y))
	 ((pointerp (gvar-o x) (gvar-o y)) (psctimes* y x))
	 (t (psctimes* x y))))

(defun psctimes* (c p)
  (make-ps p (maplist #'(lambda (l)
			   (term (le l) (pstimes c (lc l))))
		      (terms p))))

(defun pstimes*1 (xa ya)
   (let ((ans (cons () () ))
	 (trunc (let ((lex (ps-le xa)) (ley (ps-le ya)))
		   (e+ (emin (e- (trunc-lvl xa) lex) (e- (trunc-lvl ya) ley))
		       (e+ lex ley)))))
      (unless $maxtayorder
	 (setq trunc (emin trunc (t-o-var (gvar xa)))))
      (pstimes*2 xa ya trunc ans)))

(defun pstimes*2 (xa ya trunc ans)
   (prog (a c e x y yy)
	 (setq x (terms xa) y (setq yy (terms ya)) a ans)
    a	 (cond ((or (null y) (e> (setq e (e+ (le x) (le y))) trunc))
		(go b))
	       ((not (rczerop (setq c (pstimes (lc x) (lc y)))))
		(add-term-&-pop a e c)))
	 (setq y (n-term y))
	 (go a)
    b	 (unless (setq x (n-term x))
	    (return (pscheck (gvar-o xa) (list trunc) (cdr ans))))
	 (setq y yy a ans)
    c	 (when (or (null y) (e> (setq e (e+ (le x) (le y))) trunc))
	    (go b))
	 (setq c (pstimes (lc x) (lc y)))
    d	 (cond ((or (mono-term? a) (e> (le (n-term a)) e))
		(add-term-&-pop a e c))
	       ((e> e (le (n-term a)))
		(setq a (n-term a))
		(go d))
	       (t (setq c (psplus c (lc (n-term a))))
		  (if (rczerop c)
		      (rplacd a (n-term (n-term a)))
		      (progn
			(change-lc (n-term a) c)
			(setq a (n-term a))))))
	 (setq y (n-term y))
	 (go c)))

(defun pscsubst (c v p)
  (cond ((pscoefp p) p)
	((eq v (gvar p)) (pscsubst1 c p))
	((pointerp v (gvar p)) p)
	(t (make-ps p (maplist
		       #'(lambda (q) (term (le q)
					   (pscsubst c v (lc q))))
		       (terms p))))))

(defun pscsubst1 (v u)
   (do ((a (rczero))
	(ul (terms u) (n-term ul)))
       ((null ul) a)
      (setq a (psplus a (pstimes (lc ul) (psexpt v (le ul)))))))

(defun get-series (func trunc var e c)
   (let ((pw (e// trunc e)))
      (setq e (if (and (equal e (rcone)) (equal c (rcone)))
		  (getexp-fun func var pw)
		 (psmonsubst (getexp-fun func var pw) trunc e c)))
      (if (and $float $keepfloat) (psfloat e) e)))

(defun psmonsubst (p trunc e c)
  (if (psp p)
      (psmonsubst1 p trunc e c
		   `(() . ,(terms p)) (ncons () ) (rcone) (rczero))
    p))


(defun psmonsubst1 (p trunc e c l ans cc el)
   ;; We set $MAXTAYORDER to () here so that the calls to psexpt below
   ;; won't do needless extra work, e.g. see rwg's complaint of 9/7/82.
   (prog (a ee varh $maxtayorder)
	 (setq a ans varh (gvar-o p))
    a    (cond ((or (mono-term? l)
		    (e> (setq ee (e* e (le (n-term l)))) trunc))
		(go end))
	       ((rczerop (setq cc
			       (pstimes cc
					(psexpt c (e- (le (setq l (n-term l)))
						      el))))))
	       ((mono-term? a)
		(add-term a ee (pstimes cc (lc l)))))
	 (setq a (n-term a) el (le l))
	 (go a)
    end  (return (pscheck varh (list trunc) (cdr ans)))))

(defun psexpon-gcd (terms)
   (do ((gcd (le terms) (egcd (le l) gcd))
	(l (n-term terms) (n-term l)))
       ((null l) gcd)))

(defun psfind-s (p)
   (if (psp p) (psfind-s (psterm (terms p) (rczero)))
      (psfind-s1 p)))

(defun psfind-s1 (r)
   (cond ((null (atom (cdr r))) (rczero))
	 ((atom (car r)) r)
	 (t (do ((p (ptterm (cdar r) 0) (ptterm (cdr p) 0)))
		((atom p) (cons p (cdr r)))))))

(defun psexpt (p n)
    (cond ((rczerop n)			;; p^0
	   (if (rczerop p)		;; 0^0
	       (merror (intl:gettext "taylor: 0^0 is undefined."))
	      (rcone)))			;; Otherwise can let p^0 = 1
	  ((or (equal n (rcone)) (equal n (rcfone))) p)	;; p^1 cases
	  ((pscoefp p) (rcexpt p n))
	  ((mono-term? (terms p))	;; A monomial to a power
	   (let ((s (psfind-s n)) (n-s) (x) (l (terms p)))
	      ;; s is the numeric part of the exponent
	      (if (floatp (car s)) ;; Perhaps we souldn't
		  ;; rationalize if $keepfloat is true?
		  (setq s (maxima-rationalize (quot (car s) (cdr s)))))
	      (setq n-s (psdiff n s)	;; the non-numeric part of exponent
		    x   (e* s (le l)))	;; the degree of the lowest term
	      (setq x (if (and (null $maxtayorder) ;; if not getting all terms
			       (e> x (t-o-var (gvar p))))
			  ;; and result is of high order
			  (rczero)	;; then zero is enough
			 (pscheck (gvar-o p)	;; otherwise
				  (ncons (e+ (trunc-lvl p) ;; new trunc-level
					     (e- x (le l)))) ;; kick exponent
				  (ncons (term x (psexpt (lc l) n))))))
	      ;; x is now p^s
	      (if (or (rczerop n-s) (rczerop x))	;; is that good enough?
		  x			;; yes! The rest is bletcherous.
		 (pstimes x (psexpt (prep1 (m^ (get-inverse (gvar p))
					       (rcdisrep n-s)))
				    (ps-le p))))))
	  (t (prog (l lc le inc trunc s lt mr lim lcinv ans)
		   (setq lc (lc (setq l (terms p)))
			 le (le l) lt (lt l) trunc (trunc-lvl p)
			 inc (psexpon-gcd l) s (psfind-s n))
		   (when (floatp (car s))
		      (setq s (maxima-rationalize (quot (car s) (cdr s)))))
		   (setq ans (psexpt (setq lt (pscheck (gvar-o p) (list trunc)
						       (list lt))) n)
			 lcinv (psexpt lc (rcmone))
			 mr (e+ inc (e* s le))
			 lim (if (and (infp trunc) (not (e> s (rczero))))
				 (t-o-var (gvar p))
				;; See the comment in PSEXPT1 below which tells
				;; why we don't allow inf. trunc's here.
				(e+ (if (and (infp trunc) (not (rcintegerp s)))
					(if (infp (setq lim (t-o-var (gvar p))))
					    (infin-ord-err)
					   lim)
				       trunc)
				    (e* (e1- s) le)))
			 ans
			 (if (or (pscoefp ans) (null (eq (gvar p) (gvar ans))))
			     (list 0 (term (rczero) ans))
			    (cons 0 (terms ans))))
		   (and (null $maxtayorder)
			(or (not (infp lim))
			    (not (rcintegerp s))
			    (e> (e* s (le (last l))) (t-o-var (gvar p))))
			(setq lim (emin lim (t-o-var (gvar p)))))
		   ;;(and (infp lim) (n-term l) (e> (rczero) n)
		   ;;	  (infin-ord-err))
		   (return (psexpt1 (gvar-o p)
				    lim l n s inc 1 mr ans le lcinv))))))

(defun psexpt1 (varh trunc l n s inc m mr ans r linv)
   ;; n is the power we are raising the series to
   ;; inc is the exponent increment
   ;; mr is the current exponent
   ;; tr is the truncation level desired
   ;; m is the term index
   (declare (fixnum m))
   ;; s ;Ignored <- not true, see below. Who wrote this?
   (prog (a (k 0) ak cm-k c ma0 sum kr tr)
	 (declare (fixnum k))
	 ;; truly unfortunate that we need so many variables in this hack
	 (setq a (last ans) tr trunc)
	 ;; I don't see what's wrong with truncating exact series when
	 ;; raising them to fractional powers so we'll allow it for now.
	 ;; This is accomplished above in PSEXPT (see the comment). Thus,
	 ;; presumably, this check should never be needed anymore.
	 ;; Bugs catching this clause were sqrt(1-x)*taylor(f1,x,0,0)
	 ;; and sqrt(taylor(x+x^2,x,0,2)),taylor_truncate_polynomials=false.
	 (when (infp tr)
	    (if (rcintegerp s)
		(setq tr (e* s (le (last l))))
	       (merror (intl:gettext "taylor: expected an integer, instead found: ~:M") s)))
	 (when (infp tr) (setq tr (t-o-var (car varh))))
	 b (and (e> mr tr) (go end))
	   (setq kr inc ak l ma0 (pstimes (cons 1 m) linv)
		 k 1 sum (rczero))
	 a (if (or (> k m) (null (setq cm-k (psterm (cdr ans) (e- mr kr)))))
	       (go add-term))
	   (setq ak (or (pstrim-terms ak (e+ kr r)) (go add-term))
		 c (pstimes (psdiff (pstimes (cons k 1) n)
				    (cons (- m k) 1))
			    (pstimes (if (e= (e+ kr r) (le ak))
					 (lc ak)
					 (rczero))
				     cm-k)))
	   (setq sum (psplus sum c)
		 k (1+ k) kr (e+ kr inc))
	   (go a)
	 add-term
	  (and (null (rczerop sum))
	       (add-term-&-pop a mr (pstimes ma0 sum)))
	  (setq m (1+ m) mr (e+ mr inc))
	 (go b)
	 end (return (pscheck varh (list trunc) (cdr ans)))))

(defun psderivative (p v)
   (cond ((pscoefp p) (rcderiv p v))
	 ((eq v (gvar p))
	  (if (prog1 (rczerop (ps-le p))
		     (setq p (psderiv1 (gvar-o p)
				(trunc-lvl p) (cons 0 (terms p)) (list 0))))
	      (strip-zeroes p 't) p))
	 (t (psderiv2 (gvar-o p)
		      (trunc-lvl p) v (cons 0 (terms p)) (list 0)))))

(defun psderiv1 (varh trunc l ans)
       (do ((a (last ans)))
	   ((or (mono-term? l) (e> (le (n-term l)) trunc))
	    (pscheck varh (list (e1- trunc)) (cdr ans)))
	   (setq l (n-term l))
	   (when (not (rczerop (le l)))
	      (add-term-&-pop a (e1- (le l)) (pstimes (le l) (lc l))))))

(defun psderiv2 (varh trunc v l ans)
       (do ((a (last ans) (n-term a)) (c))
	   ((or (mono-term? l) (e> (le (n-term l)) trunc))
	    (pscheck varh (list trunc) (cdr ans)))
	   (setq l (n-term l))
	   (or (rczerop (setq c (psderivative (lc l) v)))
	       (add-term a (le l) c))))

(defun psdp (p)
  (let (temp temp2)
   (cond ((pscoefp p) (rcderivx p))
	 ((or (rczerop (setq temp (getdiff (gvar-o p))))
	      (eq (car temp) 'multi))
	  (setq temp2 (psdp2 (gvar-o p) (trunc-lvl p)
			     (cons 0 (terms p)) (list 0)))
	  (if (eq (car temp) 'multi)
	      (pstimes temp2
		       (make-ps (gvar-o p) (ncons (inf))
				(list (term (cdr temp) (rcone)))))
	      temp2))
	 (t (psdp1 (gvar-o p)
		   (trunc-lvl p) (cons 0 (terms p))
		   (list 0) temp)))))

(defun psdp1 (varh trunc l ans dx)
       (do ((a (last ans)) (c (rczero)))
	   ((or (mono-term? l) (e> (le (n-term l)) trunc))
	    (psplus c (pscheck varh (list (e1- trunc)) (cdr ans))))
	   (setq l (n-term l))
	   (if (rczerop (le l)) (setq c (psdp (lc l)))
	       (add-term-&-pop
		a (e1- (le l)) (pstimes (le l) (pstimes dx (lc l)))))))

(defun psdp2 (varh trunc l ans)
       (do ((a (last ans)) (c))
	   ((or (mono-term? l) (e> (le (n-term l)) trunc))
	    (pscheck varh (list trunc) (cdr ans)))
	   (setq l (n-term l))
	   (when (null (rczerop (setq c (psdp (lc l)))))
		 (add-term-&-pop a (le l) c))))

;;; Currently unused
;;;
;;; (defun psintegrate (p v)
;;;    (cond ((rczerop p) (rczero))
;;;	  ((pscoefp p)
;;;	   (pstimes p (taylor2 (get-inverse (car v)))))
;;;	  ((eqgvar v (gvar-o p))
;;;	   (psinteg1 (gvar-o p)
;;;		     (trunc-lvl p) (cons 0 (terms p)) (list 0)))
;;;	  (t (psinteg2 (gvar-o p)
;;;		       (trunc-lvl p) v (cons 0 (terms p)) (list 0)))))
;;;
;;; (defun psinteg1 (varh trunc l ans)
;;;       (prog (a)
;;;	     (setq a (last ans))
;;;	a    (if (or (null (n-term l)) (e> (le (n-term l)) trunc))
;;;		 (go end)
;;;		 (add-term a (e1+ (le (setq l (n-term l))))
;;;			   (pstimes (le l)
;;;				    (if (e= (le l) (rcmone))
;;;					(prep1 (list '(%LOG)
;;;						     (get-inverse
;;;						      (car varh))))
;;;					(lc l))))
;;;		 (setq a (n-term a)))
;;;	     (go a)
;;;        end  (return (pscheck varh (list (e1+ trunc)) (cdr ans)))))

;;; (defun psinteg2 (varh trunc v l ans)
;;;        (prog (a)
;;;	     (setq a (last ans))
;;;     a    (if (or (null (n-term l)) (e> (le (n-term l)) trunc))
;;;		 (go end)
;;;		 (add-term a (le l)
;;;			   (psintegrate (lc (setq l (n-term l))) v))
;;;		 (setq a (n-term a)))
;;;	     (go a)
;;;	end  (return (pscheck varh (list trunc) (cdr ans)))))

(defun psexpt-log-ord (p)
   (cond ((null $maxtayorder) (emin (trunc-lvl p) (t-o-var (gvar p))))
	 ((infp (trunc-lvl p)) (t-o-var (gvar p)))
	 (t (trunc-lvl p))))

;(defun ps-infp (p)
;   (if (pscoefp p) ()
;      (get-) "..."))

(defun psexpt-fn (p)
  (let (ans ord<0?)
   (cond ((pscoefp p) (psexpt-fn2 (rcdisrep p)))
	 ((ps-lim-infp p) (psexpt-fn-sing p))
	 ((prog2 (setq ord<0? (e> (rczero) (ps-le p)))
		 (null (n-term (terms p))))
	  (setq ans (get-series '%ex (psexpt-log-ord p) (gvar-o p)
				(if ord<0? (e- (ps-le p)) (ps-le p))
				(ps-lc p)))
	  (if ord<0? (ps-invert-var ans) ans))
	 ((if ord<0?
	      (when (e= (rczero) (e (setq ans (ps-gt p))))
		 (pstimes (psexpt-fn (pscheck (gvar-o p) (list (trunc-lvl p))
					      (delete ans (terms p) :test #'eq)))
			  (psexpt-fn2 (srdis (c ans)))))
	     (when (e= (rczero) (ps-le p))
		(pstimes (psexpt-fn2 (srdis (lc (terms p))))
			 (psexpt-fn (pscheck (gvar-o p) (list (trunc-lvl p))
					     (n-term (terms p))))))) )
	 (t (prog (l inc trunc ea0 ans)
	       (setq l (terms p))
	       (when ord<0?
		  ;(return (ps-invert-var (psexpt-fn (ps-invert-var p))))
		  (setq l (invert-terms l)))
	       (setq trunc (trunc-lvl p)
		     inc (psexpon-gcd l) ea0 (rcone))
	       (unless (e> (le l) (rczero))
		  ;; MEANING OF FOLLOWING MESSAGE IS OBSCURE
		  (merror "PSEXPT-FN: unreachable point."))
	       (setq ans
		     (if (or (pscoefp ea0) (null (eq (gvar p) (gvar ea0))))
			 (list 0 (term (rczero) ea0))
			(cons 0 (terms ea0))))
	       (unless $maxtayorder
		  (setq trunc (emin trunc (t-o-var (gvar p)))))
	       (when (infp trunc) (setq trunc (t-o-var (gvar p))))
	       (setq ans (psexpt-fn1 (gvar-o p) trunc l inc 1 inc ans))
	       (return (if ord<0? (ps-invert-var ans) ans)))))))

(defun psexpt-fn-sing (p)
   (let ((inf-var? (member (gvar-lim (gvar p)) '($inf $minf) :test #'eq))
	 (c*logs (c*logs (lt-poly p))) c strongest-term)
      ;; Must pull out out logs here: exp(ci*log(ui)+x) -> ui^ci*exp(x)
      ;; since its much harder for adjoin-tvar to do this transformation
      ;; below after things have been disrepped.
      (setq c (exp-c*logs c*logs) p (psdiff p (sum-c*logs c*logs)))
      (if (not (ps-lim-infp p))
	  ;; Here we just subtracted the only infinite term, e.g.
	  ;; p = 1/2*log(x)+1/log(x)+...
	  (pstimes c (psexpt-fn p))
	  (progn
	    (setq strongest-term (if inf-var? (ps-gt p) (ps-lt p)))
	    ;; If the strongest term has degree 0 in the mainvar then the singular
	    ;; terms occur in some other weaker var. There may be terms in this
	    ;; coef which arent singular (e.g. 1 in (1/x+1+...)+exp(-1/x)+...) so
	    ;; we must recursively psexpt-fn this term to get only what we need.
	    (if (rczerop (e strongest-term))
		(setq c (pstimes c (psexpt-fn (c strongest-term))))
		(dolist (exp (expand-and-disrep strongest-term p))
		  (setq c (pstimes c (adjoin-tvar (m^ '$%e exp))))))
	    (pstimes c (psexpt-fn (pscheck (gvar-o p) (list (trunc-lvl p))
					   (if inf-var?
					       (delete strongest-term (terms p) :test #'eq)
					       (n-term (terms p))))))))))

(defun gvar-logp (gvar)
   (let ((var (get-inverse gvar)))
      (and (consp var) (eq (caar var) 'mexpt) (equal (caddr var) -1)
	   (consp (setq var (cadr var))) (eq (caar var) '%log)
	   var)))

(defun c*logs (p)
   (if (pscoefp p) ()
      (let ((log (gvar-logp (gvar p))) c)
	 (if (not log)
	     ()
	     (progn
	       (setq c (psconst (psterm (terms p) (rcmone))))
	       ;; We don't want e.g. exp(x^a*log(x)) -> x^x^a
	       (if (not (mfree (rcdisrep c) tvars)) ()
		   (cons (cons c (cons log p))
			 (c*logs (psterm (terms p) (rczero))))))))))

(defun psconst (p)
   (if (pscoefp p) p (psconst (psterm (terms p) (rczero)))))

(defun exp-c*logs (c*logs)
   (if (null c*logs) (rcone)
      (pstimes (taylor2 `((mexpt) ,(cadr (cadr (car c*logs)))
				  ,(rcdisrep (caar c*logs))))
	       (exp-c*logs (cdr c*logs)))))

(defun sum-c*logs (c*logs)
   (if (null c*logs) (rczero)
      (let ((ps (cddr (car c*logs))))
	 (psplus (make-ps ps (ncons (term (ps-le ps) (caar c*logs))))
		 (sum-c*logs (cdr c*logs))))))

;; Calculatest the limit of a series at the expansion point. Returns one of
;; {$zeroa, $zerob, $pos, $neg, $inf, $minf}.

(defvar tvar-limits ()
   "A list of the form ((gvar . limit(gvar)) ...)")

(defun ps-lim-infp (ps)
   (if (pscoefp ps) ()
      ;; Assume taylor vars at 0+ for now. Should handle the cases when
      ;; the expansion point is INF, MINF,etc.
      (let* ((lim (gvar-lim (gvar ps)))
	     (strongest-term
	      (if (member lim '($inf $minf) :test #'eq) (ps-gt ps) (ps-lt ps))))
	 (if (ezerop (e strongest-term))
	     (ps-lim-infp (c strongest-term))
	     (progn
	       (setq lim (lim-power lim (e strongest-term)))
	       (and (lim-infp lim) (not (eq lim '$infinity))))))))

(defun lim-zerop (lim)
  (member lim '($zeroa $zerob $zeroim) :test #'eq))

(defun lim-plusp (lim)
  (member lim '($zeroa $pos $inf $finite) :test #'eq))

(defun lim-finitep (lim)
  (member lim '($pos $neg $im $finite) :test #'eq))

(defun lim-infp (lim)
  (member lim '($inf $minf $infinity) :test #'eq))

(defun lim-imagp (lim)
  (member lim '($im $infinity) :test #'eq))

(defun lim-minus (lim)
  (cdr (assoc lim '(($zeroa . $zerob) ($zerob . $zeroa) ($pos . $neg) ($zero . $zero)
		    ($neg . $pos) ($inf . $minf) ($minf . $inf)
		    ($im . $im) ($infinity . $infinity) ($finite . $finite)) :test #'eq)))
(defun lim-abs (lim)
   (or (cdr (assoc lim '(($zerob . $zeroa) ($neg . $pos) ($minf . $inf)) :test #'eq))
       lim))

(defun lim-times (lim1 lim2)
  (let (lim)
   (cond ((or (eq lim1 '$zero) (eq lim2 '$zero)) (setq lim '$zero))
	 ((and (lim-infp lim1) (lim-infp lim2)) (setq lim '$inf))
	 ((and (lim-zerop lim1) (lim-zerop lim2)) (setq lim '$pos))
	 ((or (when (lim-finitep lim2) (exch lim1 lim2) 't)
	      (lim-finitep lim1))
	  (when (and (eq lim1 '$finite) (lim-infp lim1))
	     (break "Undefined finite*inf in lim-times"))
	  (setq lim (lim-abs lim2)))
	 (t (break "Undefined limit product ~A * ~A in lim-times" lim1 lim2)))
   (if (or (lim-imagp lim1) (lim-imagp lim2))
       (if (lim-infp lim) '$infinity '$im)
      (if (and (lim-plusp lim1) (lim-plusp lim2)) lim (lim-minus lim)))))

(defun lim-power (lim power)
   (cond ((ezerop power) '$pos)
	 ((e> (rczero) power) (lim-recip (lim-power lim (e- power))))
	 ((not (oddp (car power)))
	  (if (lim-plusp lim) lim (lim-minus lim)))
	 (t lim)))

(defun lim-recip (lim)
   (or (cdr (assoc lim '(($zeroa . $inf) ($zerob . $minf)
			 ($inf . $zeroa) ($minf . $zerob)) :test #'eq))
       (if (eq lim '$finite) (break "inverting $finite?")
	  lim)))

(defun lim-exp (lim)
   (case lim
      (($zeroa $zerob $zero $pos $neg $minf) '$zeroa)
      (($inf $finite) lim)
      ($infinity '$infinity) ; actually only if Re lim = inf
      (t (break "Unhandled limit in lim-exp"))))

(defun lim-log (lim)
   (case lim
      ($zeroa '$minf)
      ($inf '$inf)
      ($minf '$infinity)
      ($zerob '$infinity)
      (t (break "Unhandled limit in lim-log"))))

(defun expand-and-disrep (term p)
   (let ((x^n (list '(mexpt) (get-inverse (gvar p)) (edisrep (e term))))
	 (a (c term)))
      (if (pscoefp a) (ncons (m* (srdis a) x^n))
	 (mapcar #'(lambda (subterm)
		      (m* (cons '(mtimes) (expand-and-disrep subterm a)) x^n))
		 (terms a)))))

(defun adjoin-sing-datum (d)
   (let ((r (prep1 (datum-var d))) (g (gensym)) (kernel (datum-var d))
	 (no (1+ (cdr (int-var (car (last tlist)))))))
      (unless (and (equal (car r) 1) (equal (cddr r) '(1 1)))
	 (break "bad singular datum"))
      (putprop g kernel 'disrep)
      (rplacd (cdddr d) (cons g no))
      (adjoin-datum d)
      (push (cons (cadr r) kernel) key-vars)
      (push (cons g kernel) key-vars)
      (push (car key-vars) ivars)
      ;(push (cons kernel (cons (pget g) 1)) genpairs)
      (push (cons g (exp-pt d)) tvar-limits)))

(defun adjoin-tvar (exp) (rat->ps (prep1 exp)))

(defun rat->ps (rat)
   (pstimes (poly->ps (car rat))
	    (psexpt (poly->ps (cdr rat)) (rcmone))))

(defun poly->ps (poly)
  (if (or (pcoefp poly) (mfree (pdis poly) tvars)) (prep1 poly)
      (let ((g (p-var poly)) datum (pow (rcone)))
	(if (setq datum (key-var-pow g)) (desetq (g . pow) datum)
	    (desetq (g . pow) (adjoin-pvar g)))
	(if (and (not (atom g)) (psp g))
	    g
	    (progn
	      (setq datum (gvar-data g))
	      (do ((po-terms (p-terms poly) (p-red po-terms))
		   (ps-terms ()
			     (push (term (e* pow (prep1 (pt-le po-terms)))
					 (poly->ps (pt-lc po-terms)))
				   ps-terms)))
		  ((null po-terms)
	   ;; This must be exact so that when we invert in rat-ps above
	   ;; we dont lose any terms. E.g. try
	   ;; taylor(log(1+exp(-1/x)),x,0,5). When taylor2'ing exp(-1/x),
	   ;; if you used current trunc here this would return exp(1/x)...5
	   ;; which would then be trunc'd to degree 3 by psexpt.
		   (make-ps (int-var datum)
			    (ncons (current-trunc datum))
			    (if (eq g (data-gvar datum)) ps-terms
				(invert-terms ps-terms))))))))))

(defun key-var-pow (g)
   (let ((var (get-key-var g)) datum)
      (when var
	 (setq datum (get-datum var))
	 (if (eq g (setq g (data-gvar datum))) (cons g (rcone))
	    (cons g (rcmone))))))

(defun adjoin-pvar (g)
  (let ((kernel (get g 'disrep)) g* lim datum ans
	(no (1+ (cdr (int-var (car (last tlist)))))) (pow (rcone)) expt)
    (when (assol kernel tlist) (break "bad1"))
    (if (and (eq (caar kernel) 'mexpt) (eq (cadr kernel) '$%e)
	     (not (atom (setq expt (caddr kernel))))
	     (eq (caar expt) 'mtimes) (not (mfree expt (ncons '$%i))))
	(destructuring-let (((rpart . ipart) (trisplit expt)))
	   (cons (pstimes (prep1 (m^ '$%e rpart))
			  (psplus (adjoin-tvar `((%cos) ,ipart))
				  (pstimes (prep1 '$%i)
					   (adjoin-tvar `((%sin) ,ipart)))))
			  pow))
	(progn
	  (when (eq (caar kernel) 'mexpt)
	    (when (and (not (atom (setq expt (caddr kernel))))
		       (eq (caar expt) 'mtimes)
		       ($ratnump (cadr expt)))
	      (setq pow (cadr expt) kernel (m^ kernel (m// pow))
		    g (prep1 kernel) pow (prep1 pow))
	      (unless (and (equal (cdr g) 1) (equal (cdar g) '(1 1)))
		(break "Illegal kernel in `adjoin-pvar'"))
	      (setq g (caar g) kernel (get g 'disrep))))
	  (if (setq ans (key-var-pow g))
	      (cons (car ans) (e* pow (cdr ans)))
	      (progn
		(when (lim-infp (or lim (setq lim (tvar-lim kernel))))
		  (setq g* g g (gensym) kernel (m// kernel)
			lim (lim-recip lim) pow (e* (rcmone) pow))
		  (putprop g kernel 'disrep)
					;(push g genvar) (push kernel varlist)
		  (push (cons g* kernel) key-vars))
		(when (assol kernel tlist) (break "bad2"))
		(setq datum (list* kernel
					;(mapcar #'(lambda (e) (emax e (rczero)))
					;	    (trunc-stack (car tlist)))
				   (copy-list (trunc-stack (car tlist)))
				   lim () g no))
					;(setq tlist (nconc tlist (ncons datum)))
		(adjoin-datum datum)
		(push (cons g kernel) key-vars)
		(push (car key-vars) ivars)
					;(push (cons kernel (cons (pget g) 1)) genpairs)
		(push (cons g lim) tvar-limits)
		(cons g pow)))))))

(defun adjoin-datum (datum)
   (do ((tlist* tlist (cdr tlist*))
	(tlist** () tlist*))
       ((null tlist*) (setq tlist (nconc tlist (ncons datum))))
      (when (stronger-var? (datum-var (car tlist*)) (datum-var datum))
	 (return (if (null tlist**)
		     (progn
		       (push datum tlist)
		       (renumber-tlist tlist))
		     (progn
		       (rplacd tlist** (cons datum tlist*))
		       (renumber-tlist (cdr tlist**))))))))

;; Maybe this should just permute the numbering in case it isn't sequential?

(defun renumber-tlist (tlist)
   (rplacd (data-gvar-o (car tlist)) (cdr (data-gvar-o (cadr tlist))))
   (do ((tlist* (cdr tlist) (cdr tlist*)))
       ((null tlist*))
      (rplacd (data-gvar-o (car tlist*))
	      (1+ (cdr (data-gvar-o (car tlist*)))))))

(defun tvar? (var) (or (atom var) (member 'array (cdar var) :test #'eq)))

;; Needs to be extended to handle singular tvars in > 1 var's.

(defun stronger-var? (v1 v2)
  (let ((e1 (rcone)) (e2 (rcone)) reverse? ans)
    (when (alike1 v1 v2)
      (tay-err (intl:gettext "taylor: stronger-var? called on equal vars.")))
    (when (and (mexptp v1) ($ratnump (caddr v1)))
      (setq e1 (prep1 (caddr v1)) v1 (cadr v1)))
    (when (and (mexptp v2) ($ratnump (caddr v2)))
      (setq e2 (prep1 (caddr v2)) v2 (cadr v2)))
    (if (alike1 v1 v2)
	(if (equal e1 e2)
            (tay-err 
              (intl:gettext "taylor: stronger-var? called on equal vars."))
	    (e> e1 e2))
	(progn
	  (when (eq (tvar-lim v2) '$finite)
	    (exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
	  (if (eq (tvar-lim v1) '$finite)
	      (if (eq (tvar-lim v2) '$finite)
		  (great v1 v2) reverse?)
	      (progn
		(when (mtimesp v2)
		  (exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
		(setq ans
		      (if (mtimesp v1)
			  (stronger-vars? (order-vars-by-strength (cdr v1))
					  (order-vars-by-strength (if (mtimesp v2) (cdr v2)
								      (ncons (m^ v2 (edisrep e2))))))
			  (progn
			    (when (tvar? v2)
			      (exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
			    (if (tvar? v1)
				(cond ((tvar? v2)
				       (let ((n1 (cdr (data-gvar-o (get-datum v1 t))))
					     (n2 (cdr (data-gvar-o (get-datum v2 t)))))
					 (> n1 n2)))
				      ((mfree v2 (ncons v1))
				       (tay-err 
				         (intl:gettext "taylor: Unhandled multivar datum comparison.")))
				      ((eq (caar v2) '%log) 't)
				      ((and (eq (caar v2) 'mexpt) (eq (cadr v2) '$%e))
				       (stronger-var? `((%log) ,v1) (caddr v2)))
				      (t (tay-err (intl:gettext "taylor: Unhandled var in stronger-var?."))))
				(progn
				  (when (eq (caar v2) '%log)
				    (exch v1 v2) (exch e1 e2) (setq reverse? (not reverse?)))
				  (if (eq (caar v1) '%log)
				      (cond ((eq (caar v2) '%log)
					     (stronger-var? (cadr v1) (cadr v2)))
					    ((and (eq (caar v2) 'mexpt) (eq (cadr v2) '$%e))
					     (stronger-var? `((%log) ,v1) (caddr v2)))
					    (t (tay-err (intl:gettext "taylor: Unhandled var in stronger-var?"))))
				      (if (and (eq (caar v1) 'mexpt) (eq (cadr v1) '$%e)
					       (eq (caar v2) 'mexpt) (eq (cadr v2) '$%e))
					  (stronger-var? (caddr v1) (caddr v2))
					  (tay-err (intl:gettext "taylor: Unhandled var in stronger-var?")))))))))
		(if reverse? (not ans) ans)))))))

(defun neg-monom? (exp)
   (and (mtimesp exp) (equal (cadr exp) -1) (null (cdddr exp))
	(caddr exp)))

(defun order-vars-by-strength (vars)
   (do ((vars* vars (cdr vars*)) (ordvars () ))
       ((null vars*) ordvars)
      (unless (mfree (car vars*) tvars) ; ignore constants
	 (do ((ordvars* ordvars (cdr ordvars*)))
	     ((null ordvars*)
	      (if (null ordvars) (setq ordvars (ncons (car vars*)))
		 (rplacd (last ordvars) (ncons (car vars*)))))
	    (when (stronger-var? (car vars*) (car ordvars*))
	       (rplacd ordvars* (cons (car ordvars*) (cdr ordvars*)))
	       (rplaca ordvars* (car vars*))
	       (return () ))))))

(defun stronger-vars? (vars1 vars2)
   (do ((vars1* vars1 (cdr vars1*))
	(vars2* vars2 (cdr vars2*)))
       (())
      (cond ((null vars1*)
	     (if (null vars2*)
		 ;; two equal vars generated
		 (return 't)
		(let ((lim (tvar-lim (car vars2*))))
		   (return
		    (cond ((lim-infp lim) ())
			  ((lim-zerop lim) 't)
			  (t (break "var with non-zero finite lim?")))))))
	    ((null vars2*)
	     (let ((lim (tvar-lim (car vars1*))))
	       (return
		 (cond ((lim-infp lim) 't)
		       ((lim-zerop lim) ())
		       (t (break "var with non-zero finite lim?"))))))
	    ((alike1 (car vars1*) (car vars2*)) )
	    ((return (stronger-var? (car vars1*) (car vars2*)))))))

(defun stronger-datum? (d1 d2)
   (setq d1 (datum-var d1) d2 (datum-var d2))
   (do ((end-flag) (answer))
       (end-flag (member answer '($yes $y) :test #'eq))
      (setq answer (retrieve `((mtext) |Is  | ,d1 | stronger than | ,d2 |?|)
			     nil))
      (if (member answer '($yes $y $no $n) :test #'eq) (setq end-flag 't)
	 (mtell "~%Acceptable answers are: yes, y, no, n~%"))))

(defun datum-lim (datum)
   (if (not (tvar? (datum-var datum)))
       (exp-pt datum)
      (let ((pt (exp-pt datum)))
	 (if (member pt '($inf $minf) :test #'eq) pt '$zeroa))))

(defun tvar-lim (kernel)
  (if (mfree kernel tvars) (coef-sign kernel)
    (let ((datum (get-datum kernel t)) lim)
      (or (and datum (datum-lim datum))
	  (and (setq datum (get-datum (m// kernel) t))
	       (setq lim (datum-lim datum))
	       (lim-recip lim))
	  (progn
	   (setq lim
		 (cond ((eq (caar kernel) 'mexpt)
			(cond ((and (setq datum (get-datum (cadr kernel) t))
				    ($ratnump (caddr kernel)))
			       (lim-power (datum-lim datum)
					  (prep1 (caddr kernel))))
			      (($ratnump (caddr kernel))
			       (lim-power (tvar-lim (cadr kernel))
					  (prep1 (caddr kernel))))
			      ((eq (cadr kernel) '$%e)
			       (lim-exp (tvar-lim (caddr kernel))))
			      (t (tay-error "Unhandled case in tvar-lim" kernel))))
		       ((eq (caar kernel) 'mtimes)
			(do ((ans (tvar-lim (cadr kernel))
				  (lim-times ans (tvar-lim (car facs))))
			     (facs (cddr kernel) (cdr facs)))
			    ((null facs) ans)))
		       ((eq (caar kernel) '%log)
			(lim-log (datum-lim (get-datum (cadr kernel) t))))
		       ((member (caar kernel) '(%sin %cos) :test #'eq)
		        (unless (lim-infp (tvar-lim (cadr kernel)))
		          (tay-error "Invalid trig kernel in tvar-lim" kernel))
			'$finite)
		       (t (tay-error "Unhandled kernel in tvar-lim" kernel))))
	  lim)))))

(defun coef-sign (coef)
   (if (not ($freeof '$%i ($rectform coef)))
       '$im
     ($asksign coef)))

(defun gvar-lim (gvar)
   (or (cdr (assoc gvar tvar-limits :test #'eq))
       (if (member (gvar->var gvar) tvars :test #'eq) '$zeroa ; user tvars assumed 0+ now
	  (break "Invalid gvar"))))

(defun psexpt-fn1 (varh trunc l inc m mr ans)
       (declare (fixnum m ))
       (prog (a (k 0) ak cm-k c sum kr lim)
	     (declare (fixnum k ))
	   ;; truly unfortunate that we need so many variables in this hack
	   (setq a (last ans))
	 b (and (e> mr trunc) (go end))
	   (setq kr inc ak l k 1 sum (rczero) lim m)
	 a (cond ((or (> k lim)
		      (null (setq cm-k (psterm (cdr ans) (e- mr kr)))))
		  (go add-term)))
	   (setq ak (or (pstrim-terms ak kr)
			(go add-term))
		 c (pstimes (ereduce k m)
			    (pstimes (psterm1 ak kr) cm-k))
		 sum (psplus sum c))
	   (setq k (1+ k) kr (e+ kr inc))
	   (go a)
	 add-term
	   (unless (rczerop sum) (add-term-&-pop a mr sum))
	   (setq m (1+ m) mr (e+ mr inc))
	   (go b)
	 end
	   (return (pscheck varh (list trunc) (cdr ans)))))

;;; PSEXPT-FN2 and RED-MONO-LOG are needed to reduce exponentials of logs.

(defun psexpt-fn2 (p)
  (cond ((atom p) (if (get-datum p)
		      (psexpt-fn (taylor2 p))
		      (prep1 `((mexpt) $%e ,p))))
	((eq (caar p) '%log)
	 (if (get-datum (cadr p)) (taylor2 (cadr p)) (prep1 (cadr p))))
	((or (eq (caar p) 'mplus) (eq (caar p) 'mtimes))
	 (let ((e ($ratexpand p)) temp)
	   (cond ((not (and (consp e) (member (caar e) '(mplus mtimes) :test #'eq)))
		  (psexpt-fn2 e))
		 (t
		  (if (eq (caar e) 'mplus)
		      (do ((sumnds (cdr e) (cdr sumnds)) (log-facs) (l))
			  ((null sumnds)
			   (cond ((not log-facs) (tsexpt '$%e p))
				 (t (tstimes (cons (m^t '$%e (m+l l)) log-facs)))))
			(if (setq temp (red-mono-log (car sumnds)))
			    (push temp log-facs)
			    (push (car sumnds) l)))
		      (progn
			(setq temp (red-mono-log e))
			(if temp
			    (taylor2 temp)
			    (prep1 (power '$%e p)))))))))
	(t (prep1 (power '$%e p)))))

(defun red-mono-log (e)
   (cond ((atom e) ())
	 ((eq (caar e) '%log) (cadr e))
	 ((mtimesp e)
	  (do ((facs (cdr e) (cdr facs)) (log-term))
	      ((null facs)
	       (when log-term
		     (m^t (cadr log-term) (m*l (remove log-term (cdr e) :test #'eq)))))
	      (if (and (null (atom (car facs))) (eq (caaar facs) '%log))
		  (if log-term (return ()) (setq log-term (car facs)))
		  (unless (mfree (car facs) tvars) (return nil)))))
	 (t nil )))

(defun pslog (p)
   (if (pscoefp p) (pslog2 (rcdisrep p))
       (let ((terms (terms p)))
	  (cond ((mono-term? terms) ; log(c x^n) = log(c) + n log(x)
		 ;; do this always for now
		 (if 't ;$TAYLOR_LOGEXPAND
		     ;(psplus (pslog (lc terms))
		     ;	     (pstimes (le terms) (pslog-of-gvar (gvar p))))
		     (pslog-monom p)
		     ;(prep1 `((%LOG) ,(term-disrep (lt terms) p)))
		     ))
		;; expand log(1+ax^n) directly by series substitution
		((not (or (n-term (setq terms (terms (psplus p (rcmone)))))
			  ;(e> (rczero) (le terms))
			  (ps-lim-infp p)))
		 (setq p (get-series '%log (psexpt-log-ord p) (gvar-o p)
			    (if (e> (rczero) (le terms)) (e- (le terms))
			       (le terms))
			    (lc terms)))
		 (if (e> (rczero) (le terms)) (ps-invert-var p) p))
		(t (prog (l inc trunc lt ans lterm $maxtayorder gvar-lim gt)
		    ;; log(lt+y) = log(lt) + log(1 + y/lt) = lterm + p
		    (setq trunc (trunc-lvl p))
		    (if (not (member (setq gvar-lim (gvar-lim (gvar p)))
				   '($zeroa $zerob $inf $minf) :test #'eq))
			(tay-error "bad gvar lim" gvar-lim)
		       (if (member gvar-lim '($inf $minf) :test #'eq)
			   (setq lt (ps-gt p) gt lt)
			  (setq lt (ps-lt p) gt () )))
		    (setq lterm (pslog
				 (setq lt (pscheck (gvar-o p)
						   (ncons trunc)
						   (ncons lt))))
			  p (pstimes p (let (($maxtayorder 't))
					  (psexpt lt (rcmone)))))
		    (when (and (member gvar-lim '($inf $minf) :test #'eq)
			       (e> (le terms) (rczero)))
		       (return (psplus lterm (pslog p))))
		    (when (pscoefp p)
		       (unless (equal p (rcone))
			  (merror "PSLOG: internal error."))
		       (return lterm))
		    (setq l (terms p) inc (psexpon-gcd l))
		    (if gt (setq l (delete (last l) l :test #'equal))
		       (setq l (n-term l)))
		    (setq ans (ncons 0))
		    (unless $maxtayorder
		       (setq trunc (emin trunc (t-o-var (gvar p)))))
		    ;; When we've divided by the greatest term, all terms
		    ;; have non-positive exponents and we must perform the
		    ;; transformation x -> 1/x befor calling pslog1 and then
		    ;; perform the inverse afterwards.
		    (when gt (setq l (invert-terms l)))
		    (when (e> (rczero) inc) (setq inc (e- inc)))
		    (setq ans (psplus lterm
				 (pslog1 (gvar-o p) trunc l inc 1 inc ans)))
		    (return
		     (if (and gt (psp ans) (eq (gvar ans) (gvar p)))
			 (ps-invert-var ans)
			ans))))))))

(defun invert-terms (terms)
   (nreverse (mapc #'(lambda (x) (rplaca x (e- (e x)))) terms)))

(defun ps-invert-var (ps)
   (when (psp ps) (rplacd (cddr ps) (invert-terms (terms ps))))
   ps)

(defun ps-gt (ps)
   (if (pscoefp ps) (term (rczero) ps)
      (lt (last (terms ps)))))

(defun pslog1  (varh trunc l inc m mr ans)
       (declare (fixnum m ))
       (prog (a (k 0) ak cm-k c sum kr m-kr)
	     (declare (fixnum k ))
	   ;; truly unfortunate that we need so many variables in this hack
	   ;;
	   (setq a (last ans))
	 b (and (e> mr trunc) (go end))
	   (setq kr inc ak l k 1 sum (rczero))
	 a (cond ((or (= k m)
		      (null (setq cm-k (psterm (cdr ans)
					       (setq m-kr (e- mr kr))))))
		  (go add-term)))
	   (setq ak (or (pstrim-terms ak kr)
			(go add-term))
		 c (pstimes m-kr (pstimes (psterm1 ak kr) cm-k))
		 sum (psplus sum c)
		 k (1+ k) kr (e+ kr inc))
	   (go a)
	 add-term
	   (cond ((setq c (pstrim-terms ak mr))
		  (setq c (psterm1 c mr)))
		 ((setq c (rczero))))
	   (setq sum (psdiff c (pstimes sum (e// mr))))
	   (unless (rczerop sum) (add-term-&-pop a mr sum))
	   (setq m (1+ m) mr (e+ mr inc))
	   (go b)
	 end
	   (return (pscheck varh (list trunc) (cdr ans)))))

;; Computes log(monom), where monom = c x^n. Is extra careful trying to keep
;; singular logs going to INF and not generating log(-1)'s unless it is
;; necessary to transform a log at MINF to INF.

(defun pslog-monom (monom)
  (let* ((gvar (gvar monom))
	 (datum (gvar-data gvar)) var pt logvar c)
    (if (switch 'multivar datum)
	(pslog (ps-lc monom))
	(progn
	  (setq var (datum-var datum))
	  (if (tvar? var)
	      (if (not (member (setq pt (exp-pt datum)) '($inf $minf) :test #'eq))
		  (setq logvar (adjoin-tvar `((%log) ,(m- var pt))))
		  (progn
		    ;; At x = inf: log(c (1/x)^n) -> log(c) - n log(x)
		    ;; At x = minf: log(c (-1/x)^n) -> log(c (-1)^n) - n log(x)
		    (setq logvar (psminus (adjoin-tvar `((%log) ,var))))
		    (when (eq pt '$minf)
		      (setq c (rcexpt (rcmone) (ps-le monom))))))
	      (if (eq (caar var) 'mexpt)
		  (if (equal (caddr var) -1);; var must be 1/log(y)
		      ;; Try to keep inf's real. Here we want
		      ;; log(c (1/log(x))^n) -> log(c (-1)^n) - n log(-log(x))
		      (if (equal (tvar-lim (cadr var)) '$minf)
			  (setq c (rcexpt (rcmone) (ps-le monom))
				logvar
				(psminus (adjoin-tvar
					  `((%log) ,(m- (cadr var))))))
			  (setq logvar (psminus
					(adjoin-tvar `((%log) ,(cadr var))))))
		      (if (equal (cadr var) '$%e)
			  (setq logvar (taylor2 (caddr var)))
			  (break "Unhandled gvar in `pslog-of-gvar'")))))
	  (psplus (pslog (if c (pstimes c (ps-lc monom)) (ps-lc monom)))
		  (pstimes (ps-le monom) logvar))))))

;; Computes log(p), where p is an rcdisrep'd pscoef.

(defun pslog2 (p) (let ($logarc) (pslog3 p)))

(defun pslog3 (p)
   (cond ((atom p)
	  (prep1 (cond ((equal p 1) 0)
		       ((equal p -1) log-1)
		       ((eq p '$%i) log%i)
		       ((eq p '$%e) 1)
		       ((equal p 0)
			(merror (intl:gettext "taylor: log(0) encountered while processing ~:M") last-exp))
		       (t `((%log) ,p)))))
	 ((eq (caar p) 'rat)
	  (prep1 (cond ((not $taylor_logexpand) `((%log) ,p))
		       (t (m- `((%log) ,(cadr p)) `((%log) ,(caddr p)))))))
	 ((and full-log (not (free p '$%i)))
	  (let ((full-log () )) (pslog3 ($polarform p))))
	 ((eq (caar p) 'mexpt)
	  ;; Must handle things like x^a, %e^(a*x), etc. which are pscoef's.
	  (pstimes (taylor2 (caddr p)) (pslog (taylor2 (cadr p)))))
	 ((and (eq (caar p) 'mtimes) $taylor_logexpand)
	  (do ((l (cddr p) (cdr l))
	       (ans (pslog3 (cadr p)) (psplus ans (pslog3 (car l)))))
	      ((null l) ans)))
	 (t (prep1 `((%log) ,p)))))

;;;		 Subtitle Extending Routines

(defun getfun-lt (fun)
   (let ((exp-datum (get (oper-name fun) 'exp-form)))
	(cond (exp-datum
		   ;; Info not needed yet.
		   ;; (or (atom (car exp-datum))
		   ;;     (setq 0p-funord (copy-tree (cdar exp-datum))))
	       (exp-datum-lt fun exp-datum))
	      ((setq exp-datum (get (oper-name fun) 'sp2))
	       (setq exp-datum (get-lexp (subst (dummy-var) 'sp2var exp-datum)
					 (rcone) ()))
		   ;; Info not needed yet; need to bind lexp-non0 to T when
		   ;; this is used though so n-term will be there.
		   ;; (and (rczerop (le exp-datum))
		   ;;      (setq 0p-funord (le (n-term exp-datum))))
	       (if (psp exp-datum) (ps-lt exp-datum)
		   (term (rczero) exp-datum)))
	      (t (merror "GETFUN-LT: unknown function ~A" fun)))))

(declare-top (special var))

(defun getexp-fun (fun var pw)
  (declare (special var))
  (let ((exp-datum (copy-tree (get (oper-name fun) 'exp-form))))
    (cond ((infp pw) (infin-ord-err))
	  ((null exp-datum)
	   (if (null (setq exp-datum
			   (get-ps-form (if (atom fun) fun (caar fun)))))
	       (merror (intl:gettext "taylor: power series unavailable for function ~A") fun)
	       (progn
		 (unless (atom fun)
		   (do ((subvals (cdr fun) (cdr subvals))
			(subs (safe-get (caar fun) 'sp2subs) (cdr subs)))
		       ((or (null subvals) (null subs))
			(when (or subvals subs)
			  (merror (intl:gettext "taylor: incorrect number of subscripts to the deftaylor'd function ~A") (caar fun))))
		     (setq exp-datum (maxima-substitute (car subvals) (car subs)
							exp-datum))))
		 (ts-formula exp-datum var pw))))
	  ((e> (exp-datum-le fun exp-datum) pw) (pszero var pw))
	  ((setq exp-datum
		 (apply (exp-fun exp-datum)
			(if (atom fun) (cons pw (cdr exp-datum))
			    (cons pw (cons (cdr fun) (cdr exp-datum))))))
	   (cond ((null exp-datum) (pszero var pw))
		 ((psp exp-datum) exp-datum)
		 (t (make-ps var (ncons pw) exp-datum)))))))

(declare-top (unspecial var))

(defun expexp-funs (pw l sign chng inc)
       (prog (e lt-l)
	     (setq e (e l) lt-l (setq l (ncons l)))
	a    (cond ((e> (setq e (e+ e inc)) pw) (return l))
		   (t (add-term-&-pop
		       lt-l
		       e
		       (rctimes (e// sign
				     (cond ((e= inc (rcone)) e)
					   ((e* e (e1- e)))))
				(cons 1 (cdr (lc lt-l)))))
		      (setq sign (e* sign chng))))
	     (go a)))

(defun explog-funs (pw l sign chng inc)
       (prog (e lt-l)
	     (setq e (e l) lt-l (setq l (ncons l)))
	a    (cond ((e> (setq e (e+ e inc)) pw) (return l))
		   (t (add-term lt-l e (e// sign e))
		      (setq lt-l (n-term lt-l)
			    sign (e* sign chng))))
	     (go a)))

(defun exptan-funs (pw l chng)
       (prog (e lt-l sign fact pow)
	     (setq e (e l) lt-l (setq l (ncons l))
		   sign (rcone) fact '(1 . 2) pow '(4 . 1))
	a    (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
		   (t (setq fact (e// fact (e* e (e1+ e)))
			    pow (e* '(4 . 1) pow)
			    sign (e* chng sign))
		      (add-term lt-l e (e* (e* sign fact)
					   (e* (prep1
						($bern (rcdisrep (e1+ e))))
					       (e* pow (e1- pow)))))
		      (setq lt-l (n-term lt-l))))
	     (go a)))

(defun expcot-funs (pw l sign chng plus)
       (prog (e lt-l fact pow)
	     (setq e (e l) lt-l (setq l (ncons l))
		   fact (rcone) pow (rcone))
	a    (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
		   (t (setq fact (e// fact (e* e (e1+ e)))
			    pow (e* '(4 . 1) pow)
			    sign (e* chng sign))
		      (add-term lt-l e (e* (e* sign fact)
					   (e* (prep1
						($bern (rcdisrep (e1+ e))))
					       (e+ pow plus))))
		      (setq lt-l (n-term lt-l))))
	     (go a)))

(defun expsec-funs (pw l chng)
       (prog (e lt-l sign fact)
	     (setq e (e l) lt-l (setq l (ncons l))
		   sign (rcone)  fact (rcone))
	a    (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
		   (t (setq fact (e// fact (e* e (e1- e)))
			    sign (e* chng sign))
		      (add-term lt-l e (e* (e* sign fact)
					   (prep1 ($euler (rcdisrep e)))))
		      (setq lt-l (n-term lt-l))))
	     (go a)))

(defun expasin-funs (pw l chng)
  (prog (e lt-l sign n d)
     (setq e (e l) lt-l (setq l (ncons l)) sign 1 n 1 d 1)
     a    (cond ((e> (setq e (e+ (rctwo) e)) pw) (return l))
		(t (setq n (* n (car (e- e (rctwo))))
			 d (* d (car (e1- e)))
			 sign (* sign chng))
		   (add-term lt-l e ; need to reduce here ? - check this.
			     (let ((x (*red (* n sign)
					    (* d (car e)))))
			       (if (atom x) x
				   (cons (cadr x) (caddr x)))))
		   (setq lt-l (n-term lt-l))))
     (go a)))

;;; This is the table of expansion data for known functions.
;;; The format of the EXP-FORM property is as follows:
;;;	(<name of the expanding routine for the function or
;;;	  (name . le of n-term) if expansion is of order 0>
;;;      <first term in the expansion or the name of a routine which
;;;	  computes the order when it may depend on parameters (e.g subsripts)>
;;;      <data for the expanding routine>)


(loop for (fun exp) on
 '(%ex    ((expexp-funs 1 . 1) ((0 . 1) 1 . 1) (1 . 1) (1 . 1) (1 . 1))
  %sin   (expexp-funs ((1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (2 . 1))
  %cos   ((expexp-funs 2 . 1) ((0 . 1) 1 . 1) (-1 . 1) (-1 . 1) (2 . 1))
  %sinh  (expexp-funs ((1 . 1) 1 . 1) (1 . 1) (1 . 1) (2 . 1))
  %cosh  ((expexp-funs 2 . 1) ((0 . 1) 1 . 1) (1 . 1) (1 . 1) (2 . 1))
  %log   (explog-funs ((1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (1 . 1))
  %atan  (explog-funs ((1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (2 . 1))
  %atanh (explog-funs ((1 . 1) 1 . 1) (1 . 1) (1 . 1) (2 . 1))
  %cot   (expcot-funs ((-1 . 1) 1 . 1) (1 . 1) (-1 . 1) (0 . 1))
  %csc   (expcot-funs ((-1 . 1) 1 . 1) (-1 . 1) (-1 . 1) (-2 . 1))
  %csch  (expcot-funs ((-1 . 1) 1 . 1) (-1 . 1) (1 . 1) (-2 . 1))
  %coth  (expcot-funs ((-1 . 1) 1 . 1) (1 . 1) (1 . 1) (0 . 1))
  %tan   (exptan-funs ((1 . 1) 1 . 1) (-1 . 1))
  %tanh  (exptan-funs ((1 . 1) 1 . 1) (1 . 1))
  %sec   ((expsec-funs 2 . 1) ((0 . 1) 1 . 1) (-1 . 1))
  %sech  ((expsec-funs 2 . 1) ((0 . 1) 1 . 1) (1 . 1))
  %asin  (expasin-funs ((1 . 1) 1 . 1) 1)
  %asinh (expasin-funs ((1 . 1) 1 . 1) -1)
  %gamma (expgam-fun ((-1 . 1) 1 . 1))
  $li    (exp$li-fun li-ord)
  $psi   (expplygam-funs plygam-ord))
  by #'cddr
  do  (putprop fun exp 'exp-form))


(defun known-ps (fun)
  (getl fun '(exp-form sp2)))

;;;	         Autoload Properties

;;;		 Taylor series expansion routines

;;; SRF is only called externally; by RATF and SIMPEXPT.

(defun srf (x)
   (let ((exact-poly t) (tlist) (*within-srf?* 't))
      (setq x (taylor1 x ()) tlist (mrat-tlist x))
      ;; Set trunc levels in the local tlist to correspond to the maximum
      ;; level occuring in any series.
      (do ((data tlist (cdr data))
	   (truncs (trunc-vector (mrat-ps x) () )))
	  ((null data))
	 (when (and (car truncs) (e> (car truncs) (current-trunc (car data))))
	    (setf (current-trunc (car data)) (car truncs))))
      x))

;;; [var, pt, order, asymp]

(defmfun $taylor (e &rest args)
  (when (not ($ratp e))
    ;; Not a mrat expression. Remove the special representation.
    (setq e (specrepcheck e)))
  (taylor* e args))

(defun taylor* (arg l)
   ;; We must bind $MAXTAYORDER to () below because of the problem of constants
   ;; not retaining their truncation level. This means that when we add a
   ;; series which has more terms than the user-specified truncation to a
   ;; constant we must truncate the series with more terms down to the user
   ;; specified level because, in the worst case, the constant could be a
   ;; series no better than to the user-specified level. Hence $MAXTAYORDER
   ;; is essentially useless until the constant problem is fixed. If one
   ;; decides to not bind $MAXTAYORDER below then the sum routines must
   ;; be updated to truncate series with more terms than the user-specified
   ;; level down to that level---taylor(sin(x)^2-cos(x)^2-1,x,0,1) would
   ;; give x^2+... in this case if the sum routines weren't updated.
   ;; Also, batch(mquery,160,aljabr) for another truncation bug which crops
   ;; up when $maxtayorder isn't bound here. Similarly, loadfile(taybad,rl,
   ;; aljabr) and see tomh's bug note of 4/15/81.
   (let ((tlist () ) ($maxtayorder () ) (*within-srf?* () )
	 (exact-poly (if l (not $taylor_truncate_polynomials) 'user-specified)))
     (declare (special *within-srf?*))

      (parse-tay-args l)
      (taylor1 arg (ncons tlist))))

(defun tay-order (n)
       (let (($float) (modulus))
	  (cond ((eq n '$inf) (ncons (inf)))
		((null n) (wna-err '$taylor))
		((null (mnump n))
		 (merror (intl:gettext "taylor: expansion order must be a number; found: ~:M") n))
		(t (ncons (prep1 n))))))

(defun re-erat (head exp)
       (taylor1 exp (list (cadddr (cdr head)))))

(defun parse-tay-args (l)
   (cond ((null l) )
	 ((numberp (car l))
	  (merror (intl:gettext "taylor: variable of expansion cannot be a number: ~M") (car l)))
	 ((or (symbolp (car l)) (not (eq (caaar l) 'mlist)))
	  (parse-tay-args1 (list (car l) ($ratdisrep (cadr l)) (caddr l)))
	  (parse-tay-args (cdddr l)))
	 ((do ((l (cddar l) (cdr l)))
	      ((null l) () )
	     (and (or (mnump (car l)) (eq (car l) '$inf))
		  (return 't)))
	  (parse-tay-args1 (cdar l))
	  (parse-tay-args (cdr l)))
	 (t (parse-tay-args2 (list (car l) (cadr l) (caddr l)))
	    (parse-tay-args (cdddr l)))))

(defun parse-tay-args1 (l)
   (if ($listp (car l)) (parse-tay-args2 l)
      (let ((v (car l))
	    (pt ($ratdisrep (cadr l)))
	    (ord (tay-order (caddr l)))
	    (switches (make-switch-list (cdddr l))))
	 (push (list v ord pt switches) tlist))))

(defun parse-tay-args2 (l)
  (let ((label (gensym))
	(vs (cdar l))
	(pts (make-long-list (if ($listp (cadr l))
				 (copy-list (cdadr l))
				 (ncons (ratdisrep (cadr l))))))
	(ord (caddr l))
	(switches (make-switch-list (cdddr l)))
	(lcm 1)
	(max 0))
    (if (atom ord)
	(setq lcm ord max ord ord (make-long-list (ncons ord)))
	(do ((a vs (cdr a))
	     (l (cdr ord) (cdr l)))
	    ((null a) (setq ord (cdr ord)))
	  (cond ((not l) (merror "PARSE-TAY-ARGS2: ran out of truncation levels."))
		(t (setq lcm (lcm lcm (car l)) max (max max (car l)))))))
    (push (list label (tay-order max) 0
		(ncons (list 'multivar lcm vs)))
	  tlist)
    (do ((vl vs (cdr vl))
	 (ordl ord (cdr ordl))
	 (ptl pts (cdr ptl)))
	((null vl) )
      (cond ((not ptl) (merror "PARSE-TAY-ARGS2: ran out of matching points of expansion."))
	    (t
	     (push
	      (list (car vl) (tay-order (car ordl)) (car ptl)
		    (cons (list 'multi label (timesk lcm (expta (car ordl) -1))) switches))
	      tlist))))))

(defun make-switch-list (l)
  (mapcar #'(lambda (q) (cons q t)) l))

(defun make-long-list (q)
  (nconc q q))

;;; This checks to ensure that there isn't more than one set of multi-
;;; dependent variables with different orders of expansion, e.g.
;;; taylor(u+v+x+y,[u,v],0,[2,3],[x,y],0,[5,7]) is one.

(defun ratwtsetup (l)
   (do ((l l (cdr l)) (a) (sw))
       ((null l) )
      (when (setq a (switch 'multivar (car l)))
	 (do ((ll (cadr a) (cdr ll)))
	     ((null ll) )
	    (cond ((equal (cadr (switch 'multi (get-datum (car ll)))) 1) )
		  (sw (merror (intl:gettext "taylor: multiple dependent variables must all have the same order of expansion.")))
		  ('t (setq sw 't) (return 't)))))))

(defmvar $taylor_order_coefficients t
 "When `true', coefficients of taylor series will be ordered canonically.")

(defun taylor1 (e tlist)
  (declare (special *within-srf?* ))
  (setq tlist (tlist-merge (nconc (find-tlists e) tlist)))
  (prog ($zerobern $simp $algebraic genpairs varlist tvars sing-tvars
	 log-1 log%i ivars key-vars ans full-log last-exp
	 mainvar-datum zerolist taylor_simplifier least_term? tvar-limits 
         genvar)
	(setq tlist (mapcan #'(lambda (d)
				(if (tvar? (datum-var d))
				    (ncons d)
				    (progn
				      (push d sing-tvars)
				      () )))
			    tlist))
	(setq $zerobern t $simp t $algebraic t last-exp e least_term? 't
	      log-1 '((%log simp) -1) log%i '((%log simp) $%i)
	      tvars (mapcar 'car tlist) varlist (copy-list tvars))
	 (when $taylor_simplifier
	    (setq taylor_simplifier
		  (if (fboundp $taylor_simplifier) $taylor_simplifier
		     'taylor_simplifier_caller)))
	;; Ensure that the expansion points don't depend on the expansion vars.
	;; This could cause an infinite loop, e.g. taylor(x,x,x,1).
	(do ((tl tlist (cdr tl)))
	    ((null tl) )
	   (unless (mfree (exp-pt (car tl)) tvars)
	      (merror (intl:gettext "taylor: attempt to expand ~M at a point depending on ~M.") e (caar tl))))
	;; This drastic initialization ensures that ALGEBRAIC, TELLRAT, DISREP,
	;; etc. prop's are removed from our gensyms. RATSETUP does not appear
	;; to do this correctly, e.g. see ASB's bug of 1/10/83 (MQUERY 17).
	(mapc #'(lambda (g) (setf (symbol-plist g) nil)) genvar)
	(ratsetup varlist genvar)
	(when (and $taylor_order_coefficients (not *within-srf?*)) (newvar e))
	(orderpointer varlist)
	(maplist #'(lambda (q g)
		     (push (cons (car g) (car q)) key-vars)
		     (let ((data (get-datum (car q))))
			(rplaca q (transform-tvar (car q) data))
			(push (cons (car g) (car q)) ivars)
			;(setf (data-gvar-o data)
			;      (cons (car g) (valget (car g))))
			(rplacd (cdddr data)
				(cons (car g) (valget (car g))))))
		 (do ((v varlist (cdr v)))
		     ((eq (car v) (car tvars)) v))
		 (do ((v varlist (cdr v))
		      (g genvar (cdr g)))
		     ((eq (car v) (car tvars)) g)))
	(setq genpairs (mapcar #'(lambda (y z)
				   (putprop z y 'disrep)
				   (cons y (cons (pget z) 1)))
			       varlist genvar))
	(ratwtsetup tlist)
	(setup-multivar-disrep () )
	(setq mainvar-datum (car (last tlist)))
	(mapc #'(lambda (d) (adjoin-sing-datum d)) sing-tvars)
	(setq ans (catch 'tay-err (taylor3 e)))
	(return
	 (if (atom (car ans)) (tay-error (car ans) (cadr ans)) ans))))

(defun transform-tvar (var data)
   (if (not (tvar? var)) var
      (cond ((and (signp e (exp-pt data)) (null (switch '$asymp data)))
	     var)	;Simple case
	    ((member (exp-pt data) '($inf infinity) :test #'eq)
	     (m^ var -1))
	    ((eq (exp-pt data) '$minf)
	     (m- (m^ var -1)))
	    ((let ((temp (m- var (exp-pt data))))
		(if (switch '$asymp data) (m^ temp -1) temp))))))

(defun taylor_simplifier_caller (exp)
   (mcall $taylor_simplifier exp))

(defun taylor_simplify_recurse (ps)
   (if (pscoefp ps) (taylor2 (funcall taylor_simplifier (rcdisrep ps)))
      (let ((datum (ps-data ps)) (var () ))
	 ;; We must treat multivars like 1, since they'll reappear again
	 ;; when we call taylor2 on their disrep'd coeff's.
	 (if (switch 'multivar datum)
	     (setq datum '())
	     (progn
	       (setq var (getdisrep (gvar-o ps)))
	       ;; Don't push pw's < 0, else constants will be truncated
	       (push-pw datum (emax (trunc-lvl ps) (rczero)))))
	 (do ((terms (terms ps) (n-term terms))
	      (ans (rczero) (psplus (if (null datum)
					 (taylor_simplify_recurse (lc terms))
				       (pstimes (taylor_simplify_recurse
						 (lc terms))
	 ;; Don't do
	 ;;    (taylor2 (funcall taylor_simplifier
	 ;;			  (m^ var (edisrep (le terms)))))
	 ;; causes terms to be lost when inverting. E.g.
	 ;; taylor(log(1+exp(-1/x)),x,0,5) calls psexpt(<exp(1/x)^3>...3,-1)
	 ;; which must return a series good to 3+3(-1-1)=-3 which, when added
	 ;; to other terms will truncate them to degree -3 also.
					  (if (ezerop (le terms)) (rcone)
					     (make-ps ps
						(ncons
						 (term (le terms) (rcone)))))))

				    ans)))
	     ((null terms)
	      (when datum (pop-pw datum))
	      ans)))))

(defun push-pw (datum pw)
   (push pw (trunc-stack datum))
   ;; When changing the truncation on an internal multivar we must also
   ;; propagate the change to all var's which depend upon it. See WGD's
   ;; bug report of 9/15/82 which exhibits the necessity of this.
   (when (setq datum (switch 'multivar datum))
      (do ((vars (cadr datum) (cdr vars)))
	  ((null vars) )
	 (push pw (trunc-stack (get-datum (car vars)))))))

(defun pop-pw (datum)
   (pop (trunc-stack datum))
   ;; See the comment above in push-pw; here we must undo the propagation.
   (when (setq datum (switch 'multivar datum))
      (do ((vars (cadr datum) (cdr vars)))
	  ((null vars) )
	 (pop (trunc-stack (get-datum (car vars)))))))

(defun setup-multivar-disrep (mrat?)
   (let ((varlist varlist) (genvar genvar) (multivars () ))
      (when mrat?
	 (setq varlist (mrat-varlist mrat?) genvar (mrat-genvar mrat?)))
      (mapc #'(lambda (datum)
		 (when (switch 'multivar datum)
		    (push (car datum) multivars)
		    ;; All genvar's corresponding to internally generated
		    ;; multivars must "disappear" when disrep'd. If this
		    ;; were not done then disrep'ing gx*gt would give x*t
		    ;; which, upon, re-tayloring would give (gx*gt)*gt,
		    ;; where t is the internal multivar for x, and gt, gx
		    ;; are their genvars. An example where this would occur is
		    ;; taylor(sin(x+y),[x],0,f1,[y],0,1).
		    (putprop (int-gvar datum) 1 'disrep)))
	    (if mrat? (mrat-tlist mrat?) tlist))
      ;; Here we must substitute 1 for any genvars which depend on multivars.
      ;; For example, taylor(x^n,[x],0,0) generates a multivar^n.
      (when multivars
	 (do ((expl varlist (cdr expl))
	      (gvarl genvar (cdr gvarl)))
	     ((null expl) )
	    (unless (mfree (car expl) multivars)
	       (putprop (car gvarl) 1 'disrep))))))

;; An example showing why this flag is need is given by
;; taylor(-exp(exp(-1/x)+2/x),x,0,-1). Without it, tstimes and
;; taylor_simplify_recurse end up trunc'ing the -1.

(defvar trunc-constants? 't)

(defun taylor3 (e)
   (cond ((mbagp e) (cons (car e) (mapcar #'taylor3 (cdr e))))
	 ((and (null tlist) (not (eq exact-poly 'user-specified)))
	  (xcons (prep1 e)
		 (list 'mrat 'simp varlist genvar)))
	 (t (xcons (if (null taylor_simplifier)
		       (taylor2 e)
		       (progn
			 (setq e (taylor2 e))
			 (let ((exact-poly () ) (trunc-constants? () ))
			   (taylor_simplify_recurse e))))
		   (list 'mrat 'simp varlist genvar tlist 'trunc)))))

(defun find-tlists (e) (let (*a*) (findtl1 e) *a*))

(defun findtl1 (e)
  (cond ((or (atom e) (mnump e)) )
	((eq (caar e) 'mrat)
	 (when (member 'trunc (car e) :test #'eq)
	    (push (mapcar #'copy-tree (mrat-tlist e)) *a*)))
	(t (mapc #'findtl1 (cdr e)))))

(defun tlist-merge (tlists)
  (do ((tlists tlists (cdr tlists)) (tlist () ))
      ((null tlists) (nreverse tlist))
    (do ((a_tlist (car tlists) (cdr a_tlist)) (temp nil))
	((null a_tlist) )
      (if (null (setq temp (get-datum (datum-var (car a_tlist)) t)))
	  (if (prog2 (setq temp (car a_tlist))
		  (or (tvar? (datum-var temp))
		      (member (caar (datum-var temp)) '(mexpt %log) :test #'eq)))
	      (push (list (datum-var temp) (trunc-stack temp)
			  (exp-pt temp) (switches temp))
		    tlist)
	      (merror (intl:gettext "taylor: ~M cannot be a variable.") (datum-var temp)))
	  (progn
	    (if $maxtayorder
		;; We must take the max truncation level when $maxtayorder
		;; is T, cf. JPG's bug of 9/15/82.
		(when (e> (current-trunc (car a_tlist)) (current-trunc temp))
		  (setf (current-trunc temp) (current-trunc (car a_tlist))))
		(unless (e> (current-trunc (car a_tlist)) (current-trunc temp))
		  (setf (current-trunc temp) (current-trunc (car a_tlist)))))
	    (unless (alike1 (exp-pt temp) (exp-pt (car a_tlist)))
	      (merror (intl:gettext "taylor: cannot combine expressions expanded at different points.")))
	    (setf (switches temp)
		  (union* (switches temp) (switches (car a_tlist)))))))))

(defun compattlist (list)
   (do ((l list (cdr l)))
       ((null l) t)
      (or (alike1 (exp-pt (get-datum (datum-var (car l)))) (exp-pt (car l)))
	  (return () ))))

(defun taylor2  (e)
 (let ((last-exp e))	    ;; lexp-non0 should be bound here when needed
  (cond ((assolike e tlist) (var-expand e 1 () ))
	((or (mnump e) (atom e) (mfree e tvars))
	 (if (or (e> (rczero) (current-trunc mainvar-datum))
		 (lim-zerop e))
	     (pszero (data-gvar-o mainvar-datum)
		     (current-trunc mainvar-datum))
	    (if (and taylor_simplifier (not (atom e)))
		(let ((e-simp (prep1 (funcall taylor_simplifier e))))
		   (when (and (rczerop e-simp) (not (member e-simp zerolist :test #'eq)))
		      (push e zerolist))
		   e-simp)
	       (prep1 e))))
	((null (atom (caar e))) (merror "TAYLOR2: internal error."))
	(($taylorp e)
	 (if (and (compatvarlist varlist (mrat-varlist e)
				 genvar (mrat-genvar e))
		  (compattlist (mrat-tlist e)))
	     (pstrunc (cdr e))
	    (let ((exact-poly () )) (re-taylor e))))
	((eq (caar e) 'mplus) (tsplus (cdr e)))
	((eq (caar e) 'mtimes) (tstimes (cdr e)))
	((eq (caar e) 'mexpt) (tsexpt (cadr e) (caddr e)))
	((eq (caar e) '%log) (tslog (cadr e)))
	((and (or (known-ps (caar e)) (get (caar e) 'tay-trans))
	      (not (member 'array (cdar e) :test #'eq))
	      (try-expansion (if (cddr e) (cdr e) (cadr e))
			     (caar e))) )
	((and (mqapplyp e)
	      (cond ((get (subfunname e) 'spec-trans)
		     (funcall (get (subfunname e) 'spec-trans) e))
		    ((known-ps (subfunname e))
		     (try-expansion (caddr e) (cadr e))))) )
	((and (member (caar e) '(%sum %product) :test #'eq)
	      (mfreel (cddr e) tvars)) 
	 (tsprsum (cadr e) (cddr e) (caar e)))
	((eq (caar e) '%derivative) (tsdiff (cadr e) (cddr e) e))
	((or (eq (caar e) '%at)
	     (do ((l (mapcar 'car tlist) (cdr l)))
		 ((null l) t)
		 (or (free e (car l)) (return ()))))
	 (newsym e))
	(t (let ((exact-poly () ))	; Taylor series aren't exact
	      (taylor2 (diff-expand e tlist)))))))

(defun compatvarlist (a b c d)
   (cond ((null a) t)
	 ((or (null b) (null c) (null d)) () )
	 ((alike1 (car a) (car b))
	  (if (not (eq (car c) (car d))) ()
	     (compatvarlist (cdr a) (cdr b) (cdr c) (cdr d))))
	 (t (compatvarlist a (cdr b) c (cdr d)))))


(defun re-taylor (mrat)
   (let ((old-tlist (mrat-tlist mrat)) (old-varlist (mrat-varlist mrat))
	 (old-genvar (mrat-genvar mrat)) old-ivars)
     (declare (special old-tlist old-ivars))
      ;; Put back the old disrpes so rcdisrep's will work correctly.
      (mapc #'(lambda (g v) (putprop g v 'disrep)) old-genvar old-varlist)
      (setup-multivar-disrep mrat)
      (setq old-ivars (mapcar #'(lambda (g v) (cons g v))
			      old-genvar old-varlist))
      (prog1 (re-taylor-recurse (mrat-ps mrat))
	     ;; Restore the correct disreps.
	     (mapc #'(lambda (g v) (putprop g v 'disrep)) genvar varlist)
	     (setup-multivar-disrep () ))))

(defun re-taylor-recurse (ps)
  (declare (special old-tlist old-ivars))
   (if (not (psp ps)) (taylor2 (rcdisrep ps))
      (let (var (datum () ))
	 (setq var (cdr (assoc (gvar ps) old-ivars :test #'eq)))
	 ;; We must treat multivars like 1, since they'll reappear again
	 ;; when we call taylor2 or var-expand below.
	 (if (switch 'multivar (assoc var old-tlist :test #'equal))
	     (setq var () )
	    (when (setq datum (var-data var))
	       (push-pw datum (trunc-lvl ps))))
	 (prog1
	  (do ((terms (terms ps) (n-term terms))
	       (ans (rczero)
		    (psplus (if (null var) (re-taylor-recurse (lc terms))
			       (pstimes (re-taylor-recurse (lc terms))
					(if datum
					    (var-expand (car datum)
							(edisrep (le terms))
							() )
					   (taylor2
					    (m^t var (edisrep (le terms)))))))
			    ans)))
	      ((null terms) ans))
	  (when datum (pop-pw datum))))))

(defun var-expand (var exp dont-truncate?)
  (let (($keepfloat) ($float) (modulus))
     (setq exp (prep1 exp)))		;; exp must be a rational integer
  (let ((temp (get-datum var 't)))
     (cond ((null temp) (merror "VAR-EXPAND: invalid call."))
	   ((member (exp-pt temp) '($inf $minf $infinity) :test #'eq)
	    (cond ((switch '$asymp temp)
		     (merror (intl:gettext "taylor: cannot create an asymptotic expansion at infinity.")))
		    ((e> (setq exp (rcminus exp)) (current-trunc temp))
		     (rczero))
		    (t (make-ps (int-var temp)
				(ncons (if exact-poly (inf) (current-trunc temp)))
				(ncons (term exp
					     (if (eq (exp-pt temp) '$minf)
						 (rcmone)
					       (rcone))))))))
	   ;; multivar expansion does not work at infinity, so
	   ;; expansion at infinity is handled by above clause even if doing multivar.
	   ((switch 'multi temp)	;; multivar expansion
	    (psexpt (psplus
		     ;; The reason we call var-expand below instead of taylor2
		     ;; is that we must be sure the call is not truncated to
		     ;; 0 which would cause an error in psexpt if exp < 0.
		     ;; For example, this occured in TAYLOR(X^2/Y,[X,Y],0,2).
		     (pstimes
		      ;; Must ensure that we get back a series truncated
		      ;; to at least what is specified by tlist. This means
		      ;; we'll have to push-pw unless exp>0 since psexpt'n
		      ;; kills (exp-1) terms. The bug that discovered this
		      ;; is taylor(li[2](x+1/2)/x,[x],0,0) missing 2*log(2).
		      (if (not (e> exp (rczero)))
			  (let-pw (get-datum (car (switch 'multi temp)))
				  (e+ (current-trunc temp) (e- (e1- exp)))
			     (var-expand (car (switch 'multi temp)) 1 't))
			 (var-expand (car (switch 'multi temp)) 1 't))
		      (cons (list (int-gvar temp) 1 1) 1))
		     (taylor2 (exp-pt temp)))
		    exp))
	   ((signp e (exp-pt temp))
	    (let ((exp>trunc? () ))
	       (if (and (e> exp (current-trunc temp)) (setq exp>trunc? 't)
			(not dont-truncate?))
		   (rczero)
		  (make-ps (int-var temp)
			   (ncons (if exact-poly (inf)
				     (if exp>trunc? exp (current-trunc temp))))
			   (ncons (term (if (switch '$asymp temp) (rcminus exp)
					   exp)
					(rcone)))))))
	   (t (psexpt (psplus
			 (make-ps (int-var temp)
				  (ncons (if exact-poly (inf) (current-trunc temp)))
				  (ncons (term (if (switch '$asymp temp)
						   (rcmone)
						   (rcone))
					       (rcone))))
			 (taylor2 (exp-pt temp)))
			exp)))))

(defun expand (arg func)
   (or (try-expansion arg func) (exp-pt-err)))

(defun try-expansion (arg func)
  (prog (funame funord fun-lc argord psarg arg-trunc temp exact-poly)
     ;; We bind exact-poly to () since we dont want psexpt retaining
     ;; higher order terms when subst'ing into series (which aren't exact).
     ;; Try diff-expanding unknown subsripted functions.
     (unless (or (atom func) (known-ps (caar func)))
       (taylor2 (diff-expand `((mqapply) ,func ,arg) tlist)))
     (when (setq temp (get (setq funame (oper-name func)) 'tay-trans))
       (return (funcall temp arg func)))
     (let ((lterm (getfun-lt func)))
       (setq funord (e lterm) fun-lc (c lterm)))
     begin-expansion
     (when (rczerop (or psarg (setq psarg (get-lexp arg (rcone) () ))))
       (if (e> (rczero) funord)
	   (if (rczerop (setq psarg (get-lexp arg (rcone) 't)))
	       (tay-depth-err)
	       (go begin-expansion))
	   (return (cond ((setq temp (assoc funame tay-pole-expand :test #'eq))
			  (funcall (cdr temp) arg psarg func))
			 ((rczerop funord) fun-lc)
			 (t (rczero))))))
     (when (pscoefp psarg) (setq psarg (taylor2 arg)))
     (when (pscoefp psarg)
       (return
	 (cond ((null (mfree (rdis psarg) tvars))
		(symbolic-expand arg psarg func))
	       ((setq temp (assoc funame tay-pole-expand :test #'eq))
		(funcall (cdr temp) arg psarg func))
	       (t (prep1 (simplify
			  (if (atom func) `((,func) ,(rcdisrep psarg))
			      `((mqapply) ,func ,(rcdisrep psarg)))))))))
     (when (e> (rczero) (setq argord (ps-le psarg)))
       (cond ((not (member funame '(%atan %asin %asinh %atanh) :test #'eq))
	      (if (e> (rczero) (ps-le* (setq psarg (get-lexp arg (rcone) 't))))
		  (essen-sing-err)
		  (go begin-expansion)))
	     (t
	      (if (and (eq funame '%atan)
		       (eq (coef-sign arg) '$neg))
		  (return (psplus (atrigh arg func) (taylor2 (m- '$%pi))))
		  (return (atrigh arg func))))))
     (setq temp (t-o-var (gvar psarg)))
     (when (e> (e* funord argord) temp) (return (rczero)))
     ;; the following form need not be executed if psarg is really exact.
     ;; The constant problem does not allow one to determine this now,
     ;; so we always have to execute this currently.
     ;; This really should be
     ;; (unless (infp (trunc-lvl psarg)) ... )
     ;; Likewise, the infp checks shouldn't be there; have to assume
     ;; nothing is exact until constant problem is fixed.
     (setq arg-trunc (if (and (not (infp (trunc-lvl psarg)))
			      (e= funord (rcone)))
			 temp
			 (e- temp (e* (e1- funord) argord)))
	   psarg (let-pw (get-datum (get-key-var (gvar psarg)))
			 arg-trunc
			 (if (or (infp (trunc-lvl psarg))
				 (e> arg-trunc (trunc-lvl psarg)))
			     (taylor2 arg)
			     (pstrunc psarg)))
	   ;; We must recalculate argord since pstrunc may have "picked"
	   ;; a coeff out of a constant monomial; e.g. this occurs in
	   ;; taylor(sin(x+y),x,0,0,y,0,1) where psarg is (Y+...)*X^0+...
	   ;; which truncates to Y+... of order 1.
	   argord (ps-le* psarg))
     (if (rczerop argord)
	 (cond ((member funame '(%atan %asin %asinh %atanh) :test #'eq)
		(return (atrigh arg func)))
	       ((setq temp (assoc funame const-exp-funs :test #'eq))
		(return (funcall (cdr temp) arg psarg func)))
	       ((rczerop (ps-le* (setq psarg (get-lexp arg (rcone) 't))))
		(return () ))		; Don't know an addition formula
	       (t (go begin-expansion)))
	 (return
	   (if (mono-term? (terms psarg))
	       (get-series func (current-trunc
				 (get-datum (get-key-var (gvar psarg))))
			   (gvar-o psarg) (ps-le psarg) (ps-lc psarg))
	       (progn
		 (setq temp (get-series func
					(e// temp argord) (gvar-o psarg)
					(rcone) (rcone)))
		 (cond ((not (psp temp)) temp)
		       (t (pscsubst1 psarg temp)))))))))

(defun symbolic-expand (ign psarg func) ; should be much stronger
  (declare (ignore ign))
  (prep1 (simplifya (if (atom func)
			`((,func) ,(rcdisrep psarg))
			`((mqapply) ,func ,(rcdisrep psarg)))
		    () )))

(defun expand-sing-trig? (arg func)
   (cond ((member func *pscirc :test #'eq) (tay-exponentialize arg func))
	 ((member func *psacirc :test #'eq) (atrigh arg func))
	 (t (essen-sing-err))))

(defun trig-const (a arg func)
       (let ((const (ps-lc* arg)) (temp (cdr (assoc func trigdisp :test #'eq))))
	    (cond ((and (pscoefp const)
			(member func '(%tan %cot) :test #'eq)
			(multiple-%pi a (srdis const) func)))
		  (temp (funcall temp (setq const (psdisrep const))
				 (m- a const)))
		  (t (tsexpt `((,(get func 'recip)) ,(srdis arg)) -1)))))

(defun multiple-%pi (a const func)
  (let (coef)
    (and (equal ($hipow const '$%pi) 1)
	 ($ratnump (setq coef ($ratcoef const '$%pi 1)))
	 (cond ((numberp coef) (expand (m- a const) func))
	       ((equal (caddr coef) 2)
		(psminus (expand (m- a const)
				 (cond ((eq func '%tan) '%cot)
				       ((eq func '%cot) '%tan)
				       (t (merror "MULTIPLE-%PI: internal error in Taylor expansion."))))))))))

(setq *pscirc '(%cot %tan %csc %sin %sec %cos %coth
		%tanh %csch %sinh %sech %cosh)

      *psacirc '(%acot %atan %acsc %asin %asec %acos %acoth
		       %atanh %acsch %asinh %asech %acosh))

(setq const-exp-funs
      `((%gamma . gam-const) ($psi . plygam-const)
	. ,(mapcar #'(lambda (q) (cons q 'trig-const)) *pscirc))

      trigdisp '((%sin . psina+b) (%cos . pscosa+b) (%tan . pstana+b)
		 (%sinh . psinha+b) (%cosh . pscosha+b) (%tanh . pstanha+b))

      tay-pole-expand '((%gamma . plygam-pole) ($psi . plygam-pole))

      tay-const-expand ; !these should be handled by symbolic-expand
		       ; be sure to change this with tay-exponentialize!
      (append (mapcar #'(lambda (q) (cons q 'tay-exponentialize)) *pscirc)
	      (mapcar #'(lambda (q) (cons q 'tay-exponentialize)) *psacirc)))

(mapc #'(lambda (q) (putprop q 'atrig-trans 'tay-trans))
      '(%acos %acot %asec %acsc %acosh %acoth %asech %acsch))

(defprop mfactorial factorial-trans tay-trans)

(defun factorial-trans (arg func)
  (declare (ignore func))
  (taylor2 `((%gamma) ,(m1+ arg))))

;;; Not done properly yet
;;;
;;; (defprop $BETA BETA-TRANS TAY-TRANS)

(defun psina+b (a b)
	(psplus (pstimes (expand a '%sin) (expand b '%cos))
		(pstimes (expand a '%cos) (expand b '%sin))))

(defun pscosa+b (a b)
	(psdiff (pstimes (expand a '%cos) (expand b '%cos))
		(pstimes (expand a '%sin) (expand b '%sin))))

(defun pstana+b (a b)
	(setq a (expand a '%tan) b (expand b '%tan))
	(pstimes (psplus a b)
		 (psexpt (psdiff (rcone) (pstimes a b))
			 (rcmone))))

(defun psinha+b (a b)
	(psplus (pstimes (expand a '%sinh) (expand b '%cosh))
		(pstimes (expand a '%cosh) (expand b '%sinh))))

(defun pscosha+b (a b)
	(psplus (pstimes (expand a '%cosh) (expand b '%cosh))
		(pstimes (expand a '%sinh) (expand b '%sinh))))

(defun pstanha+b (a b)
	(setq a (expand a '%tanh) b (expand b '%tanh))
	(pstimes (psplus a b)
		 (psexpt (psplus (rcone) (pstimes a b))
			 (rcmone))))

(defun atrig-trans (arg func)
  (taylor2
   (cond ((eq func '%acos)
	  `((mplus) ,half%pi ((mtimes) -1 ((%asin) ,arg))))

	 ((eq func '%acosh)
	  `((mtimes) -1 $%i ((mplus) ,half%pi ((mtimes) -1 ((%asin) ,arg)))))

	 (t
	  `((,(cdr (assoc func '((%acsc . %asin) (%asec . %acos)
				(%acot . %atan) (%acsch . %asinh)
				(%asech . %acosh) (%acoth . %atanh)) :test #'eq)))
	    ,(m^ arg -1))))))

(defun atrigh (arg func)
       (let ((full-log t) ($logarc t) (log-1 '((mtimes) $%i $%pi))
	     (log%i '((mtimes) ((rat) 1 2) $%i $%pi)))
	    (taylor2 (simplify `((,func) ,arg)))))

(defun tay-exponentialize (arg fun) ; !this should be in symbolic-expand!
       (let (($exponentialize t) ($logarc t))
	     (setq arg (meval `((,fun) ,arg))))
       (taylor2 arg))

(defun tsplus (l)
       (do ((l (cdr l) (cdr l))
	    (ans (taylor2 (car l))
		 (psplus ans (taylor2 (car l)))))
	   ((null l) ans)))

(defun ts-formula (form var pw)
   (let ((datum (get-datum (get-key-var (car var)))))
      (let-pw datum pw
	 (taylor2 (subst (get-inverse (car var)) 'sp2var form)))))

(defmacro next-series (l) `(cdadr ,l))

(defun tstimes-get-pw (l pw)
   (do ((l l (cdr l)) (vect))
       ((null l) pw)
      (setq pw (mapcar #'(lambda (pwq ple) (e+ pwq ple))
		       pw (setq vect (ord-vector (cdar l)))))
      (rplacd (car l) (cons (cdar l) vect))))

(defun tstimes-l-mult (a)
   (do ((l (cdr a) (cdr l)) ($maxtayorder t)
	(a (car a) (pstimes a (car l))))
       ((null l) a)))

(defun mzfree (e l)
   (do ((l l (cdr l)))
       ((null l) 't)
      (or (zfree e (car l)) (return () ))))

;;; The lists posl, negl and  zerl have the following format:
;;;
;;;   ( (<expression> <expansion> <order vector>) . . . )

(defun tstimes (l)
  (*bind* ((funl) (expl) (negl) (zerl) (posl)
	   (pw) (negfl) (temp) (fixl (rcone)))
    (dolist (fun l)			;; find the exponentials
       (if (mexptp fun)
	   (push (if (free (caddr fun) (car tvars)) fun
		    `((mexpt) $%e ,(m* (caddr fun)
				       `((%log) ,(cadr fun)))))
		 expl)
	  (push fun funl)))
    (when expl
       (setq expl (tsexp-comb expl))		;; simplify exps
       (setq expl (tsbase-comb expl)))		;; and again
    (setq l (nconc expl funl))			;; now try expanding
    (let ((trunc-constants? () ))
       (setq expl (cons 0 (mapcar #'(lambda (exp)
				       (cons exp (taylor2 exp)))
				  l))) )
    ;; EXPL is now of the form (0 ( <form> . <taylor2(form)> ) ...)
    ;; L points behind the cons considered for destructive updating.
    (do ((l expl) (tem))
	((null (cdr l)) )
       (cond ((rczerop (cdadr l))
	      ;; Consider taylor((a+1/x)*1/x,x,0,-2). Each factor will be on
	      ;; zerl. Each factor will also appear to have le = 0 since its
	      ;; series is 0, which would fool the get-pw routines below if
	      ;; they tried to handle this case. The easiest fix for now
	      ;; appears to be to always call get-lexp here, killing this:
	      (cond ;((null $maxtayorder)
		    ; (setq zerl (cons (cadr l) zerl))
		    ; (rplacd l (cddr l)))
		    ((rczerop (setq tem (get-lexp (caadr l) (rcone) ())))
		     (return (setq zerl 0)))
		    ('t (setq posl (cons (cons (caadr l) tem) posl))
			(rplacd l (cddr l)))))
	     ((pscoefp (cdadr l))
	      (cond ((mzfree (caadr l) tvars) ;must be zfree to permit ratfuns
		     (setq fixl (pstimes (cdadr l) fixl))
		     (rplacd l (cddr l)))
		    ((setq zerl (cons (cadr l) zerl))
		     (rplacd l (cddr l)))))
	     ((rczerop (ps-le (cdadr l)))
	      (setq zerl (cons (cadr l) zerl))
	      (rplacd l (cddr l)))
	     ((e> (ps-le (cdadr l)) (rczero))
	      (setq posl (cons (cadr l) posl))
	      (rplacd l (cddr l)))
	     ('t (setq l (cdr l)))))
    (when (equal zerl 0) (return (rczero)))
    (setq negl (cdr expl) temp (ord-vector fixl))
    (mapcar #'(lambda (x) (and (e> (rczero) x) (setq negfl t))) temp)
    (tstimes-get-pw zerl temp)
    (setq pw (tstimes-get-pw posl (tstimes-get-pw negl temp)))
    (if (or negl negfl)
	(setq posl
	      (mapcar #'(lambda (x)
			   (prog2 (mapcar #'(lambda (datum lel pwl)
					       (push-pw datum
						  (e+ (current-trunc datum)
						      (e- lel pwl))))
					  tlist (cddr x) pw)
				  (taylor2 (car x))
				  (mapcar #'(lambda (datum) (pop-pw datum))
					  tlist)))
		      (nconc posl zerl negl)))
       (setq posl (nconc (mapcar 'cadr posl) (mapcar 'cadr zerl)
			 (mapcar 'cadr negl))))
    (setq posl (tstimes-l-mult posl))
    (let ((ans (cond ((null fixl) posl)
		     ((null posl) fixl)
		     ('t (pstimes fixl posl)))))
       (if $maxtayorder ans (pstrunc ans)))))

;;; This routine transforms a list of exponentials as follows:
;;;
;;;	a^c*b^(n*c) ===> (a*b^n)^c,   where n is free of var.
;;;
;;; This transformation is only applicable when c is not free of var.

(defun tsexp-comb (l)	;; ***** clobbers l *****
   (setq l (cons '* l))
   (do ((a l) (e))	;; updated by a rplacd or cdr.
       ((null (cddr a)) (cdr l))	;; get rid of the *
      (rplaca (cddadr a) (setq e ($ratsimp (caddr (cadr a)))))
      ;; Must delete e^0 lest we divide by the 0 below. RWG's byzero bug
      ;; of 3/1/78 used to cause this.
      (if (equal e 0) (rplacd a (cddr a))
	 (if (mfree (caddr (cadr a)) tvars) (pop a)
	    (do ((b (cddr a) (cdr b)) (n))
		((null b) (setq a (cdr a)))
	       (when (mfree (setq n ($ratsimp (m// (caddar b)
						   (caddr (cadr a)))))
			    tvars)
		  (rplaca b (list '(mexpt simp)
				  (m* (cadadr a)
				      (m^ (cadar b) n))	;; b^n
				  (caddr (cadr a))))
		  (rplacd a (cddr a))			;; delete a^c
		  (return () )))))))

;;; This routine transforms a list of exponentials as follows:
;;;
;;;	a^b*a^c ===> a^(b+c),
;;;
;;; this is only necessary when b and c depend on "var."

(defun tsbase-comb (l)		;;; *******clobbers l********
   (setq l (cons '* l))
   (do ((a l))			;;; updated by a rplacd or cdr
       ((null (cddr a)) (cdr l))
      (do ((b (cddr a) (cdr b)))
	  ((null b) (pop a))	;;; did not return early so pop.
	 (when (alike1 (cadar b) (cadadr a))
	    (rplaca b (m^ (cadar b) (m+ (caddar b) (caddr (cadr a)))))
	    (rplacd a (cddr a))
	    (return 't)))))

(defun tsexpt (b e)
   (cond ((and (atom b) (mnump e)
	       (get-datum b)
	       (not (eq (exp-pt (get-datum b)) '$minf)))
	  ;; one could remove this clause and let this case be handled by tsexpt1
	  (var-expand b e () ))
	 ((mfree e tvars) (tsexpt1 b e))
	 ((eq '$%e b) (tsexpt-red (list e)))
	 (t (tsexpt-red (list (list '(%log) b) e)))))

(defun tsexpt-red (l)
   (*bind* ((free) (nfree) (full-log) ($logarc t) (expt) (ps) (e)
	    (log-1 '((mtimes) $%i $%pi))
	    (log%i '((mtimes) ((rat) 1 2) $%i $%pi)))
	   (declare (special e))
    a  (do ((l l (cdr l)))
	   ((null l) )
	  (cond ((mtimesp (car l)) (setq l (append l (cdar l))))
		((mfree (car l) tvars) (push (car l) free))
		(t (push (car l) nfree))))
       (cond ((or (cdr nfree) (atom (car nfree))) )
	     ((eq (caaar nfree) '%log)
	      (return (tsexpt1 (cadar nfree) (m*l free))))
	     ((member (caaar nfree) *psacirc :test #'eq)
	      (setq l (ncons (simplifya	 ;; simplify after removing simp flag
			      (cons (ncons (caaar nfree)) (cdar nfree))
			      () ))
		    nfree (cdr nfree))
	      (go a)))
       ;; Must have truncs > 0 so that logs in the expt aren't trunc'd.
       ;; E.g, consider taylor(x^(x-1),x,0,-1).
       (tlist-mapc d (push-pw d (emax (current-trunc d) (rcone))))
       (setq ps (taylor2 (setq expt (m*l (append nfree free)))))
       (tlist-mapc d (pop-pw d))
       ;; Here we must account for the truncation gain or lossage that
       ;; is encountered in exp(c*log(x)+y) -> x^c*exp(y).
       (let ((c0 (if (pscoefp ps) ps (psterm (terms ps) (rczero))))
	     e^c0 ord-e^c0)
	  (unless (rczerop c0)
	     (setq ord-e^c0 (ord-vector (setq e^c0 (psexpt-fn c0))))
	     ;; Must emax with 0 so that new singular kernals won't be trunc'd
	     ;; e.g exp(1/x+...) to degree -2 should be exp(-1/x)+...
	     ;; Also try taylor(screwa,x,0,-2).
	     (mapc #'(lambda (d o) (push-pw d (emax (e- (current-trunc d) o)
						   (rczero))))
		   tlist ord-e^c0)
	     (setq ps (psdiff (taylor2 expt) c0)))
	  (setq ps (psexpt-fn ps))
	  (when e^c0
	     (tlist-mapc d (pop-pw d))
	     (setq ps (pstimes e^c0 ps)))
	  (pstrunc ps))))

;; Taylor's b^e, where e is independent of tvars.

(defun tsexpt1 (b e)
  (prog (s le pw tb)
     (setq e (let ((modulus () )) ; Don't mod exponents! See WGM's bug
	       (prog2 (mapcar		;  of 3/6/83 for an example.
		       #'(lambda (datum)
			   (push-pw datum
				    (emax (current-trunc datum) (rczero))))
		       tlist)
		   (taylor2 e)
		 (mapcar #'(lambda (datum) (pop-pw datum)) tlist)))
	   s (psfind-s e)
	   tb (taylor2 b)
	   pw (if (psp tb) (current-trunc (get-datum
					   (get-key-var (gvar tb))))
		  ;; Constant problem kludge.
		  (if (rczerop tb) (current-trunc (car tlist)) (rczero))))
     (if (floatp (car s))
	 (setq s (maxima-rationalize (quot (car s) (cdr s)))))
     ;; We must ensure that the lc is non-zero since it will be inverted in
     ;; psexpt.
     (setq tb (strip-zeroes tb 't))
     (cond ((rczerop tb)
	    (when (or ;; When 1 > s we need more terms since -le*(s-1) > 0.
		   (e> (rcone) s)
		   (and (e> (rczero) pw) (e> s (rcone))))
	      (setq tb (get-lexp b () 't)))
	    (setq le (ps-le* tb)))
	   ((psp tb) (setq le (ps-le tb)))
	   (t (return (rcexpt tb e))))
     (and (e> (e* s le) pw) (null $maxtayorder) (return (rczero)))
     (setq s (e- pw (e* le (e1- s))))
					;(setq le (increment-truncs tb))
     (return
       (psexpt
	(if (e> pw s)
	    (if $maxtayorder tb
		(pstrunc1 tb (list (cons (gvar tb) s))))
	    ;; because of constants not retaining info, have to
	    ;; just keep the constant here
	    (cond ((not (psp tb)) tb)
		  (t (let-pw (get-datum (get-key-var (gvar tb))) s (strip-zeroes (taylor2 b) 't)))))
	e))))

;;; the method of calculating truncation levels below is incorrect.
;;; (i.e. increment-truncs & decrement-truncs, also used above)
;;; Examples which exhibit this incorrectness are:
;;; taylor(log(sin(y)+x),x,0,2,y,0,1) is missing a y/6*x and -1/6*x^2
;;; taylor(log(sin(z)+sin(y)+x),x,0,f1,y,0,3,z,0,5) misses a z^5*y^3 term.

;;; TSLOG must find the lowest degree term in the expansion of the
;;; log arg, then expand with the orders of all var's in this low term
;;; incremented by their order in this low term. Note that this is
;;; only necessary for var's with ord > 0, since otherwise we have
;;; already expanded to a higher ord than required. Also we must
;;; not do this for var's with trunc < 0, since this may incorrectly
;;; truncate terms which should end up as logs.

(defun increment-truncs (ps)
   (do ((ps ps (ps-lc ps)) (trunc (t-o-var (gvar ps))) (data () ))
       ((pscoefp ps) data)
      (when (e> (ps-le ps) (rczero))
	 (push (assoc (get-key-var (gvar ps)) tlist :test #'eq) data)
	 (push-pw (car data) (e+ (e* (e+ trunc (rctwo)) (ps-le ps))
				 (current-trunc (car data))))
	 (setq trunc (e+ trunc (current-trunc (car data))))
	 )))

(defun decrement-truncs (data)
   (mapc #'(lambda (data) (pop-pw data)) data))

(defun tslog (arg)
  (let ((psarg (taylor2 arg)) datum)
   (when (rczerop psarg) (setq psarg (get-lexp arg () 't)))
   ;; We must ensure that the lc is non-zero since it will be inverted in pslog
   (setq psarg (strip-zeroes psarg 't))
   (do ((ps psarg (ps-lc ps)) (shift (rcone) (e* shift (rctwo))))
       ((pscoefp ps)
	(when datum
	   (when (rczerop (setq psarg (taylor2 arg)))
	      (setq psarg (get-lexp arg () 't)))
	   (mapc #'(lambda (data) (pop-pw data)) datum))
	(pslog psarg))
      (push (get-datum (get-key-var (gvar ps))) datum)
      (if (and (e> (ps-le ps) (rczero))
	       (e> (current-trunc (car datum)) (rczero)))
	  (push-pw (car datum) (e+ (e* shift (ps-le ps))
				   (current-trunc (car datum))))
	 (pop datum)))))

;; When e-start is non-null we start expanding at order e-start, ... , 2^m,
;; then 2^m*pow, instead of the normal sequence pow, ... , 2^m*pow
;; (where m = $taylordepth, pow = ord of var). This is done because it is
;; usually much more efficient for large, non-trivial expansions when we only
;; want the lowest order term.

(defun get-lexp (exp e-start zerocheck?)
  (if (equal exp 0)
      (if zerocheck?
	  (tay-depth-err)
	  (rczero))
      (progn
	(tlist-mapc d (push-pw d (or e-start (emax (orig-trunc d) (rcone)))))
	(do ((psexp) (i (1+ $taylordepth) (1- i)))
	    ((signp e i)
	     (tlist-mapc d (pop-pw d))
	     (if zerocheck?
		 (tay-depth-err)
	         (progn
		   (unless silent-taylor-flag (zero-warn exp))
		   (rczero))))
	  (declare (fixnum i))
	  (cond ((and (rczerop (setq psexp (if zerocheck?
					       (strip-zeroes (taylor2 exp) 't)
					       (taylor2 exp))))
		      (not (member exp zerolist :test #'eq))) )
		;; Info not needed yet.
		;; ((and lexp-non0 (rczerop (le (terms psexp)))
		;;       (mono-term? (terms psexp))))
		(t (tlist-mapc d (pop-pw d))
		   (return psexp)))
	  (cond ((and (= i 1) e-start)
		 (setq e-start () i 2)
		 (tlist-mapc d (push-pw d (prog1 (e* (orig-trunc d) (current-trunc d))
					    (pop-pw d)))))
		(t (tlist-mapc d (push-pw d (prog1 (e* (rctwo) (current-trunc d))
					      (pop-pw d))))))))))

(defun 1p (x)
  (or (equal x 1) (equal x 1.0)))

(defun [max-trunc] ()
   (do ((l tlist (cdr l)) (emax (rczero)))
       ((null l) (1+ (truncate (car emax) (cdr emax))))
      (when (e> (current-trunc (car l)) emax)
	 (setq emax (orig-trunc (car l))))))

(defun tsprsum (f l type)
  (if (mfree f tvars) (newsym f)
      (let ((li (ncons (car l))) (hi (caddr l)) (lv (ncons (cadr l))) a aa
	    ($maxtayorder () ));; needed to determine when terms are 0
	(if (and (numberp (car lv)) (numberp hi) (> (car lv) hi))
	    (if (eq type '%sum) (taylor2 0) (taylor2 1))
	    (progn
	      (if (eq type '%sum) (setq type '()))
	      (do ((m (* ([max-trunc]) (ash 1 $taylordepth)))
		   (k 0 (1+ k))
		   (ans (taylor2 (maxima-substitute (car lv) (car li) f))))
		  ((equal hi (car lv)) ans)
		(rplaca lv (m1+ (car lv)))
		;; A cheap heuristic to catch infinite recursion when
		;; possible, should be improved in the future
		(if (> k m) (exp-pt-err)
		    (setq a		;(mlet li lv (taylor2 (setq aa (meval f))))
			  (taylor2 (maxima-substitute (car lv) (car li) f))))
		(if type
		    (if (and (1p (car a)) (1p (cdr a)) (not (1p aa)))
			(return ans)
			(setq ans (pstimes a ans)))
		    (if (and (rczerop a) (not (signp e aa)))
			(return ans)
			(setq ans (psplus ans a))))))))))

(defun tsdiff (e l check)
	(*bind* ((n) (v) (u))
	      (do ((l l (cddr l)))
		  ((null l))
		  (if (and (atom (car l)) (numberp (cadr l))
			   (assoc (car l) tlist :test #'eq))
		      (setq n (cons (cadr l) n) v (cons (car l) v))
		      (setq u (cons (car l) (cons (cadr l) u)))))
	      (or n (return (prep1 check)))
	      (if u (setq e (meval (cons '($diff) (cons e l)))))
	      (setq l (mapcar #'(lambda (x) (get-datum x)) v))
	      (mapcar #'(lambda (datum pw)
			  (push-pw datum (e+ (current-trunc datum) (prep1 pw))))
		      l n)
	      (setq e (taylor2 e))
	      (mapc #'(lambda (datum) (pop-pw datum)) l)
	      (do ((vl v (cdr vl))
		   (nl n (cdr nl)))
		  ((null vl ) e)
		  (do ((i 1 (1+ i)))
		      ((> i (car nl)) )
		      (mapc #'(lambda (a b)
				(putprop a (prep1 (sdiff b (car v)))
					 'diff))
			    genvar varlist)
		      (setq e (psdp e))))))


(defun no-sing-err (x)			;; try to catch all singularities
  (let ((errorsw t))
    (declare (special errorsw))
    (let ((ans (catch 'errorsw (eval x))))
      (if (eq ans t) (unfam-sing-err) ans))))

;; evaluate deriv at location var=pt
;; if this results in division by zero, use unevaluated form of deriv 
;; in order to get series expansions such as
;; taylor(gamma_incomplete(1/2, x), x, 0, 5) ->
;; sqrt(%pi)+97*sqrt(x)/512+113*x^(3/2)/512-2207*x^(5/2)/5120
;;               +997*x^(7/2)/3072-5845*x^(9/2)/36864
(defun eval-deriv (deriv var pt)
  (let ((errorsw t))
    (declare (special errorsw))
    (let ((ans (catch 'errorsw (eval `(meval '(($at) ,deriv ((mequal) ,var ,pt)))))))
      (if (eq ans t) 
	  deriv
	ans))))

(defun check-inf-sing (pt-list) ; don't know behavior of random fun's @ inf
       (and (or (member '$inf pt-list :test #'eq) (member '$minf pt-list :test #'eq))
	    (unfam-sing-err)))

(defun diff-expand (exp l)		;l is tlist
  (check-inf-sing (mapcar (function caddr) l))
  (cond ((not l) exp)
	(t
	 (setq exp (diff-expand exp (cdr l)))
	 (do ((deriv (sdiff exp (caar l)) (sdiff deriv var))
	      (var (caar l))
	      (coef 1 (* coef (1+ cnt)))
	      (cnt 1 (1+ cnt))
	      (pt (exp-pt (car l)))
	      (lim (rcdisrep (current-trunc (car l))))
	      (ans (list (no-sing-err `(meval '(($at) ,exp ((mequal) ,(caar l) ,(exp-pt (car l)))))))
		   (cons `((mtimes) ((rat simp) 1 ,coef)
			   ,(eval-deriv deriv var pt)
			   ((mexpt) ,(sub* var pt) ,cnt))
			 ans)))
	     ((or (great cnt lim) (equal deriv 0)) (cons '(mplus) ans))))))

;;;		  subtitle disreping routines

(defun edisrep (e)
       (if (= (cdr e) 1) (car e) (list '(rat) (car e) (cdr e))))

(defun striptimes (a)
       (if (mtimesp a) (cdr a) (ncons a)))

(defun srdis (x)
   (let (($psexpand () )) ; Called only internally, no need to expand.
      ($ratdisrep
       (cons (list 'mrat 'simp varlist genvar tlist 'trunc)
	     x))))

(defun srdisrep (r)
   (let ((varlist (mrat-varlist r)) (genvar (mrat-genvar r)))
      (mapc #'(lambda (exp genv) (putprop genv exp 'disrep))
	    varlist genvar)
      (setup-multivar-disrep r)
      ;; This used to return 0 if psdisrep returned () but this is wrong
      ;; since taylor(false,x,0,0) would lose. If psdisrep really wants to
      ;; return () for 0 then we will probably find out soon.
      (if (eq $psexpand '$multi) (psdisexpand (cdr r))
	 (psdisrep (cdr r)))))

(defun psdisrep (p)
   (if (psp p)
       (psdisrep+ (psdisrep2 (terms p) (getdisrep (gvar-o p)) (trunc-lvl p))
		  (if (or $psexpand (trunc-lvl p)) '(mplus trunc)
		     '(mplus exact)))
      (rcdisrep p)))

(defun psdisrep^ (n var)
   ;; If var = () then it is an internal var generated in a multivariate
   ;; expansion so it shouldn't be displayed. If var = 1 then it probably
   ;; resulted from the substitution in srdisrep, so it depends on an
   ;; internal var and likewise shouldn't be displayed.
   (cond ((or (rczerop n) (null var) (equal var 1)) 1)
	 ((equal n (rcone)) var)
	 ((and ps-bmt-disrep (mexptp var) (equal (caddr var) -1))
	  (psdisrep^ (e- n) (cadr var)))
	 ('t `((mexpt ratsimp) ,var ,(edisrep n)))))

;;; There used to be a hack below that would print a series consisting
;;; of merely one term as exact polynomial (i.e. no trailing "..."'s).
;;; This is, of course, wrong but the problem with the fix is that
;;; now exact things like taylor(y*x,x,0,f1,y,0,1) will display like
;;; (y+...) x+... because of the problem with $MAXTAYORDER being internally
;;; bound to ()---which causes exact things to look inexact, such as
;;; x and y above. See the comment above taylor* for the $MAXTAYORDER problem.

(defun psdisrep+ (p plush &aux lowest-degree-term)
  (if;; An exact sum of one arg is just that arg.
   (and (null (cdr p)) (eq (cadr plush) 'exact))
   (car p)
   (progn
     ;; Since the DISPLAY package prints trunc'd sum's arguments
     ;; from right to left we must put the terms of any constant term
     ;; in decreasing order. Note that only a constant (wrt to the
     ;; mainvar) term can be a term which is a sum.
     (when (mplusp (setq lowest-degree-term (car (last p))))
       (rplacd lowest-degree-term (nreverse (cdr lowest-degree-term))))
     (cons plush p))))

(defun psdisrep* (a b)
	 (cond ((equal a 1) b)
	       ((equal b 1) a)
	       (t (cons '(mtimes ratsimp)
			(nconc (striptimes a) (striptimes b))))))

(defun psdisrep2 (p var trunc)
   (if (or $ratexpand $psexpand) (psdisrep2expand p var)
      (do ((a () (cons (psdisrep* (psdisrep (lc p)) (psdisrep^ (le p) var))
		       a))
	   (p p (cdr p)))
	  ((or (null p) (e> (le p) trunc)) a))))

(defun psdisrep2expand (p var)
   (do ((p p (cdr p))
	(l () (nconc (psdisrep*expand (psdisrep (lc p)) (psdisrep^ (le p) var))
		     l)))
       ((null p) l)))

(defun psdisrep*expand (a b)
  (cond ((equal a 1) (list b))
	((equal b 1) (list a))
	((null (mplusp a))
	 (list (cons '(mtimes ratimes) (nconc (striptimes a) (striptimes b)))))
	('t (mapcar #'(lambda (z) (psdisrep* z b))
		    (cdr a)))))


(defun psdisexpand (p)
  (let ((ans (ncons ())))
    (declare (special ans))		;used in pans-add
    (psdisexcnt p () (rczero))
    (setq ans
	  (nreverse
	   (mapcar #'(lambda (x) (cond ((not (cddr x)) (cadr x))
				       (t (cons '(mplus trunc) (cdr x)))))
		   (cdr ans))))
    (cond ((not (cdr ans)) (car ans))
	  (t (cons '(mplus trunc) ans)))))

(defun psdisexcnt (p l n)
  (if (psp p)
      (do ((var (getdisrep (gvar-o p))) (ll (terms p) (n-term ll)))
	  ((null ll) ())
	(if (rczerop (le ll)) (psdisexcnt (lc ll) l n)
	    (psdisexcnt (lc ll)
			(cons (psdisrep^ (le ll) var) l)
			(e+ (le ll) n))))
      (psans-add (cond ((not l) (rcdisrep p))
		       (t (psdisrep* (rcdisrep p)
				     (cond ((not (cdr l)) (car l))
					   (t (cons '(mtimes trunc) l))))))
		 n)))

(defun psans-add (exp n)
  (declare (special ans))	;bound in psdisexpand
  (do ((l ans (cdr l)))
      ((cond ((null (cdr l)) (rplacd l (ncons (list n exp))))
	     ((e= (caadr l) n) (rplacd (cadr l) (cons exp (cdadr l))))
	     ((e> (caadr l) n) (rplacd l (cons (list n exp) (cdr l))))))))

(defun srconvert (r)
  (cond ((not (atom (caadr (cdddar r))))
	 (cons (car r) (psdisextend (cdr r))))
	(t
	 (*bind* ((trunclist (cadr (cdddar r)))
		  (tlist)
		  (gps)
		  (temp)
		  (vs (caddar r))
		  (gens (cadddr (car r))))
		 (setq gps (mapcar #'cons gens vs))
		 (do ((tl (cdr trunclist) (cddr tl)))
		     ((null tl) (cons (list 'mrat 'simp vs gens tlist 'trunc) (srconvert1 (cdr r))))
		   (setq temp (cdr (assoc (car tl) gps :test #'eq)))
		   (cond ((null (member (car tl) (cdr trunclist) :test #'eq)))
			 ((mplusp temp) (merror "SRCONVERT: internal error."))
			 (t
			  (setq tlist
				(cons (list* temp (tay-order (cadr tl)) 0 nil
					     (cons (car tl) (symbol-value (car tl))))
				      tlist)))))))))

(defun srconvert1 (p)
  (cond ((not (member (car p) genvar :test #'eq)) p)
	(t
	 (do ((l (cdr p) (cddr l))
	      (a nil (cons (term (prep1 (car l)) (srconvert1 (cadr l))) a)))
	     ((null l)
	      (make-ps (cons (car p) (symbol-value (car p)))
		       (tay-order (oldget trunclist (car p))) a))))))

;;;		 subtitle error handling

(defun tay-error (msg exp)
  (if silent-taylor-flag (throw 'taylor-catch ())
      (if exp
	  (merror "taylor: ~A~%~M" msg exp)
	  (merror "taylor: ~A" msg))))

(defun exp-pt-err ()
       (tay-err (intl:gettext "unable to expand at a point specified in:")))

(defun essen-sing-err ()
       (tay-err (intl:gettext "encountered an essential singularity in:")))

(defun unfam-sing-err ()
       (tay-err (intl:gettext "encountered an unfamiliar singularity in:")))

(defun infin-ord-err ()
       (tay-err (intl:gettext "expansion to infinite order?")))

(defun tay-depth-err ()
       (tay-err (intl:gettext "'taylordepth' exceeded while expanding:")))

;;;		 Subtitle TAYLORINFO

(defun taylor-trunc (q)
  (setq q (current-trunc q))
  (cond ((null q) '$inf)
	((equal (cdr q) 1) (car q))
	(t `((rat) ,(car q) ,(cdr q)))))

(defun taylor-info (q)
  (let ((acc-var nil) (acc-pt nil) (acc-ord nil) (qk) (acc))
    (cond ((null q) nil)
	  (t
	   (setq qk (pop q))
	   (cond ((and (fourth qk) (consp (fourth qk)) (eq (caar (fourth qk)) 'multivar)) nil)
		 ((and (fourth qk) (consp (fourth qk)) (eq (caar (fourth qk)) 'multi))
		  (while (and (fourth qk) (consp (fourth qk)) (eq (caar (fourth qk)) 'multi))
		    (setq acc nil)
		    (push (taylor-trunc qk) acc-ord)
		    (push (exp-pt qk) acc-pt)
		    (push (datum-var qk) acc-var)
		    (setq qk (pop q)))
		  (push '(mlist) acc-ord)
		  (push '(mlist) acc-pt)
		  (push '(mlist) acc-var)
		  (setq q (taylor-info q))
		  (if (null q) (list acc-var acc-pt acc-ord) (append q (list acc-var acc-pt acc-ord))))

		 (t
		  (setq acc (if (and (fourth qk) (consp (fourth qk)) (eq '$asympt (caar (fourth qk))))
				(list '$asympt) nil))
		  (push (taylor-trunc qk) acc)
		  (push (exp-pt qk) acc)
		  (push (datum-var qk) acc)
		  (push '(mlist) acc)
		  (setq q (taylor-info q))
		  (if (null q) (list acc) (append q (list acc)))))))))

(defun $taylorinfo (x)
  (if (and (consp x) (member 'trunc (first x) :test #'eq))
      (cons '(mlist) (taylor-info (mrat-tlist x)))
      nil))


;;; Local Modes:
;;; Lisp let-pw Indent:2
;;; End: